Cyanide Metabolism, Postharvest Physiological Deterioration and Abiotic Stress Tolerance in Cassava (Manihot Esculenta Crantz)

Total Page:16

File Type:pdf, Size:1020Kb

Cyanide Metabolism, Postharvest Physiological Deterioration and Abiotic Stress Tolerance in Cassava (Manihot Esculenta Crantz) Cyanide Metabolism, Postharvest Physiological Deterioration and Abiotic Stress Tolerance in Cassava (Manihot esculenta Crantz) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Tawanda Zidenga Graduate Program in Plant Cellular and Molecular Biology The Ohio State University 2011 Dissertation Committee: Professor Richard Sayre (Adviser) Professor Rebecca S. Lamb Professor Jyan-Chyun Jang Professor Randall Scholl Copyright by Tawanda Zidenga 2011 Abstract Cassava (Manihot esculenta Crantz) is one of the six most important crops in the world, and an important staple for more than 800 million people. Its tolerance to drought and poor soils make an important food security crop especially in sub-Saharan Africa, while its high starch content has made it attractive as a biofuel feedstock. However, cassava produces potentially toxic levels of cyanogenic glycosides and undergoes rapid postharvest physiological deterioration (PPD) within 72 hours of harvest, shortening its shelf-life. The major cyanogenic glycoside in cassava is linamarin (95%). Linamarin is made from valine in the leaves and translocated to the roots where it is believed to contribute to the reduced nitrogen pool of the plant. Linamarin in the roots is hydrolyzed during mechanical damage by linamarase to acetone cyanohydrin, which breaks down spontaneously into cyanide and acetone at pH > 5.0 or temperatures > 35°C. The first objective of this project was to analyze the activities of enzymes involved in nitrogen and cyanide metabolism in cassava in order to understand the effect of cyanogenic potential on nitrogen metabolism. We compared the activity of nitrate reductase, a key enzyme in nitrogen metabolism, in wild-type lines and transgenic low cyanogen lines. The results show that nitrate reductase activity is 3X higher in low cyanogen plants than in wild-type lines, suggesting that cyanogenesis provides a significant source of reduced nitrogen which has to be compensated for by nitrate reduction in low cyanogen plants. In addition, β-cyanoalanine synthase (CAS), nitrilase and rhodanese assays confirmed that CAS is the ii key cyanide metabolizing enzyme in cassava roots, with 3X more activity in the roots compared to shoots, while rhodanese had no detectable activity in cassava roots. We concluded from these assays that the β-cyanoalanine synthase pathway is active in cassava roots, and is likely to be the route for assimilation of cyanide into free amino acids. The second objective was to investigate the potential of redirecting cyanide from cyanogenesis in cassava roots to the production of free amino acids by overexpressing two genes involved in cyanide metabolism; CAS and nitrilase 4 (NIT4). Transgenic plants generated using each of these strategies had limitations because of effects on other pathways, which will be discussed. The third objective was to investigate the role of cyanogenesis in oxidative stress and PPD in cassava. PPD in cassava is marked by an initial oxidative burst, followed by vascular discoloration, ultimately rendering the crop unpalatable. Effective transgenic strategies for extending the shelf-life of cassava require an understanding of the causes of the early events, especially the oxidative burst. We show a causal link between cyanogenesis, which occurs upon mechanical damage in cassava, and accumulation of reactive oxygen species which trigger PPD. By measuring ROS accumulation in transgenic low cyanogen plants and as well as biochemically complementing the low cyanogens by adding 5 mM potassium cyanide, we show that the oxidative burst in cassava roots is cyanogen-induced. In light of these data, we have generated transgenic plants expressing codon-optimized Arabidopsis thaliana Alternate Oxidase (AOX), a cyanide resistant terminal oxidase in the mitochondrial respiratory chain in plants, as a strategy to control PPD by reducing the cyanide-induced ROS accumulation. The transgenic AOX plants show a 10-14X reduction in ROS iii accumulation compared to wild type plants, with at least two week extension in shelf– life. The final objective was to test these AOX transgenic lines for tolerance to abiotic stress. The production of ROS is one of the earliest detectable responses of plants to abiotic stresses. Since AOX blocks ROS accumulation, we tested the hypothesis that AOX overexpression protects cassava plants from abiotic stress. Our results show marked tolerance to waterlogging and salt stress, suggesting AOX as a strategy to extend shelf-life of cassava while providing stress tolerance. iv For my mother. v Acknowledgments I received help and support from many people during the course of this project and it will be impossible to list them all here, so first I must say thanks to everyone I interacted with for the support and encouragement. I am grateful especially to my advisor Dr. Richard Sayre for the continued guidance throughout the project, for the opportunity to be part of a great program (BioCassava Plus) and for his patience and encouragement; To my committee members; Dr. Rebecca Lamb, Dr. Randy Scholl and Dr. JC Jang for their support, suggestions and willingness to accommodate me in their schedules. I also want to thank my fellow graduate students in the lab; Anil Kumar, Zoee Perrine and Elisa Leyva-Guerrero with whom I shared many lively discussions. Thanks to the Sayre lab members past and present who have given their assistance and encouragement; Uzoma Ihemere, Sathish Rajamani, Vanessa Falcao, Shayani Peris and Narayanan Narayanan. Thanks also to Hangsik Moon, who was involved in the early part of the AOX project; Dimuth Siritunga, whose work on cyanogenesis my project rested upon; Matt Stephens, Mary-Ann Abiado, Shantha Peris and Jennifer Norris, who, at different stages kept the lab working. And to the interns I have worked with during my years in graduate school; Tony Galleinstein, Reid Rice and Solomon Afuape, not only for the help vi they offered in parts of my project, but for challenging me to refine my understanding of biology as I worked with them. I would also like to thank all the people in the facilities I have used especially the greenhouse stuff at Ohio State department of Plant Cellular and Molecular Biology (PCMB) and the Donald Danforth Plant Science Center (DDPSC), Microscopy Facilities at Ohio State and DDPSC. vii Vita August 1977 ...................................................Born, Gweru, Zimbabwe 2001................................................................B.S. Agriculture, University of Zimbabwe 2003................................................................Visiting Scholar, The Ohio State University 2004 to present ..............................................Graduate Research Associate, Department of Plant Cellular and Molecular Biology, The Ohio State University 2008 to present ..............................................Visiting Graduate Student, Donald Danforth Plant Science Center, St Louis, MO Fields of Study Major Field: Plant Cellular and Molecular Biology viii Table of Contents Abstract ............................................................................................................................... ii Acknowledgments.............................................................................................................. vi Vita ................................................................................................................................... viii List of Tables ................................................................................................................... xiv List of Figures .................................................................................................................. xvi Chapter 1: Introduction ................................................................................................. 1 1.1 Cassava and food security .................................................................................... 1 1.2 Propagation........................................................................................................... 5 1.3 Cyanogenesis ........................................................................................................ 8 1.3.1 Sources of cyanide in plants ......................................................................... 8 1.3.2 Linamarin biosynthesis and breakdown ...................................................... 11 1.3.3 Role of cyanogenic glycosides in plants ..................................................... 13 1.3.4 Translocation of linamarin .......................................................................... 14 1.3.5 Dietary cyanide causes health disorders ..................................................... 19 1.4 Postharvest physiological deterioration ............................................................. 23 1.4.1 Cassava response to wounding in comparison with other crops................. 23 ix 1.4.2 Biochemical events during cassava PPD .................................................... 25 1.4.3 Oxidative damage during PPD .................................................................... 27 1.5 Strategies for controlling PPD............................................................................ 33 1.5.1 Storage conditions ....................................................................................... 33 1.5.2 Cassava processing ....................................................................................
Recommended publications
  • Recruitment of Genes and Enzymes Conferring Resistance to the Nonnatural Toxin Bromoacetate
    Recruitment of genes and enzymes conferring resistance to the nonnatural toxin bromoacetate Kevin K. Desai and Brian G. Miller1 Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390 Edited* by Richard Wolfenden, University of North Carolina, Chapel Hill, NC, and approved August 24, 2010 (received for review May 28, 2010) Microbial niches contain toxic chemicals capable of forcing organ- tance of a naïve bacterial population can play a role in combating isms into periods of intense natural selection to afford survival. the toxicity of a nonnatural small-molecule. Revealing the reser- Elucidating the mechanisms by which microbes evade environmen- voir of intrinsic resistance genes that are subject to evolutionary tal threats has direct relevance for understanding and combating recruitment promises to aid our understanding of the processes the rise of antibiotic resistance. In this study we used a toxic small- leading to the emergence of antibiotic resistant pathogens. molecule, bromoacetate, to model the selective pressures imposed We sought to identify the full spectrum of bromoacetate resis- by antibiotics and anthropogenic toxins. We report the results tance mechanisms available to the model bacterium, Escherichia of genetic selection experiments that identify nine genes from coli. The reactivity of bromoacetate is likely to mimic that of elec- Escherichia coli whose overexpression affords survival in the trophilic natural products as well as anthropogenic environmen- presence of a normally lethal concentration of bromoacetate. Eight tal contaminants that microbes may encounter. The clinically of these genes encode putative transporters or transmembrane significant natural antibiotic fosfomycin, and the fungal natural proteins, while one encodes the essential peptidoglycan biosyn- product terreic acid, are electrophilic molecules that both target N thetic enzyme, UDP- -acetylglucosamine enolpyruvoyl transferase an essential nucleophilic cysteine residue in bacteria (8, 9).
    [Show full text]
  • The Cyanogenic Polymorphism in Trifolium Repens L
    Heredity66 (1991) 105—115 Received 16 May 1990 Genetical Society of Great Britain The cyanogenic polymorphism in Trifolium repens L. (white clover) M. A. HUGHES Department of Biochemistry and Genetics, The Medical School, The University, Newcastle upon Tyne NE2 4HH Thecyanogenic polymorphism in white clover is controlled by alleles of two independently segregating loci. Biochemical studies have shown that non-functional alleles of the Ac locus, which controls the level of cyanoglucoside produced in leaf tissue, result in the loss of several steps in the biosynthetic pathway. Alleles of the Li locus control the synthesis of the hydrolytic enzyme, linamarase, which is responsible for HCN release following tissue damage. Studies on the selective forces and the distribution of the cyanogenic morphs of white clover are discussed in relation to the quantitative variation in cyanogenesis revealed by biochemical studies. Molecular studies reveal considerable restriction fragment length polymorphism for linamarase homologous genes. Keywords:cyanogenesis,polymorphism, Trifolium repen, white clover. genetics to plant taxomony. This review discusses the Introduction extensive and diverse ecological genetic studies in rela- Theterm cyanogenesis describes the release of hydro- tion to the more recent biochemical and molecular cyanic acid (HCN), which occurs when the tissues of studies of cyanogenesis in white clover. some plant species are damaged. The first report of cyanogenesis in Trifolium repens (white clover) was by Mirande (1912) and this was shortly followed by a Biochemistry paper which demonstrated that the species was poly- Theproduction of HCN by higher plants depends morphic for the character, with both cyanogenic and upon the co-occurrence of a cyanogenic glycoside and acyanogenic plants occurring in the same population catabolic enzymes.
    [Show full text]
  • Effect of Cultural Conditions on the Growth and Linamarase Production
    Fadahunsi et al. Bull Natl Res Cent (2020) 44:185 https://doi.org/10.1186/s42269-020-00436-3 Bulletin of the National Research Centre RESEARCH Open Access Efect of cultural conditions on the growth and linamarase production by a local species of Lactobacillus fermentum isolated from cassava efuent Ilesanmi Festus Fadahunsi1* , Nafsat Kemi Busari1 and Olumide Samuel Fadahunsi2,3 Abstract Background: This study was designed to investigate the efect of cultural conditions on growth and production of linamarase by a local species of Lactobacillus fermentum isolated from cassava efuent. Isolation and identifcation of bacteria from cassava efuent were carried out using the culture-dependent method and polyphasic taxonomy, respectively, while screening for cyanide degradation, and the efects of cultural conditions on the growth and lin- amarase activity of L. fermentum were investigated based on standard procedures. Results: A total of twenty-one bacterial isolates were obtained from cassava efuent, and isolate MA 9 had the highest growth of 2.8 1010 cfu/ml in minimum medium, confrmed as safe, identifed as Lactobacillus fermentum and selected for further× study. The highest growth of 2.498 OD and linamarase activity of 2.49 U/ml were observed at inoculums volume of 0.10 ml at 48-h incubation period, while optimum growth of 1.926 OD and linamarase activity of 1.66 U/ml occurred at pH 5.5. At 37 °C, the optimum growth of 0.34 OD was recorded with the highest linamarase activity of 0.81 U/ml at 30 °C.However, the incubation period of 48 h stimulated an optimum growth of 3.091 OD with corresponding linamarase activity of 1.81 U/ml, while the substrate concentration of 400 ppm favours a maximum growth of 2.783 OD with linamarase activity of 1.86 U/ml at 48 h of incubation.
    [Show full text]
  • Activation and Detoxification of Cassava Cyanogenic Glucosides by the Whitefly Bemisia Tabaci
    www.nature.com/scientificreports OPEN Activation and detoxifcation of cassava cyanogenic glucosides by the whitefy Bemisia tabaci Michael L. A. E. Easson 1, Osnat Malka 2*, Christian Paetz1, Anna Hojná1, Michael Reichelt1, Beate Stein3, Sharon van Brunschot4,5, Ester Feldmesser6, Lahcen Campbell7, John Colvin4, Stephan Winter3, Shai Morin2, Jonathan Gershenzon1 & Daniel G. Vassão 1* Two-component plant defenses such as cyanogenic glucosides are produced by many plant species, but phloem-feeding herbivores have long been thought not to activate these defenses due to their mode of feeding, which causes only minimal tissue damage. Here, however, we report that cyanogenic glycoside defenses from cassava (Manihot esculenta), a major staple crop in Africa, are activated during feeding by a pest insect, the whitefy Bemisia tabaci, and the resulting hydrogen cyanide is detoxifed by conversion to beta-cyanoalanine. Additionally, B. tabaci was found to utilize two metabolic mechanisms to detoxify cyanogenic glucosides by conversion to non-activatable derivatives. First, the cyanogenic glycoside linamarin was glucosylated 1–4 times in succession in a reaction catalyzed by two B. tabaci glycoside hydrolase family 13 enzymes in vitro utilizing sucrose as a co-substrate. Second, both linamarin and the glucosylated linamarin derivatives were phosphorylated. Both phosphorylation and glucosidation of linamarin render this plant pro-toxin inert to the activating plant enzyme linamarase, and thus these metabolic transformations can be considered pre-emptive detoxifcation strategies to avoid cyanogenesis. Many plants produce two-component chemical defenses as protection against attacks from herbivores and patho- gens. In these plants, protoxins that are ofen chemically protected by a glucose residue are activated by an enzyme such as a glycoside hydrolase yielding an unstable aglycone that is toxic or rearranges to form toxic products1.
    [Show full text]
  • Compendium of Botanicals Reported to Contain Naturally Occuring Substances of Possible Concern for Human Health When Used in Food and Food Supplements
    View metadata,Downloaded citation and from similar orbit.dtu.dk papers on:at core.ac.uk Dec 20, 2017 brought to you by CORE provided by Online Research Database In Technology Compendium of botanicals reported to contain naturally occuring substances of possible concern for human health when used in food and food supplements EFSA authors; Pilegaard, Kirsten Link to article, DOI: 10.2903/j.efsa.2012.2663 Publication date: 2012 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): EFSA authors (2012). Compendium of botanicals reported to contain naturally occuring substances of possible concern for human health when used in food and food supplements. Parma, Italy: Europen Food Safety Authority. (The EFSA Journal; No. 2663, Vol. 10(5)). DOI: 10.2903/j.efsa.2012.2663 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. EFSA Journal 2012;10(5):2663 SCIENTIFIC REPORT OF EFSA Compendium of botanicals reported to contain naturally occuring substances of possible concern for human health when used in food and food supplements1 European Food Safety Authority2, 3 European Food Safety Authority (EFSA), Parma, Italy ABSTRACT In April 2009, EFSA published on its website a Compendium of botanicals reported to contain toxic, addictive, psychotropic or other substances of concern.
    [Show full text]
  • Peraturan Badan Pengawas Obat Dan Makanan Nomor 28 Tahun 2019 Tentang Bahan Penolong Dalam Pengolahan Pangan
    BADAN PENGAWAS OBAT DAN MAKANAN REPUBLIK INDONESIA PERATURAN BADAN PENGAWAS OBAT DAN MAKANAN NOMOR 28 TAHUN 2019 TENTANG BAHAN PENOLONG DALAM PENGOLAHAN PANGAN DENGAN RAHMAT TUHAN YANG MAHA ESA KEPALA BADAN PENGAWAS OBAT DAN MAKANAN, Menimbang : a. bahwa masyarakat perlu dilindungi dari penggunaan bahan penolong yang tidak memenuhi persyaratan kesehatan; b. bahwa pengaturan terhadap Bahan Penolong dalam Peraturan Kepala Badan Pengawas Obat dan Makanan Nomor 10 Tahun 2016 tentang Penggunaan Bahan Penolong Golongan Enzim dan Golongan Penjerap Enzim dalam Pengolahan Pangan dan Peraturan Kepala Badan Pengawas Obat dan Makanan Nomor 7 Tahun 2015 tentang Penggunaan Amonium Sulfat sebagai Bahan Penolong dalam Proses Pengolahan Nata de Coco sudah tidak sesuai dengan kebutuhan hukum serta perkembangan ilmu pengetahuan dan teknologi sehingga perlu diganti; c. bahwa berdasarkan pertimbangan sebagaimana dimaksud dalam huruf a dan huruf b, perlu menetapkan Peraturan Badan Pengawas Obat dan Makanan tentang Bahan Penolong dalam Pengolahan Pangan; -2- Mengingat : 1. Undang-Undang Nomor 18 Tahun 2012 tentang Pangan (Lembaran Negara Republik Indonesia Tahun 2012 Nomor 227, Tambahan Lembaran Negara Republik Indonesia Nomor 5360); 2. Peraturan Pemerintah Nomor 28 Tahun 2004 tentang Keamanan, Mutu dan Gizi Pangan (Lembaran Negara Republik Indonesia Tahun 2004 Nomor 107, Tambahan Lembaran Negara Republik Indonesia Nomor 4424); 3. Peraturan Presiden Nomor 80 Tahun 2017 tentang Badan Pengawas Obat dan Makanan (Lembaran Negara Republik Indonesia Tahun 2017 Nomor 180); 4. Peraturan Badan Pengawas Obat dan Makanan Nomor 12 Tahun 2018 tentang Organisasi dan Tata Kerja Unit Pelaksana Teknis di Lingkungan Badan Pengawas Obat dan Makanan (Berita Negara Republik Indonesia Tahun 2018 Nomor 784); MEMUTUSKAN: Menetapkan : PERATURAN BADAN PENGAWAS OBAT DAN MAKANAN TENTANG BAHAN PENOLONG DALAM PENGOLAHAN PANGAN.
    [Show full text]
  • Rapid Detection Method to Quantify Linamarin Content in Cassava Dinara S
    essing oc & pr B o io i t B e Gunasekera et al, J Bioprocess Biotech 2018, 8:6 f c h o n l Journal of Bioprocessing & DOI: 10.4172/2155-9821.1000342 i a q n u r e u s o J Biotechniques ISSN: 2155-9821 Research Article Open Access Rapid Detection Method to Quantify Linamarin Content in Cassava Dinara S. Gunasekera*, Binu P. Senanayake, Ranga K. Dissanayake, M.A.M. Azrin, Dhanushi T. Welideniya, Anjana Delpe Acharige, K.A.U. Samanthi, W.M.U.K. Wanninayake, Madhavi de Silva, Achini Eliyapura, Veranja Karunaratne and G.A.J Amaratunga. Sri Lanka Institute of Nanotechnology, Homagama, Sri Lanka *Corresponding author: Dinara S Gunasekera, Senior Research Scientist, Sri Lanka Institute of Nanotechnology, Homagama, Sri Lanka, Tel: +94775448584; E-mail: [email protected] Received date: November 21, 2018; Accepted date: December 12, 2018; Published date: December 20, 2018 Copyright: © 2018 Gunasekera DS et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract There are a number of natural remedies against cancer. Cassava (Manihot esculenta Crantz) has been proven to be a natural remedy against cancer due to the cyanogenic compounds it contains such as linamarin. A rapid and simple liquid chromatography-mass spectroscopy (LC-MS) method was developed to identify and quantify linamarin in Cassava. The method was developed using various Cassava (Manihot esculenta Crantz) extracts. Developed application is not limited to Cassava, but can be extended to other types of linamarin containing plant materials as well.
    [Show full text]
  • Isolation of Pure Cassava Linamarin As an Anti Cancer Agent
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Wits Institutional Repository on DSPACE ISOLATION OF PURE CASSAVA LINAMARIN AS AN ANTI CANCER AGENT CHRISTOPHER AVWOGHOKOGHENE, IDIBIE A Dissertation Submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, in Fulfillment of the requirement for the Degree of Master of Science in Engineering. Johannesburg, 2006. DECLARATION I declare that this dissertation is my own, unaided work. It is being submitted for the degree of Master of Science in the University of Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other University. (Signature of candidature) Day of ii ABSTRACT Cassava is a known source of linamarin, but difficulties associated with its isolation have prevented it from being exploited as a source. A batch adsorption process using activated carbon at the appropriate contact time proved successful in its isolation with ultrafiltration playing a pivotal role in the purification process. Result revealed that optimum purification was obtained with increasing amount of crude cassava extract (CCE) purified. 60g of CCE took 32 mins, 80 g, 34 mins while 100 g took 36 mins of contact time, where 1.7 g, 2.0 g and 2.5 g of purified product were obtained, respectively. The purification process in batch mode was also carried out at different temperatures ranging from 25 to 65oC. Results showed that purification increases with increase in temperature. In a bid to ascertain the moles of linamarin adsorbed per pore volume of activated carbon used, the composite isotherm was found to represent the measured adsorption data quite well.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in ^ ew riter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper aligmnent can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor M3 48106-1346 USA 313/761-4700 800/521-0600 GENETIC ENGINEERING APPROACHES TO IMPROVE AGRONOMIC TRAITS IN CASSAVA (MANIHOT ESCULENTA CRANTZ) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Graduate School of The Ohio State University By Diana Isabel Arias-Garzon, B.S.
    [Show full text]
  • Original Research Article Open Access
    Available online at http://www.journalijdr.com ISSN: 2230-9926 International Journal of Development Research Vol. 10, Issue, 01, pp. 33316-33320, January, 2020 RESEARCH ARTICLE ORIGINAL RESEARCH ARTICLE OPEN ACCESS POSSIBLE USE OF MANIHOT SCULENTA LEAVES AS FOOD *1Pedro Henrique Silva de Rossi, 1,2Sandra Maria Barbalho, 1Marie Oshiiwa, 1,2Elen Landgraf Guiguer, 1Claudia Cristina T. Nicolau, 1Adriana Ragassi Fiorini, 2Adriano Cressoni Araújo, 2Patrícia Cincotto dos Santos Bueno, 2Ricardo de Alvares Goulart, 2Claudia Rucco P. Detregiachi and 1Alda Maria Machado B. Otoboni 1Department of Biochemistry and Nutrition, Faculty of Food Technology of Marília, Marília, São Paulo – Brazil 2Department of Biochemistry and Pharmacology, School of Medicine, University of Marília (UNIMAR), Avenida Higino Muzzi Filho, 1001, Marília–Brazil / Brazil ARTICLE INFO ABSTRACT Article History: Several nutritional problems are seen in developing countries, and a countless number of people Article History: ReceivedReceived 14xxxxxx,th October 2019, 2019 are affected by chronic undernutrition. Plants such as Cassava (Manihot esculenta) work as a ReceivedReceived inin revisedrevised formform staple food source for over 800 million people around the world. The aerial part of cassava can be 17xxxxxxxx,th November 201,9 2019 used in animal feed, and in human food in the preparation of typical dishes of the Northern AcceptedAccepted 19xxxxxxxxxth December, 20, 192019 (Amazonian region) and Northeastern regions of Brazil. Besides the presence of cyanide PublishedPublished onlineonline 31xxxxxst January, 2019, 2020 compounds, cassava leaves may represent a source of proteins, vitamins, and minerals; it has a low cost of production, and it is widely adapted to Brazilian conditions. For these reasons, this Key Words: study aims to review the main aspects of this vegetal waist and evaluate its potential as a safe Manihot esculenta; Cassava leaves; food source.
    [Show full text]
  • Combinatorial Biochemistry of Triterpene Saponins in Plants Jacob Pollier
    Combinatorial Biochemistry of Triterpene Saponins in Plants Jacob Pollier Ghent University - Faculty of Sciences Department of Plant Biotechnology and Bioinformatics VIB - Department of Plant Systems Biology Combinatorial Biochemistry of Triterpene Saponins in Plants Jacob Pollier Thesis submitted in partial fulfillment of the requirements for the degree of Doctor (PhD) in Sciences: Biotechnology Academic year: 2010-2011 Promotor: Prof. Dr. Alain Goossens Dit onderzoek werd uitgevoerd in het departement Planten Systeembiologie van het Vlaams Instituut voor Biotechnologie (VIB) en de Universiteit Gent. This work was conducted in the department of Plant Systems Biology of the Flanders Institute for Biotechnology (VIB) and the Ghent University. Dit onderzoek werd gefinancierd door het agentschap voor Innovatie door Wetenschap en Technologie in Vlaanderen (IWT-Vlaanderen, Strategisch Basisonderzoek project SBO040093). This work was supported by the Agency for Innovation by Science and Technology in Flanders (IWT-Vlaanderen, Strategisch Basisonderzoek project SBO040093). ii Board of Examiners Promotor Prof. Dr. Alain Goossens* VIB Department of Plant Systems Biology Department of Plant Biotechnology and Bioinformatics Faculty of Sciences Ghent University Examination Committee Prof. Dr. Ann Depicker (Chair) VIB Department of Plant Systems Biology Department of Plant Biotechnology and Bioinformatics Faculty of Sciences Ghent University Prof. Dr. Danny Geelen* Department of Plant Production Faculty of Bioscience Engineering Ghent University Prof. Dr. Jan Van Bocxlaer* Department of Bio-analysis Faculty of Pharmaceutical Sciences Ghent University Prof. Dr. Luc Pieters* Department of Pharmaceutical Sciences Faculty of Pharmaceutical, Biomedical and Veterinary Sciences University of Antwerp Dr. Kris Morreel* VIB Department of Plant Systems Biology Department of Plant Biotechnology and Bioinformatics Faculty of Sciences Ghent University iii Prof.
    [Show full text]
  • Structural Characterization of Beta Carbonic Anhydrases from Higher Plants
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1998 Structural Characterization of Beta Carbonic Anhydrases From Higher Plants. Michael H. Bracey Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Bracey, Michael H., "Structural Characterization of Beta Carbonic Anhydrases From Higher Plants." (1998). LSU Historical Dissertations and Theses. 6655. https://digitalcommons.lsu.edu/gradschool_disstheses/6655 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type o f computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.
    [Show full text]