Evaluation of Environmental Situation on the Vegetation and Strategy of Its Developing in a Reserve of Msallata at Libya
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Conserving Europe's Threatened Plants
Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database. -
Biological Properties of Cistus Species
Biological properties of Cistus species. 127 © Wydawnictwo UR 2018 http://www.ejcem.ur.edu.pl/en/ ISSN 2544-1361 (online); ISSN 2544-2406 European Journal of Clinical and Experimental Medicine doi: 10.15584/ejcem.2018.2.8 Eur J Clin Exp Med 2018; 16 (2): 127–132 REVIEW PAPER Agnieszka Stępień 1(ABDGF), David Aebisher 2(BDGF), Dorota Bartusik-Aebisher 3(BDGF) Biological properties of Cistus species 1 Centre for Innovative Research in Medical and Natural Sciences, Laboratory of Innovative Research in Dietetics Faculty of Medicine, University of Rzeszow, Rzeszów, Poland 2 Department of Human Immunology, Faculty of Medicine, University of Rzeszów, Poland 3 Department of Experimental and Clinical Pharmacology, Faculty of Medicine, University of Rzeszów, Poland ABSTRACT Aim. This paper presents a review of scientific studies analyzing the biological properties of different species of Cistus sp. Materials and methods. Forty papers that discuss the current research of Cistus sp. as phytotherapeutic agent were used for this discussion. Literature analysis. The results of scientific research indicate that extracts from various species of Cistus sp. exhibit antioxidant, antibacterial, antifungal, anti-inflammatory, antiviral, cytotoxic and anticancer properties. These properties give rise to the pos- sibility of using Cistus sp. as a therapeutic agent supporting many therapies. Keywords. biological properties, Cistus sp., medicinal plants Introduction cal activity which elicit healing properties. Phytochem- Cistus species (family Cistaceacea) are perennial, dicot- ical studies using chromatographic and spectroscopic yledonous flowering shrubs in white or pink depend- techniques have shown that Cistus is a source of active ing on the species. Naturally growing in Europe mainly bioactive compounds, mainly phenylpropanoids (flavo- in the Mediterranean region and in western Africa and noids, polyphenols) and terpenoids. -
Plant Community Structure and Diversity Under Grazing Gradient in Arid Mediterranean Steppe of Algeria
Journal of Materials and J. Mater. Environ. Sci., 2017, Volume 8, Issue 12, Page 4329-4338 Environmental Sciences ISSN : 2028-2508 http://www.jmaterenvironsci.com / http://www.jmaterenvironsci.com/ Copyright © 2017, Plant community structure and diversity under grazing gradient in arid Mediterranean steppe of Algeria 1,2* 1 2 2 S. Merdas , A. Menad ,T. Mostephaoui , B. Sakaa 1Laboratory of biology and environment, Department of Biology and Ecology, Mentouri Brothers University - Constantine, Ain El Bey, 25017 Constantine, Algeria 2 Centre of scientific and technical research on arid regions, BP n° 1682 R.P 07000 Biskra –Algeria Abstract Received 21 Jul 2016, Revised 13 Nov 2016, Desertification is a worldwide concern; in Algeria, land degradation threats more than 20 million of steppe rangelands. Protection from grazing is a technique widely used as a Accepted 16 Nov 2016 management tool for the development of the steppes. The aim of this study is to investigate the effect of grazing on plant community structure and diversity. We Keywords conducted a comparative study of the plant community structure and diversity in grazed Degradation, and ungrazed areas. We assessed soil surface conditions; vegetation, litter, bare ground, diversity, biological soil crusts and Stipa tenacissima cover. In addition, we quantified plant grazing, species diversity using species richness, Shannon diversity index, Simpson index and protection, Evenness. Our results showed that grazing activities have largely reduced values of the conservation, vegetation cover and diversity in grazed areas. In addition, grazing activities affected arid Mediterranean plant community assemblages. The cover of the most dominant species (Stipa steppe. tenacissima), was not affected by grazing. -
Environmental Control of Terpene Emissions from Cistus Monspeliensis L
Environmental control of terpene emissions from Cistus monspeliensis L. in natural Mediterranean shrublands A. Rivoal, C. Fernandez, A.V. Lavoir, R. Olivier, C. Lecareux, Stephane Greff, P. Roche, B. Vila To cite this version: A. Rivoal, C. Fernandez, A.V. Lavoir, R. Olivier, C. Lecareux, et al.. Environmental control of terpene emissions from Cistus monspeliensis L. in natural Mediterranean shrublands. Chemosphere, Elsevier, 2010, 78 (8), p. 942 - p. 949. 10.1016/j.chemosphere.2009.12.047. hal-00519783 HAL Id: hal-00519783 https://hal.archives-ouvertes.fr/hal-00519783 Submitted on 21 Sep 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Rivoal A., Fernandez C., Lavoir A.V., Olivier R., Lecareux C., Greff S., Roche P. and Vila B. (2010) Environmental control of terpene emissions from Cistus monspeliensis L. in natural Mediterranean shrublands, Chemosphere, 78, 8, 942-949. Author-produced version of the final draft post-refeering the original publication is available at www.elsevier.com/locate/chemosphere DOI: 0.1016/j.chemosphere.2009.12.047 Environmental -
Comparative Study on Seeds Germination of Stipa Tenacissima L
J. Appl. Environ. Biol. Sci., 5 (12 )29 -35 , 2015 ISSN: 2090 -4274 Journal of Applied Environmental © 2015, TextRoad Publication and Biological Sciences www.textroad.com Comparative study on seeds germination of Stipa tenacissima L. from two Western Algerian’s Habitats Yassine Ilies Moulessehoul¹*, Zoheir Mehdadi¹ ¹ Laboratory of Plant Biodiversity: Conservation and Valorization, Faculty of Natural Sciences and Life. University Djillali Liabes, Sidi Bel Abbes, 22000, Algeria. Received: August 19, 2015 Accepted: October 19, 2015 ABSTRACT The aim of our work is to study and compare the germination behavior of seeds of two different ecotypes under various temperatures. The temperatures tested vary from 5 to 30°C, the study is conducted over a period of 30 days under laboratory- controlled conditions. The studied parameters are: the kinetic and capacity of germination, the speed of germination and latency time. The seeds from steppe region have a slightly greater germination capacity than those from littoral. This difference was not confirmed by the variance analysis (P> 0.05), except at 5°C and 10°C, where this difference is significant. The speed of germination from the two stations are similar at 25°C and 30°C, where the caryopses from the littoral station have higher values than those from the steppe region (P <0.01) and finally between these two stations, any variability in the latency values was detected at different temperatures (P> 0.05). KEYWORDS: Stipa tenacissima L. - seeds – germination - temperature. I. INTRODUCTION Soil erosion is the main determinant of land degradation in the arid and semi-arid regions, which are widespread in the Mediterranean Basin. -
(Stipa Tenacissima L.) Y Los Espartales De La Península Ibérica
Ecosistemas 16 (2): 111-130. Mayo 2007. http://www.revistaecosistemas.net/articulo.asp?Id=480 Ecología del esparto (Stipa tenacissima L.) y los espartales de la Península Ibérica 1 2 3 F.T. Maestre , D.A. Ramírez , J. Cortina (1) Área de Biodiversidad y Conservación, Departamento de Biología y Geología, ESCET, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 Móstoles, España. (2) Laboratorio de Ecología de Procesos, Departamento de Biología, Universidad Nacional Agraria La Molina, Ap. 465, Lima, Perú.-Departament d’ Ecologia e Institut Multidisciplinar per a l’Estudi del Medi, Universitat d’ Alacant, Ap. 99, 03080 Alicante, España. (3) Departament d’ Ecologia e Institut Multidisciplinar per a l’Estudi del Medi, Universitat d’ Alacant, Ap. 99, 03080 Alicante, España. Recibido el 22 de febrero de 2007, aceptado el 22 de febrero de 2007. Ecología del esparto (Stipa tenacissima L.) y los espartales de la Península Ibérica. Las formaciones vegetales dominados por el esparto o atocha (Stipa tenacissima L.) constituyen uno de los ecosistemas más representativos de las zonas semiáridas de la Península Ibérica y del norte de África. Estas formaciones han estado íntimamente ligadas a la actividad humana desde hace no menos de 4.000 años. Los espartales son formaciones vegetales abiertas, muy heterogéneas en su composición y estructura. La funcionalidad de los espartales está muy relacionada con la disposición espacial de las matas, así como con la cobertura de arbustos rebrotadores. El esparto es una especie anemócora capaz de reproducirse sexual y asexualmente, mostrando vecería en la producción de flores y semillas. Presenta una serie de adaptaciones morfo- estructurales y fisiológicas que le han permitido colonizar con éxito los adversos ambientes semiáridos mediterráneos. -
Fieldtrip Manual for Plant Biodiversity
Fieldtrip manual for Plant Biodiversity Ana Juan, Mª Ángeles Alonso, Alejandro Terrones, Joaquín Moreno, Joan Pérez & José Carlos Cristóbal Department of Environmental Sciences and Natural Resources Fieldtrip manual for Plant Biodiversity Introduction Plant Biodiversity is a subject taught during the second year of the Undergraduate Degree in Biology at the University of Alicante. The main principles about the diversity and morphology of the plants are mostly given during the theoretical classes. This fieldtrip practical manual, together with the laboratory sessions, gives the students an opportunity to see our most common wild plant species. Their direct observations allow them to identify properly the main botanical families, genera and species of our wild flora. This Fieldtrip manual for Plant Biodiversity has been written to enhance the understanding of plant diversity and to identify the different ecological conditions for plant species. Students have to understand that “plants do not grow everywhere”. Most of our natural flora, and specially the endemic one, requires specific environmental conditions to grow. So, the objectives of these fieldtrips are to identify wild flora and to recognise the ecological habitats where many of the identified plant species live. According to the official organisation of the subject Plant Biodiversity at the University of Alicante, nine hours correspond to two field practical sessions, which last 4 and 5 hours, respectively. This manual has been organised in only two chapters. Each chapter includes the description of the places to visit: - Chapter 1. Fieldtrip “Urbanova”: study of coastal sand dunes and salt marshes. - Chapter 2. Fieldtrip “Estación Biológica de Torretes”: study of mountain habitats. -
Crete in Spring 2018 Lead by Fiona Dunbar a Greentours Trip Report
Crete in Spring 2018 Lead by Fiona Dunbar A Greentours Trip Report Friday 6th April Arrival After an early start at Gatwick, we arrived in Crete only a little late. Ian Hislop was on our flight, presumably on his way out to stay with his wife, author of such Cretan Aga sagas as ‘The Island’. Driving along, the countryside was markedly lush and green compared to some years. The Robinia pseudoacacia was dripping in white blossom, the Judas trees with pink. There were acres of yellow, and yellow and white, Chrysanthemum coronarium. We enjoyed a welcome but late lunch at a taverna in the village of Armeni instead. The saganaki or fried cheese was made with the cooks’ own freshly prepared, mild goats cheese. The garden centre next door was quite a pull, too! As we gained altitude we looked out over hills covered with fig, gorse, Quercus pubescens, Asphodeline aestivus and almost fluorescing lime green Giant Fennel, in between the groves of olives and small fields. Having been greeted by Herakles in Spili with glasses of cold water and quince in honey, we settled into our rooms. Some walked down the track below. There was a fine stand of tall purple broomrapes on the nasturtiums in Heracles garden. We reconvened in the breakfast room and strolled over the road to Costas and Maria’s taverna, almost hidden by trailing vines and flowers. Most of us tried the rabbit in lemon sauce – tender and tasty. It was Good Friday, and as I headed to bed I could hear a Scops Owl calling. -
Temporality of Flower Initiation and Control of Inflorescence Architecture Anaïs Chaumeret
Temporality of Flower Initiation and Control of Inflorescence Architecture Anaïs Chaumeret To cite this version: Anaïs Chaumeret. Temporality of Flower Initiation and Control of Inflorescence Architecture. Vegetal Biology. Université de Lyon, 2017. English. NNT : 2017LYSEN059. tel-01662417 HAL Id: tel-01662417 https://tel.archives-ouvertes.fr/tel-01662417 Submitted on 13 Dec 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ! Numéro National de Thèse : 2017LYSEN059 THESE de DOCTORAT DE L’UNIVERSITE DE LYON opérée par L’Ecole Normale Supérieure de Lyon Ecole Doctorale N° 340 Biologie Moléculaire et Intégrée de la Cellule Spécialité de doctorat : Biologie du développement, Biologie des plantes Discipline : Sciences de la vie Soutenue publiquement le 27/10/2017, par : Anaïs CHAUMERET Temporalité de l’initiation des fleurs et contrôle de l’architecture de l’inflorescence Temporality of flower initiation and control of inflorescence architecture Devant le jury composé de : FERRANDIZ, Cristina : Lecturer, Maestre ; IBMCP Valencia, Espagne ; Rapporteure -
Genus Cistus
REVIEW ARTICLE published: 11 June 2014 doi: 10.3389/fchem.2014.00035 Genus Cistus: a model for exploring labdane-type diterpenes’ biosynthesis and a natural source of high value products with biological, aromatic, and pharmacological properties Dimitra Papaefthimiou 1, Antigoni Papanikolaou 1†, Vasiliki Falara 2†, Stella Givanoudi 1, Stefanos Kostas 3 and Angelos K. Kanellis 1* 1 Group of Biotechnology of Pharmaceutical Plants, Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece 2 Department of Chemical Engineering, Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA 3 Department of Floriculture, School of Agriculture, Aristotle University of Thessaloniki,Thessaloniki, Greece Edited by: The family Cistaceae (Angiosperm, Malvales) consists of 8 genera and 180 species, with Matteo Balderacchi, Università 5 genera native to the Mediterranean area (Cistus, Fumara, Halimium, Helianthemum,and Cattolica del Sacro Cuore, Italy Tuberaria). Traditionally, a number of Cistus species have been used in Mediterranean folk Reviewed by: medicine as herbal tea infusions for healing digestive problems and colds, as extracts Nikoletta Ntalli, l’Università degli Studi di Cagliari, Italy for the treatment of diseases, and as fragrances. The resin, ladano, secreted by the Carolyn Frances Scagel, United glandular trichomes of certain Cistus species contains a number of phytochemicals States Department of Agriculture, with antioxidant, antibacterial, antifungal, and anticancer properties. Furthermore, total USA leaf aqueous extracts possess anti-influenza virus activity. All these properties have Maurizio Bruno, University of Palermo, Italy been attributed to phytochemicals such as terpenoids, including diterpenes, labdane-type *Correspondence: diterpenes and clerodanes, phenylpropanoids, including flavonoids and ellagitannins, Angelos K. Kanellis, Group of several groups of alkaloids and other types of secondary metabolites. -
Isoprenoid Emission in Hygrophyte and Xerophyte European Woody Flora: Ecological and Evolutionary Implications
Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2014) 23, 334–345 bs_bs_banner RESEARCH Isoprenoid emission in hygrophyte and PAPER xerophyte European woody flora: ecological and evolutionary implications Francesco Loreto1*, Francesca Bagnoli2, Carlo Calfapietra3,4, Donata Cafasso5, Manuela De Lillis1, Goffredo Filibeck6, Silvia Fineschi2, Gabriele Guidolotti7, Gábor Sramkó8, Jácint Tökölyi9 and Carlo Ricotta10 1Dipartimento di Scienze Bio-Agroalimentari, ABSTRACT Consiglio Nazionale delle Ricerche, Piazzale Aim The relationship between isoprenoid emission and hygrophily was investi- Aldo Moro 7, 00185 Roma, Italy, 2Istituto per la Protezione delle Piante, Consiglio Nazionale gated in woody plants of the Italian flora, which is representative of European delle Ricerche, Via Madonna del Piano 10, diversity. 50019 Sesto Fiorentino (Firenze), Italy, Methods Volatile isoprenoids (isoprene and monoterpenes) were measured, or 3 Istituto di Biologia Agroambientale e data collected from the literature, for 154 species native or endemic to the Medi- Forestale, Consiglio Nazionale delle Ricerche, terranean. The Ellenberg indicator value for moisture (EIVM) was used to describe Via Marconi 3, Porano (Terni), Italy, plant hygrophily. Phylogenetic analysis was carried out at a broader taxonomic scale 4Global Change Research Centre – CzechGlobe, on 128 species, and then refined on strong isoprene emitters (Salix and Populus Belidla 4a, 603 00 Brno, Czech Republic, species) based on isoprene synthase gene sequences (IspS). 5Dipartimento di Biologia, Università degli Studi di Napoli ‘Federico II, Complesso Results Isoprene emitters were significantly more common and isoprene emis- Universitario di Monte S. Angelo, Via Cinthia, sion was higher in hygrophilous EIVM classes, whereas monoterpene emitters were 80126 Napoli, Italy, 6Dipartimento di Scienze more widespread and monoterpene emission was higher in xeric classes. -
Rubiaceae): Evolution of Major Clades, Development of Leaf-Like Whorls, and Biogeography
TAXON 59 (3) • June 2010: 755–771 Soza & Olmstead • Molecular systematics of Rubieae Molecular systematics of tribe Rubieae (Rubiaceae): Evolution of major clades, development of leaf-like whorls, and biogeography Valerie L. Soza & Richard G. Olmstead Department of Biology, University of Washington, Box 355325, Seattle, Washington 98195-5325, U.S.A. Author for correspondence: Valerie L. Soza, [email protected] Abstract Rubieae are centered in temperate regions and characterized by whorls of leaf-like structures on their stems. Previous studies that primarily included Old World taxa identified seven major clades with no resolution between and within clades. In this study, a molecular phylogeny of the tribe, based on three chloroplast regions (rpoB-trnC, trnC-psbM, trnL-trnF-ndhJ) from 126 Old and New World taxa, is estimated using parsimony and Bayesian analyses. Seven major clades are strongly supported within the tribe, confirming previous studies. Relationships within and between these seven major clades are also strongly supported. In addition, the position of Callipeltis, a previously unsampled genus, is identified. The resulting phylogeny is used to examine geographic distribution patterns and evolution of leaf-like whorls in the tribe. An Old World origin of the tribe is inferred from parsimony and likelihood ancestral state reconstructions. At least eight subsequent dispersal events into North America occurred from Old World ancestors. From one of these dispersal events, a radiation into North America, followed by subsequent diversification in South America, occurred. Parsimony and likelihood ancestral state reconstructions infer the ancestral whorl morphology of the tribe as composed of six organs. Whorls composed of four organs are derived from whorls with six or more organs.