NATIONAL CONTINGENCY PLAN for DWARF BUNT of WHEAT Iii PART I – PEST RISK ANALYSIS

Total Page:16

File Type:pdf, Size:1020Kb

NATIONAL CONTINGENCY PLAN for DWARF BUNT of WHEAT Iii PART I – PEST RISK ANALYSIS National Contingency Plan for Tilletia contraversa, the cause of Dwarf Bunt of Wheat Part I Pest Risk Assessment October 2007 Written and prepared by: Gordon Murray, NSW DPI Dominie Wright, DAFWA Citation: Murray GM, Wright DG (2007) ‗National Contingency Plan for Tilletia contraversa, the Cause of Dwarf Bunt of Wheat. Part I: Pest Risk Assessment‘. Plant Health Australia, Canberra, ACT, Australia. vi + 16 pp. The National Contingency Plan for Tilletia contraversa has four manuals: Part I: Pest risk assessment, with background information on the pathogen and disease Part II: Preventative Measures, the current and recommended actions to reduce the risk of an incursion Part III: Field Manual, for use by the incident manager and teams in the emergency response Part IV: Diagnostic Protocol, for use by the diagnostic laboratories The authors of Part I: Dr Gordon Murray is a principal research scientist employed by NSW Department of Primary Industries. He is located at the EH Graham Centre for Agricultural Innovation, Wagga Wagga Agricultural Institute. Dr Murray is a plant pathologist with major interests in the diseases of plants grown on farms in southern and central New South Wales. His main work is on winter cereals, winter pulse crops and canola. He studies the effect that plant diseases have on production and quality, and the possible controls such as management, rotation and plant breeding. Ms Dominie Wright is a plant pathologist employed by the Western Australian Department of Agriculture and Food. She is located at the South Perth Laboratories where she specialises in the diagnosis of field crop diseases by providing a diagnostic service to the farmers and agribusiness consultants. Ms Wright also specialises in the diagnosis of bacterial diseases in horticultural and field crops. Ms Wright enjoys writing training courses and compiling research into contingency plans for exotic pathogens. Address: Dr Gordon M. Murray Wagga Wagga Agricultural Institute Private Bag Wagga Wagga, NSW 2650 Australia Phone: 02 6938 1999 Fax: 02 6938 1809 Email: [email protected] Ms Dominie Wright Department of Agriculture and Food Locked Bag 4 Bentley Delivery Centre, WA 6983 Australia Phone: 08 9368 3875 Fax: 08 9474 2840 Email: [email protected] Plant Health Australia, Suite 5, 4 Phipps Close, Deakin, ACT 2600, Australia. Email: [email protected] Web site: www.planthealthaustralia.com.au PART I – PEST RISK ANALYSIS Contents EXECUTIVE SUMMARY .............................................................................................................. V 1. INTRODUCTION................................................................................................................ 1 2. DWARF BUNT OF WHEAT .................................................................................................. 2 2.1 The pathogen and the disease ............................................................................. 2 2.2 Symptoms ............................................................................................................ 2 2.3 Host Range .......................................................................................................... 3 3. EPIDEMIOLOGY ............................................................................................................... 4 3.1 Disease Cycle ...................................................................................................... 4 3.2 Environmental conditions for infection .................................................................. 4 3.3 Distribution ........................................................................................................... 5 3.3.1 Known distribution ....................................................................................... 5 3.3.2 Potential Distribution ................................................................................... 6 4. ECONOMICS AND MARKETING ........................................................................................ 10 4.1 Impact on production.......................................................................................... 10 4.1.1 Yield losses ............................................................................................... 10 4.1.2 Long-term contamination of contaminated land ........................................ 10 4.1.3 Additional costs of field control treatments ................................................ 10 4.1.4 Post-harvest effects on product quality and processing ............................ 10 4.1.5 Allied industries dependent on wheat ........................................................ 11 4.2 Impact on the market for wheat .......................................................................... 11 4.3 Impact of regulatory controls .............................................................................. 11 4.3.1 Detection on imported goods. ................................................................... 11 4.3.2 Erroneous detection in Australian grain ..................................................... 11 5. CONTROL ..................................................................................................................... 12 5.1 Fungicides.......................................................................................................... 12 5.2 Breeding ............................................................................................................ 12 5.3 Cultural .............................................................................................................. 12 6. PEST RISK ASSESSMENT ............................................................................................... 13 6.1 Assessment of Likelihood .................................................................................. 13 6.1.1 Entry potential ........................................................................................... 13 6.1.2 Establishment potential ............................................................................. 13 6.1.3 Spread potential ........................................................................................ 13 6.2 Overall entry, establishment and spread potential .............................................. 13 6.3 Assessment of consequences............................................................................ 14 6.3.1 Economic impact ....................................................................................... 14 6.3.2 Environmental impact ................................................................................ 14 6.3.3 Social impact............................................................................................. 14 October 2007 NATIONAL CONTINGENCY PLAN FOR DWARF BUNT OF WHEAT iii PART I – PEST RISK ANALYSIS 6.4 Combination of likelihood and consequences to assess risks ............................ 14 7. CONCLUSIONS .............................................................................................................. 15 7.1 Surveillance ....................................................................................................... 15 7.2 Diagnostics ........................................................................................................ 15 7.3 Training .............................................................................................................. 15 7.4 Research Options .............................................................................................. 15 8. REFERENCES ................................................................................................................ 16 iv NATIONAL CONTINGENCY PLAN FOR DWARF BUNT OF WHEAT October 2007 PART I – PEST RISK ANALYSIS EXECUTIVE SUMMARY Dwarf bunt, also called ―TCK smut‖, is one of five bunt and smut diseases that affect wheat throughout the world. None of these bunts and smuts is toxic to humans or animals but the bunts in particular can affect the appearance and smell of grain products. Three bunts and smuts occur in Australia and most other wheat growing countries: these are common bunt (caused by Tilletia caries and Tilletia laevis), loose smut (Ustilago tritici) and flag smut (Urocystis agropyri). The two that do not occur in Australia are Karnal bunt (Tilletia indica) and dwarf bunt (Tilletia contraversa). Karnal bunt and dwarf bunt have a restricted distribution and are subject to quarantine regulations by many countries. Karnal bunt is dealt with in a separate contingency plan. Dwarf bunt is a serious disease for international trade because it reduces grain quality and has a restricted distribution, leading to some countries placing restrictions on the import of wheat from areas where the disease occurs. Dwarf bunt does not occur in Australia and so these trade restrictions do not apply to our wheat. However, because any report of dwarf bunt occurring in Australia could have implications for trade, the Grains Council determined that a contingency plan for dwarf bunt be developed. The dwarf bunt contingency plan is divided into four parts: Part I — Pest Risk Assessment, developed from background information on the pathogen and the disease Part II — Preventative Measures, giving the current and recommended actions to reduce the risk of an incursion Part III — Field Manual, for use by the incident manager and teams in the emergency response Part IV — Diagnostic Manual, for use by the diagnostic laboratories Part I — Pest Risk Assessment Dwarf bunt only occurs in wheat growing areas where
Recommended publications
  • Plant Disease
    report on RPD No. 121 PLANT June 1987 DEPARTMENT OF CROP SCIENCES DISEASE UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN STINKING SMUT OR COMMON BUNT OF WHEAT Stinking smut or bunt is caused by three closely related species of fungi, Tilletia foetida, T. caries and T. contraversa. Only Tilletia foetida and T. caries occur in the Midwest. Both fungi have similar life cycles and may even occur together in a plant. Serious losses from these smut fungi have probably occurred since wheat was first cultivated by man. Stinking smut causes reduced wheat yields and grain quality by imparting a foul, fishy odor to the grain–making it unfit for milling. However, smut- infected wheat may be fed to all classes of livestock–including poultry–without ill effects. The two fungi also occasionally infect rye, wild barleys (Hordeum species), goatgrasses (Aegilops spp), wheatgrasses (Agropyron spp), and ryegrasses (Lolium spp). Stinking smut is generally distributed wherever wheat is grown in the world. In the United States it is most severe in the Pacific Northwest. In Illinois, data for 33 consecutive years show an average annual loss of approximately 3 percent caused by stinking smut of wheat. Losses of nearly 50 percent of the wheat heads to stinking smut have occurred in years favorable to infection. The prevalence of stinking smut varies greatly from year to year, depending on soil moisture and temperature conditions at the time the wheat seed is germinating and on whether the seed has been treated with a fungicide before sowing. Common bunt is less frequent and is usually less damaging in spring wheat than in winter wheat.
    [Show full text]
  • <I>Tilletia Indica</I>
    ISPM 27 27 ANNEX 4 ENG DP 4: Tilletia indica Mitra INTERNATIONAL STANDARD FOR PHYTOSANITARY MEASURES PHYTOSANITARY FOR STANDARD INTERNATIONAL DIAGNOSTIC PROTOCOLS Produced by the Secretariat of the International Plant Protection Convention (IPPC) This page is intentionally left blank This diagnostic protocol was adopted by the Standards Committee on behalf of the Commission on Phytosanitary Measures in January 2014. The annex is a prescriptive part of ISPM 27. ISPM 27 Diagnostic protocols for regulated pests DP 4: Tilletia indica Mitra Adopted 2014; published 2016 CONTENTS 1. Pest Information ............................................................................................................................... 2 2. Taxonomic Information .................................................................................................................... 2 3. Detection ........................................................................................................................................... 2 3.1 Examination of seeds/grain ............................................................................................... 3 3.2 Extraction of teliospores from seeds/grain, size-selective sieve wash test ....................... 3 4. Identification ..................................................................................................................................... 4 4.1 Morphology of teliospores ................................................................................................ 4 4.1.1 Morphological
    [Show full text]
  • The Smut Fungi Determined in Aladağlar and Bolkar Mountains (Turkey)
    MANTAR DERGİSİ/The Journal of Fungus Ekim(2019)10(2)82-86 Geliş(Recevied) :21/03/2019 Araştırma Makalesi/Research Article Kabul(Accepted) :08/05/2019 Doi:10.30708.mantar.542951 The Smut Fungi Determined in Aladağlar and Bolkar Mountains (Turkey) Şanlı KABAKTEPE1, Ilgaz AKATA*2 *Corresponding author: [email protected] ¹Malatya Turgut Ozal University, Battalgazi Vocat Sch., Battalgazi, Malatya, Turkey. Orcid. ID:0000-0001-8286-9225/[email protected] ²Ankara University, Faculty of Science, Department of Biology, Tandoğan, Ankara, Turkey, Orcid ID:0000-0002-1731-1302/[email protected] Abstract: In this study, 17 species of smut fungi and their hosts, which were found in Aladağlar and Bolkar mountains were described. The research was carried out between 2013 and 2016. The 17 species of microfungi were observed on a total of 16 distinct host species from 3 families and 14 genera. The smut fungi determined from the study area are distributed in 8 genera, 5 families and 3 orders and 2 classes. Melanopsichium eleusines (Kulk.) Mundk. & Thirum was first time recorded for Turkish mycobiota. Key words: smut fungi, biodiversity, Aladağlar and Bolkar mountains, Turkey Aladağlar ve Bolkar Dağları (Türkiye)’ndan Belirlenen Sürme Mantarları Öz: Bu çalışmada, Aladağlar ve Bolkar dağlarında bulunan 17 sürme mantar türü ve konakçıları tanımlanmıştır. Araştırma 2013-2016 yılları arasında gerçekleştirilmiş, 3 familya ve 14 cinsten toplam 16 farklı konakçı türü üzerinde 17 mikrofungus türü gözlenmiştir. Çalışma alanından belirlenen sürme mantarları 8 cins, 5 familya ve 3 takım ve 2 sınıf içinde dağılım göstermektedir. Melanopsichium eleusines (Kulk.) Mundk. & Thirum ilk kez Türkiye mikobiyotası için kaydedilmiştir.
    [Show full text]
  • Tilletia Indica.Pdf
    Podsumowanie Analizy Zagrożenia Agrofagiem (Ekspres PRA) dla Tilletia indica Obszar PRA: Rzeczpospolita Polska Opis obszaru zagrożenia: Obszar całego kraju Główne wnioski Prawdopodobieństwo wniknięcia T. indica na teren PRA jest ściśle związane z importem zakażonego ziarna. Istnieje ryzyko zadomowienia się patogenu na obszarze PRA i wywoływania szkód w produkcji rolnej. W przypadku sprowadzania z miejsc, gdzie występuje choroba konieczne jest prowadzenie działań fitosanitarnych jak kontrola materiału nasiennego lub ziarna przeznaczonego na inne cele. Wskazane jest także zaniechanie importu w przypadku epidemii na nowym terenie lub z rejonów o silnym natężeniu infekcji. Sprowadzanie ziarna produkowanego poza obszarem występowania T. indica nie wymaga podejmowania specjalnych zabiegów fitosanitarnych. Wszelkie sygnały o obecności agrofaga powinny zostać poddane wnikliwej analizie, a zakażone rośliny lub materiał zniszczone. Ze względu na duże zdolności teliospor do przetrwania w niekorzystnych warunkach zwalczanie chemiczne lub płodozmian mogą okazać się nieskuteczne. Ryzyko fitosanitarne dla zagrożonego obszaru (indywidualna ranga prawdopodobieństwa wejścia, Wysokie Średnie X Niskie zadomowienia, rozprzestrzenienia oraz wpływu w tekście dokumentu) Poziom niepewności oceny: (uzasadnienie rangi w punkcie 18. Indywidualne rangi niepewności dla prawdopodobieństwa wejścia, Wysoka Średnia Niska X zadomowienia, rozprzestrzenienia oraz wpływu w tekście) Inne rekomendacje: 1 Ekspresowa Analiza Zagrożenia Agrofagiem: Tilletia indica Przygotowana przez: dr Katarzyna Pieczul, prof. dr hab. Marek Korbas, mgr Jakub Danielewicz, dr Katarzyna Sadowska, mgr Michał Czyż, mgr Magdalena Gawlak, lic. Agata Olejniczak dr Tomasz Kałuski; Instytut Ochrony Roślin – Państwowy Instytut Badawczy, ul. Węgorka 20, 60-318 Poznań. Data: 10.08.2017 Etap 1 Wstęp Powód wykonania PRA: Tilletia indica jest patogenem porażającym pszenicę i pszenżyto oraz potencjalnie niektóre z gatunków traw dziko rosnących. Patogen stwarza realne zagrożenie dla upraw zbóż na obszarze PRA.
    [Show full text]
  • Use of Whole Genome Sequence Data to Characterize Mating and Rna
    USE OF WHOLE GENOME SEQUENCE DATA TO CHARACTERIZE MATING AND RNA SILENCING GENES IN TILLETIA SPECIES By SEAN WESLEY MCCOTTER A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN PLANT PATHOLOGY WASHINGTON STATE UNIVERSITY Department of Plant Pathology DECEMBER 2014 © Copyright by SEAN WESLEY MCCOTTER, 2014 All Rights Reserved © Copyright by SEAN WESLEY MCCOTTER, 2014 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the thesis of SEAN WESLEY MCCOTTER find it satisfactory and recommend that it be accepted. Lori M. Carris, Ph.D., Chair Dorrie Main, Ph.D. Patricia Okubara, Ph.D. Lisa A. Castlebury, Ph. D. ii ACKNOWLEDGMENTS The research presented in this thesis could not have been carried out without the expertise and cooperation of others in the scientific community. Significant contributions were made by colleagues here at Washington State University, at the United States Department of Agriculture and at Agriculture and Agri-Food Canada. I would like to start by thanking my committee members Dr. Lori Carris, Dr. Lisa Castlebury, Dr. Pat Okubara and Dr. Dorrie Main, who provided guidance on procedure, feedback on my research as well as contacts and laboratory resources. Dr. André Lévesque of AAFC initially alerted me to the prospect of collaboration with other AAFC Tilletia researchers and placed me in contact with Dr. Sarah Hambleton, whose lab sequenced four out of five strains of Tilletia used in this study (CSSP CRTI 09-462RD). Dr. Prasad Kesanakurti and Jeff Cullis coordinated my access to AAFC’s genome and transcriptome data for these species.
    [Show full text]
  • Organic Seed Health. an Inventory of Issues and a Report on Case Studies
    Organic seed health. An inventory of issues and a report on case studies Deliverable number D 2.5 Dissemination level Public Delivery Date 30.11.2020 Status Final Lead beneficiary WR Authors Steven P.C. Groot (WR), Stephanie Klaedtke (ITAB), Monika Messmer (FiBL-CH) and Frederic Rey (ITAB) Organic seed health – an inventory of issues and a report on case studies Document Version Version Date Contributor Summary of Changes 1.0 20.11.2020 Steven P.C. Groot and Stephanie First draft of deliverable Klaedtke 1.0 26.11.2020 Frederic Rey feedback Feedback to deliverable 1.1 30.11.2020 Steven P.C. Groot New version 1.1 20.01.2020 Monika Messmer Final proofread before uploading Table of Content Executive Summary ............................................................................................................................. 4 1. Introduction ........................................................................................................................................ 6 2. Measures to improve seed quality ..................................................................................................... 9 2.1. Seed production conditions ......................................................................................................... 9 2.2. Seed maturity ............................................................................................................................... 9 2.3. The seed microbiome .................................................................................................................
    [Show full text]
  • Fostering the Safe Distribution of Maize and Wheat Seed
    Fostering the Safe Distribution of Maize and Wheat Seed General guidelines Third edition Monica Mezzalama Headquartered in Mexico, the International Maize and Wheat Improvement Center (known by its Spanish acronym, CIMMYT) is a not-for-profit agriculture research and training organization. The center works to reduce poverty and hunger by sustainably increasing the productivity of maize and wheat in the developing world. CIMMYT maintains the world’s largest maize and wheat seed bank and is best known for initiating the Green Revolution, which saved millions of lives across Asia and for which CIMMYT’s Dr. Norman Borlaug was awarded the Nobel Peace Prize. CIMMYT is a member of the CGIAR Consortium and receives support from national governments, foundations, development banks, and other public and private agencies. © International Maize and Wheat Improvement Center (CIMMYT) 2012. All rights reserved. The designations employed in the presentation of materials in this publication do not imply the expression of any opinion whatsoever on the part of CIMMYT or its contributory organizations concerning the legal status of any country, territory, city, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The opinions expressed are those of the author(s), and are not necessarily those of CIMMYT or our partners. CIMMYT encourages fair use of this material. Proper citation is requested. Correct citation: Mezzalama, M. 2012. Seed Health: Fostering the Safe Distribution of Maize and Wheat Seed: General guidelines. Third edition. Mexico, D.F.: CIMMYT. ISBN: 978-607-8263-14-1 AGROVOC Descriptors: Wheats; Maize; Seed certification; Seed treatment; Standards; Licenses; Import quotas; Health policies; Stored products pests; Laboratory experimentation; Tilletia indica; Urocystis; Ustilago segetum; Ustilago seae; Smuts; Mexico Additional Keywords: CIMMYT AGRIS Category Codes: D50 Legislation E71 International Trade Dewey decimal classification: 631.521 Printed in Mexico.
    [Show full text]
  • Smuts of Poaceous Plants in Markazi and Lorestan Provinces of Iran
    دانش بیماریشناسی گیاهی )شاپای ا:0926-9822، شاپای چ: 9982-2926( سال دهم، جلد 2، پاییز و زمستان 2322 Plant Pathology Science (eISSN:2588-6290, pISSN:2251-9270) Vol. 10(1), 2021 Research Article Smuts of poaceous plants in Markazi and Lorestan Provinces of Iran BAHRAM SHARIFNABI1, REZA RAGHEBI1, FARIBA GHADERI 2 1- Department of Plant Protection, Isfahan University of Technology, Isfahan, Iran 2- Department of Plant Protection, Yasouj University, Yasouj, Iran Received: 31.05.2021 Accepted: 04.07.2021 Sharifnabi B, Raghebi R, Ghaderi F (2021) Smuts of poaceous plants in Markazi and Lorestan Provinces of Iran. Plant Pathology Science 10(1):42-63. Doi: 10.2982/PPS.10.1.42. Abstract Introduction: Poaceous plants such as corn, wheat, barley, sorghum, oats and millet are an important part of agricultural ecosystems. Smuts are one of the most important fungal diseases of these plants, which often cause economic damage and the destruction of part or all of their yields. Materials and Methods: Poaceous smut infected plants in farms and pastures of Markazi and Lorestan provinces were sampled. Morphological characteristics of these fungi and their germination type of teliospores were studied with bright field and fluorescent microscopes and identified using valid keys. The phylogenetic relationship of these fungi with other smuts was also investigated based on ITS-rDNA region sequencing. Results: According to the type of host, morphological characteristics and mode of teliospores germination 12 species vs. U. maydis, U. hordei, U. turcomanica, U. avenae, U.nuda, U. bromivora, U. cynodontis, U. tritici, Tilletia laevis, Tilletia controversa Sporisorium reilianum and S.
    [Show full text]
  • Minnesota's Top 124 Terrestrial Invasive Plants and Pests
    Photo by RichardhdWebbWebb 0LQQHVRWD V7RS 7HUUHVWULDO,QYDVLYH 3ODQWVDQG3HVWV 3ULRULWLHVIRU5HVHDUFK Sciencebased solutions to protect Minnesota’s prairies, forests, wetlands, and agricultural resources Contents I. Introduction .................................................................................................................................. 1 II. Prioritization Panel members ....................................................................................................... 4 III. Seventeen criteria, and their relative importance, to assess the threat a terrestrial invasive species poses to Minnesota ...................................................................................................................... 5 IV. Prioritized list of terrestrial invasive insects ................................................................................. 6 V. Prioritized list of terrestrial invasive plant pathogens .................................................................. 7 VI. Prioritized list of plants (weeds) ................................................................................................... 8 VII. Terrestrial invasive insects (alphabetically by common name): criteria ratings to determine threat to Minnesota. .................................................................................................................................... 9 VIII. Terrestrial invasive pathogens (alphabetically by disease among bacteria, fungi, nematodes, oomycetes, parasitic plants, and viruses): criteria ratings
    [Show full text]
  • Prediction of Disease Damage, Determination of Pathogen
    PREDICTION OF DISEASE DAMAGE, DETERMINATION OF PATHOGEN SURVIVAL REGIONS, AND CHARACTERIZATION OF INTERNATIONAL COLLECTIONS OF WHEAT STRIPE RUST By DIPAK SHARMA-POUDYAL A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY WASHINGTON STATE UNIVERSITY Department of Plant Pathology MAY 2012 To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of DIPAK SHARMA-POUDYAL find it satisfactory and recommend that it be accepted. Xianming Chen, Ph.D., Chair Dennis A. Johnson, Ph.D. Kulvinder Gill, Ph.D. Timothy D. Murray, Ph.D. ii ACKNOWLEDGEMENTS I would like to express my sincere gratitude to Dr. Xianming Chen for his invaluable guidance, moral support, and encouragement throughout the course of the study. I would like to thank Drs. Dennis A. Johnson, Kulvinder Gill, and Timothy D. Murray for serving in my committee and their valuable suggestions for my project. I also like to thank Dr. Mark Evans, Department of Statistics, for his statistical advice on model development and selection. I am grateful to Dr. Richard A. Rupp, Department of Crop and Soil Sciences, for his expert advice on using GIS techniques. I am thankful to many wheat scientists throughout the world for providing stripe rust samples. Thanks are also extended to Drs. Anmin Wan, Kent Evans, and Meinan Wang for their kind help in the stripe rust experiments. Special thanks to Dr. Deven See for allowing me to use the genotyping facilities in his lab. Suggestions on data analyses by Dr. Tobin Peever are highly appreciated. I also like to thank my fellow graduate students, especially Jeremiah Dung, Ebrahiem Babiker, Jinita Sthapit, Lydia Tymon, Renuka Attanayake, and Shyam Kandel for their help in many ways.
    [Show full text]
  • 1. Padil Species Factsheet Scientific Name: Common Name Image
    1. PaDIL Species Factsheet Scientific Name: Tilletia laevis J.G. Kühn Basidiomycota, Exobasidiomycetes, Tilletiales, Tilletiaceae Common Name Wheat smut Live link: http://www.padil.gov.au/aus-smuts/Pest/Main/140186 Image Library Smut Fungi of Australia Live link: http://www.padil.gov.au/aus-smuts/ Partners for Smut Fungi of Australia image library Queensland Government https://www.daf.qld.gov.au/ 2. Species Information 2.1. Details Specimen Contact: Roger Shivas - [email protected] Author: Roger Shivas Citation: Roger Shivas (2010) Wheat smut(Tilletia laevis)Updated on 12/13/2010 Available online: PaDIL - http://www.padil.gov.au Image Use: Free for use under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY- NC 4.0) 2.2. URL Live link: http://www.padil.gov.au/aus-smuts/Pest/Main/140186 2.3. Facets Columella: absent Distribution: NSW, QLD, TAS, VIC Host Family: Poaceae Peridium: present Sorus position: inflorescence Sorus shape: globose to short cylindrical Spore balls: absent Spore mass texture: powdery Spore shape: globose or subglobose, irregular, ovoid to ellipsoidal Spore surface ornamentation: smooth Status: Exotic establishment in Australia Sterile cells: present 2.4. Other Names Erysibe foetida Wallr. Tilletia foetens (Berk. & M.A. Curtis) J. Schröt. Tilletia foetida (Wallr.) Liro Ustilago foetens Berk. & M.A. Curtis 2.5. Diagnostic Notes **Sori** in ovaries, containing the powdery olivaceous brown foetid spore mass. **Spores** globose, ovoid to irregular, 16–24 × 14–17 µm, light yellowish to olivaceous brown, with granular or guttulate contents; wall smooth, 1.0–1.5 µm thick, often with a short papilla or mycelial fragment.
    [Show full text]
  • Sites of Importance for Nature Conservation Wales Guidance (Pdf)
    Wildlife Sites Guidance Wales A Guide to Develop Local Wildlife Systems in Wales Wildlife Sites Guidance Wales A Guide to Develop Local Wildlife Systems in Wales Foreword The Welsh Assembly Government’s Environment Strategy for Wales, published in May 2006, pays tribute to the intrinsic value of biodiversity – ‘the variety of life on earth’. The Strategy acknowledges the role biodiversity plays, not only in many natural processes, but also in the direct and indirect economic, social, aesthetic, cultural and spiritual benefits that we derive from it. The Strategy also acknowledges that pressures brought about by our own actions and by other factors, such as climate change, have resulted in damage to the biodiversity of Wales and calls for a halt to this loss and for the implementation of measures to bring about a recovery. Local Wildlife Sites provide essential support between and around our internationally and nationally designated nature sites and thus aid our efforts to build a more resilient network for nature in Wales. The Wildlife Sites Guidance derives from the shared knowledge and experience of people and organisations throughout Wales and beyond and provides a common point of reference for the most effective selection of Local Wildlife Sites. I am grateful to the Wales Biodiversity Partnership for developing the Wildlife Sites Guidance. The contribution and co-operation of organisations and individuals across Wales are vital to achieving our biodiversity targets. I hope that you will find the Wildlife Sites Guidance a useful tool in the battle against biodiversity loss and that you will ensure that it is used to its full potential in order to derive maximum benefit for the vitally important and valuable nature in Wales.
    [Show full text]