The Oldest Eurasian Hominoid

Total Page:16

File Type:pdf, Size:1020Kb

The Oldest Eurasian Hominoid Elmar P. J. The oldest Eurasian hominoid Heizmann Staatliches Museum fu¨r Engelswies is an early Miocene vertebrate locality in southern Naturkunde, Rosenstein 1, Germany with a rich assemblage of terrestrial mammals, invertebrates D-70191 Stuttgart, Germany and fossil plants. It is dated to 16·5–17·0 Ma based on magneto- stratigraphy, biostratigraphy and lithostratigraphy, and includes David R. Begun among the faunal remains a hominoid upper molar fragment, the Department of Anthropology, oldest hominoid so far identified from Europe. The evidence from University of Toronto, Engelswies suggests that hominoids arrived in Eurasia about 17 Ma, Toronto, Ontario M5S 3G3, roughly contemporaneously with pliopithecoids and Deinotherium, Canada and before the last marine transgression to isolate Eurasia from Africa. Thick enamel and low dentine penetrance may have been key Received 6 February 2001 adaptations that contributed to the success of hominoids of dentally Revision received 5 June modern aspect in western Eurasia and ultimately to their ability to 2001 and accepted 7 June spread to eastern Eurasia and Africa in the middle and late Miocene. 2001 2001 Academic Press Keywords: early Miocene, thickly enameled hominoid, Eurasia, paleobiogeography, Journal of Human Evolution (2001) 41, 463–481 dispersal events. doi:10.1006/jhev.2001.0495 Available online at http://www.idealibrary.com on Introduction Engelswies, which has been quarried for limestone since the nineteenth century. The Tertiary fossil localities in southwest quarry has long since been abandoned, and Germany are numerous and critical to cur- the site is covered in dense vegetation (the rent interpretations of Cenozoic biostratig- Talsberg is protected today as a natural raphy, biochronology and paleoecology. monument). Several fossil localities Most of the Neogene localities in this region (Engelswies 1–4) are known from quarry are associated with erosional and deposi- activities in the Talsberg and have been the tional regimes linked to the Alpine Orogeny subject of research since the late nineteenth and global climate changes that together century. It is particularly well known for its resulted in periodic opening and closing of beautifully preserved plant remains and the seaway between the Atlantic and Indian invertebrates, which include freshwater Oceans. Many of these localities preserve a crabs and gastropods (Quenstedt, 1885; rich record of flora and fauna from the past, Engel, 1908; Fraas, 1910; Kla¨hn, 1922, including the famous sites of Langenau, 1924, 1925, 1926; Rutte, 1953; Pretzmann, Steinheim and Ho¨wenegg, all of which con- 1987; Schweigert et al., 1997). tain many nearly complete skeletons of ter- Neglected for many years, Engelswies was restrial fossil mammals (Heizmann, 1992). the subject of renewed excavations by Heinz Among these localities is Engelswies, near Tobien (Mainz University) in the 1970s, Sigmaringen, south of Stuttgart and east of during which the tooth described here was Freiburg (Figure 1). The locality is situated found. Tobien found the tooth, which he in the Talsberg, southwest of the town of recognized as hominoid but never described, Address correspondence to: David R. Begun, on 24 June 1973, in the lower part of the Department of Anthropology, University of Toronto, Toronto, ON M5S 3G3, Canada. E-mail: begun@ profile of the Scherer quarry (excavation chass.utoronto.ca horizon 4 in Figure 2), from which most of 0047–2484/01/100463+19$35.00/0 2001 Academic Press 464 . . Figure 1. Geologic map with the locality of Engelswies (arrow) and other important localities, major rivers and large cities in the region. Inset shows the location of Engelswies in Western Europe. 465 Schichten (Figure 2). From these cores there is no evidence of any disconformity, indicating a continuous record of sedimen- tation. This, and the faunal content of the fossiliferous layers, indicates that these sedi- ments correlate to the top of the Kirchberger Schichten, the basal facies of the OSM [Obere Su¨ßwassermolasse (or Upper Freshwater Molasse in English)]. Figure 2. Geologic section and stratigraphy of the The molasse basin sediments of southern Engelswies locality. The hominoid tooth is from hori- Germany and Switzerland are among the zon 4. Stratigraphic column modified from Ziegler best studied of any Tertiary sediments in (1995; Abb. 2). Geologic section modified from Schweigert, 1992; Abb. 2). Legend: (a) oncolite (free Europe, and the sequence of lower and rolling or mobile structures of algal origin) facies, (b) upper marine and freshwater layers and oncoidal crusts and plant fragments, (c) limestones numerous marker horizons, including the with terrestrial detritus, (d) lake sediments. Abbrevia- tions: n=north, s=south, osm=upper Freshwater Kirchberger Schichten, are well established Molasse, ki=Kirschenberger Schlichten, usm=lower (Gall et al., 1977; Reichenbacher, 1989; Freshwater Molasse, q=Quaternary overburden, Schlunegger et al., 1996; Bolliger, 1997; j=Jurassic limestone. Heissig, 1997; Kempf et al., 1997; Reichenbacher et al., 1998; Kempf & the large mammals are known (Schweigert, Matter, 1999; Sach, 1999)(Figure 3). It has 1992). This horizon is 4 m below the level been demonstrated that the Kirchberger yielding the majority of the micromammals Schichten marks the transition between the on which the biostratigraphic correlation is upper marine molasse sediments (OMM) mostly based (Ziegler, 1995). In 1990, and the upper Freshwater Molasse Tobien deposited the tooth in the Staat- sediments (OSM) (Heizmann et al., 1980; liches Museum fu¨r Naturkunde in Stuttgart Heizmann, 1992; Schweigert, 1992; (SMNS) along with the other mammalian Reichenbacher, 1993; Ziegler, 1995; fossils from Engelswies. This specimen has Reichenbacher et al., 1998). This transition been noted in the literature (Heizmann, occurs before the onset of the Langhian 1992; Andrews et al., 1996; Heizmann et al., transgression, a stage in the Mediterranean 1996) but never described in detail, nor marine sequence marked by the brief recon- have its implications for Miocene hominoid nection of the Atlantic–IndoPacific oceanic biogeography been fully discussed. seaway (Ro¨gl, 1999). The Langhian is well dated by magnetostratigraphic, radiometric, marine biostratigraphic and lithostrati- Geology, biostratigraphy and graphic evidence to between 16·5 and paleoecology 14·9Ma(Steininger, 1999). At Engelswies The freshwater limestones of Engelswies the occurrence of Megacricetodon bavaricus represent an isolated outcrop of an originally and the evolutionary stage of Democricetodon widespread sedimentary stratum covering mutilus allow a precise correlation to the the northern rim of the Alpine Molasse lower part of MN 5 or late Orleanian Basin. Hahn (1968) in his detailed analysis (Ziegler, 1995), which we place in the early of the regional geology took core samples at Miocene. There is currently a debate on the Engelswies and demonstrated the direct definition of the boundary between early superposition of the fossil levels on the dark and middle Miocene. We follow the pro- clays of the lower Miocene Kirchberger posal of Fahlbusch (1981), placing the limit 466 . . 467 between MN 5 and MN 6. Steininger The lithostratigraphic marker horizons of (1999), in contrast, sets the limit within MN significance to a determination of the age 5. Either way, Engelswies, in the early part of Engelswies are the OMM, OSM, of MN 5, is in the early Miocene. The Kirchberger Schichten and the Ries impact composition of the large mammal fauna is horizon. Based on the marine microfossil consistent with the biostratigraphy of the record and recent magnetostratigraphic, small mammals (Table 1). A study of lithostratigraphic and radiometric work the Anchitherium (Abusch-Siewert, 1983) has ages of these horizons in Central Europe suggested an age of MN 6 or older. The appear reasonably well established. Given suids also imply an age of MN 5. Hyotherium the ages of these marker horizons, the MN 5 soemmeringi is a typical species for MN 5, localities of Langenmoosen, Engelswies, and and the genus Bunolistriodon is extinct at the Puttenhausen are dated to between about 15 end of this zone. To summarize, based on and 16·8Ma(Steininger, 1999)(Figure 3). regional geology, lithostratigraphy from core However, in the Calatayud-Daroca Basin of samples, and mammalian biostratigraphy Spain, magnetostratigraphic and biostrati- and biochronology, Engelswies is between graphic evidence suggests that MN 5 is the base of the Langhian and the base of about 1 Ma younger (16–13·8 Ma, Daams MN 5, or 16·5to17Ma(Ziegler, 1995; et al., 1999). There are several possible Steininger, 1999)(Figure 31). resolutions to these divergent interpreta- tions. The evidence from either Central 1An important debate in European Miocene chron- Europe or Spain may be correct and the ostratigraphy currently centers on the age of the late early Miocene and middle Miocene MN zones (MN other misleading, for a number of technical 4–7/8). Evidence from Spain is interpreted to suggest reasons, or, there may be strong diachrony an age for these zones 1 to 2 Ma younger than ages between Central Europe and Spain. The derived from evidence from elsewhere in Europe (Steininger, 1999; Daams et al., 1999). For a variety of issue of the age of MN 5 is unresolved, and reasons beyond the scope of this paper, including the is in fact the focus of much attention today. fact that Engelswies predates the well dated Langhian Whatever the outcome, mammal localities
Recommended publications
  • Updated Aragonian Biostratigraphy: Small Mammal Distribution and Its Implications for the Miocene European Chronology
    Geologica Acta, Vol.10, Nº 2, June 2012, 159-179 DOI: 10.1344/105.000001710 Available online at www.geologica-acta.com Updated Aragonian biostratigraphy: Small Mammal distribution and its implications for the Miocene European Chronology 1 2 3 4 3 1 A.J. VAN DER MEULEN I. GARCÍA-PAREDES M.A. ÁLVAREZ-SIERRA L.W. VAN DEN HOEK OSTENDE K. HORDIJK 2 2 A. OLIVER P. PELÁEZ-CAMPOMANES * 1 Faculty of Earth Sciences, Utrecht University Budapestlaan 4, 3584 CD Utrecht, The Netherlands. Van der Meulen E-mail: [email protected] Hordijk E-mail: [email protected] 2 Departamento de Paleobiología, Museo Nacional de Ciencias Naturales MNCN-CSIC C/ José Gutiérrez Abascal 2, 28006 Madrid, Spain. García-Paredes E-mail: [email protected] Oliver E-mail: [email protected] Peláez-Campomanes E-mail: [email protected] 3 Netherlands Centre for Biodiversity-Naturalis Darwinweg 2, 2333 CR Leiden, The Netherlands. Van den Hoek Ostende E-mail: [email protected] 4 Departamento de Paleontología, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid. IGEO-CSIC C/ José Antonio Novais 2, 28040 Madrid, Spain. Álvarez-Sierra E-mail: [email protected] * Corresponding author ABSTRACT This paper contains formal definitions of the Early to Middle Aragonian (Late Early–Middle Miocene) small- mammal biozones from the Aragonian type area in North Central Spain. The stratigraphical schemes of two of the best studied areas for the Lower and Middle Miocene, the Aragonian type area in Spain and the Upper Freshwater Molasse from the North Alpine Foreland Basin in Switzerland, have been compared.
    [Show full text]
  • A New Middle Miocene Mammalian Fauna from Mordoğan (Western Turkey) Tanju Kaya, Denis Geraads, Vahdet Tuna
    A new Middle Miocene mammalian fauna from Mordoğan (Western Turkey) Tanju Kaya, Denis Geraads, Vahdet Tuna To cite this version: Tanju Kaya, Denis Geraads, Vahdet Tuna. A new Middle Miocene mammalian fauna from Mordoğan (Western Turkey). Paläontologische Zeitschrift, E. Schweizerbart’sche Verlagsbuchhandlung, 2003, 77 (2), pp.293-302. halshs-00009762 HAL Id: halshs-00009762 https://halshs.archives-ouvertes.fr/halshs-00009762 Submitted on 24 Mar 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A new Middle Miocene mammalian fauna from Mordoğan (Western Turkey) * TANJU KAYA, Izmir, DENIS GERAADS, Paris & VAHDET TUNA, Izmir With 6 figures Zusammenfassung: Ardiç-Mordogan ist ein neue Fundstelle in die Karaburun Halbinsel von Westtürkei. Unter ihre Fauna, das ist hier beschreibt, sind die Carnivoren besonders interessant, mit die vollständigste bekannten Exemplaren von Percrocuta miocenica und von eine primitiv Hyänen-Art, von welche ein neue Unterart, Protictitherium intermedium paralium, beschreibt ist. Die Fauna stark gleicht die von mehrere anderen Mittelmiozän Lagerstatten in derselben Gebiet: Çandir, Paşalar und Inönü in Türkei, und Prebreza in Serbien, und sie mussen sich allen zu dieselben Mammal-Zone gehören. Seinen Huftieren bezeugen ein offenes Umwelt, das bei der Türko-Balkanisch Gebiet in Serravallien Zeit verbreiten mussten.
    [Show full text]
  • The Threads of Evolutionary, Behavioural and Conservation Research
    Taxonomic Tapestries The Threads of Evolutionary, Behavioural and Conservation Research Taxonomic Tapestries The Threads of Evolutionary, Behavioural and Conservation Research Edited by Alison M Behie and Marc F Oxenham Chapters written in honour of Professor Colin P Groves Published by ANU Press The Australian National University Acton ACT 2601, Australia Email: [email protected] This title is also available online at http://press.anu.edu.au National Library of Australia Cataloguing-in-Publication entry Title: Taxonomic tapestries : the threads of evolutionary, behavioural and conservation research / Alison M Behie and Marc F Oxenham, editors. ISBN: 9781925022360 (paperback) 9781925022377 (ebook) Subjects: Biology--Classification. Biology--Philosophy. Human ecology--Research. Coexistence of species--Research. Evolution (Biology)--Research. Taxonomists. Other Creators/Contributors: Behie, Alison M., editor. Oxenham, Marc F., editor. Dewey Number: 578.012 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the publisher. Cover design and layout by ANU Press Cover photograph courtesy of Hajarimanitra Rambeloarivony Printed by Griffin Press This edition © 2015 ANU Press Contents List of Contributors . .vii List of Figures and Tables . ix PART I 1. The Groves effect: 50 years of influence on behaviour, evolution and conservation research . 3 Alison M Behie and Marc F Oxenham PART II 2 . Characterisation of the endemic Sulawesi Lenomys meyeri (Muridae, Murinae) and the description of a new species of Lenomys . 13 Guy G Musser 3 . Gibbons and hominoid ancestry . 51 Peter Andrews and Richard J Johnson 4 .
    [Show full text]
  • Chapter 1 - Introduction
    EURASIAN MIDDLE AND LATE MIOCENE HOMINOID PALEOBIOGEOGRAPHY AND THE GEOGRAPHIC ORIGINS OF THE HOMININAE by Mariam C. Nargolwalla A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Anthropology University of Toronto © Copyright by M. Nargolwalla (2009) Eurasian Middle and Late Miocene Hominoid Paleobiogeography and the Geographic Origins of the Homininae Mariam C. Nargolwalla Doctor of Philosophy Department of Anthropology University of Toronto 2009 Abstract The origin and diversification of great apes and humans is among the most researched and debated series of events in the evolutionary history of the Primates. A fundamental part of understanding these events involves reconstructing paleoenvironmental and paleogeographic patterns in the Eurasian Miocene; a time period and geographic expanse rich in evidence of lineage origins and dispersals of numerous mammalian lineages, including apes. Traditionally, the geographic origin of the African ape and human lineage is considered to have occurred in Africa, however, an alternative hypothesis favouring a Eurasian origin has been proposed. This hypothesis suggests that that after an initial dispersal from Africa to Eurasia at ~17Ma and subsequent radiation from Spain to China, fossil apes disperse back to Africa at least once and found the African ape and human lineage in the late Miocene. The purpose of this study is to test the Eurasian origin hypothesis through the analysis of spatial and temporal patterns of distribution, in situ evolution, interprovincial and intercontinental dispersals of Eurasian terrestrial mammals in response to environmental factors. Using the NOW and Paleobiology databases, together with data collected through survey and excavation of middle and late Miocene vertebrate localities in Hungary and Romania, taphonomic bias and sampling completeness of Eurasian faunas are assessed.
    [Show full text]
  • Alternative Models for Evaluating Variation and Sexual Dimorphism in Fossil Hominoid Samples Jeremiah E
    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 140:253–264 (2009) Beyond Gorilla and Pongo: Alternative Models for Evaluating Variation and Sexual Dimorphism in Fossil Hominoid Samples Jeremiah E. Scott,1* Caitlin M. Schrein,1 and Jay Kelley2 1School of Human Evolution and Social Change, Institute of Human Origins, Arizona State University, Tempe, AZ 85287-4101 2Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612 KEY WORDS bootstrap; dental variation; Lufengpithecus; Ouranopithecus; Sivapithecus ABSTRACT Sexual size dimorphism in the postca- cies. Using these samples, we also evaluated molar dimor- nine dentition of the late Miocene hominoid Lufengpithe- phism and taxonomic composition in two other Miocene cus lufengensis exceeds that in Pongo pygmaeus, demon- ape samples—Ouranopithecus macedoniensis from strating that the maximum degree of molar size dimor- Greece, specimens of which can be sexed based on associ- phism in apes is not represented among the extant ated canines and P3s, and the Sivapithecus sample from Hominoidea. It has not been established, however, that Haritalyangar, India. Ouranopithecus is more dimorphic the molars of Pongo are more dimorphic than those of than the extant taxa but is similar to Lufengpithecus, any other living primate. In this study, we used resam- demonstrating that the level of molar dimorphism pling-based methods to compare molar dimorphism in required for the Greek fossil sample under the single-spe- Gorilla, Pongo,andLufengpithecus to that in the papio- cies taxonomy is not unprecedented when the compara- nin Mandrillus leucophaeus to test two hypotheses: tive framework is expanded to include extinct primates. (1) Pongo possesses the most size-dimorphic molars In contrast, the Haritalyangar Sivapithecus sample, if among living primates and (2) molar size dimorphism in it represents a single species, exhibits substantially Lufengpithecus is greater than that in the most dimorphic greater molar dimorphism than does Lufengpithecus.
    [Show full text]
  • A Unique Middle Miocene European Hominoid and the Origins of the Great Ape and Human Clade Salvador Moya` -Sola` A,1, David M
    A unique Middle Miocene European hominoid and the origins of the great ape and human clade Salvador Moya` -Sola` a,1, David M. Albab,c, Sergio Alme´ cijac, Isaac Casanovas-Vilarc, Meike Ko¨ hlera, Soledad De Esteban-Trivignoc, Josep M. Roblesc,d, Jordi Galindoc, and Josep Fortunyc aInstitucio´Catalana de Recerca i Estudis Avanc¸ats at Institut Catala`de Paleontologia (ICP) and Unitat d’Antropologia Biolo`gica (Dipartimento de Biologia Animal, Biologia Vegetal, i Ecologia), Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; bDipartimento di Scienze della Terra, Universita`degli Studi di Firenze, Via G. La Pira 4, 50121 Florence, Italy; cInstitut Catala`de Paleontologia, Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; and dFOSSILIA Serveis Paleontolo`gics i Geolo`gics, S.L. c/ Jaume I nu´m 87, 1er 5a, 08470 Sant Celoni, Barcelona, Spain Edited by David Pilbeam, Harvard University, Cambridge, MA, and approved March 4, 2009 (received for review November 20, 2008) The great ape and human clade (Primates: Hominidae) currently sediments by the diggers and bulldozers. After 6 years of includes orangutans, gorillas, chimpanzees, bonobos, and humans. fieldwork, 150 fossiliferous localities have been sampled from the When, where, and from which taxon hominids evolved are among 300-m-thick local stratigraphic series of ACM, which spans an the most exciting questions yet to be resolved. Within the Afro- interval of 1 million years (Ϸ12.5–11.3 Ma, Late Aragonian, pithecidae, the Kenyapithecinae (Kenyapithecini ؉ Equatorini) Middle Miocene).
    [Show full text]
  • Redalyc.An Updated Biostratigraphy for the Late Aragonian and Vallesian
    Geologica Acta: an international earth science journal ISSN: 1695-6133 [email protected] Universitat de Barcelona España CASANOVAS-VILAR, I.; GARCÉS, M.; VAN DAM, J.; GARCÍA-PAREDES, I.; ROBLES, J.M.; ALBA, D.M. An updated biostratigraphy for the late Aragonian and Vallesian of the Vallès-Penedès Basin (Catalonia) Geologica Acta: an international earth science journal, vol. 14, núm. 3, septiembre, 2016, pp. 195-217 Universitat de Barcelona Barcelona, España Available in: http://www.redalyc.org/articulo.oa?id=50547614001 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Geologica Acta, Vol.14, Nº 3, September 2016, 195-217 DOI: 10.1344/GeologicaActa2016.14.3.1 An updated biostratigraphy for the late Aragonian and Vallesian of the Vallès-Penedès Basin (Catalonia) I. CASANOVAS-VILAR1 M. GARCÉS2,3 J. VAN DAM4,1 I. GARCÍA-PAREDES5 J.M. ROBLES1 D.M. ALBA1 1Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona Edifici ICTA-ICP, Carrer de les Columnes s/n, Campus de la UAB, 08193 Cerdanyola del Vallès, Barcelona, Spain. Casanovas- Vilar E-mail: [email protected] Van Dam E-mail: [email protected] Robles E-mail: [email protected] Alba E-mail: [email protected] 2Departament de Dinàmica de la Terra i l’oceà, Facultat de Geologia, Universitat de Barcelona Martí i Franqués s/n, 08028 Barcelona, Spain. Garcés E-mail: [email protected] 3Institut Geomodels, Grup de Recerca Consolidat de Geodinàmica i Anàlisis de Conques, Universitat de Barcelona Martí i Franqués s/n, 08028 Barcelona, Spain 4Department of Earth Sciences, Utrecht University Budapestlaan 4, 3584 CD Utrecht, the Netherlands.
    [Show full text]
  • An Early Miocene Microtoid Cricetid Rodent from the Junggar Basin of Xinjiang, China
    An Early Miocene microtoid cricetid rodent from the Junggar Basin of Xinjiang, China OLIVIER MARIDET, WENYU WU, JIE YE, JIN MENG, SHUNDONG BI, and XIJUN NI Maridet, O., Wu, W., Ye, J., Meng, J., Bi, S., and Ni, X. 2014. An Early Miocene microtoid cricetid rodent from the Junggar Basin of Xinjiang, China. Acta Palaeontologica Polonica 59 (1): 1–7. Microtoid cricetids are widely considered to be the ancestral form of arvicoline rodents, a successful rodent group includ− ing voles, lemmings and muskrats. The oldest previously known microtoid cricetid is Microtocricetus molassicus from the Late Miocene (MN9, ca. 10–11 Ma) of Europe. Here, we report a new microtoid cricetid, Primoprismus fejfari gen. et sp. nov., from the Junggar Basin of Xinjiang, northwestern China. The rodent assemblage found in association with this specimen indicates a late Early Miocene age, roughly estimated at 18–17 Ma, and thus more than 6 million years older than M. molassicus. While morphological comparisons suggest that the new taxon is most closely related to M. molas− sicus, it differs from the latter in a striking combination of primitive characters, including a lower crown, smaller size, a differentiated posterolophid and hypolophid, a faint anterolophid, the absence of an ectolophid, and the presence of a stylid on the labial border of the tooth. Arid conditions prevailing across the mid−latitude interior of Eurasia during the Early Miocene, enhanced by the combined effects of the Tibetan uplift and the gradual retreat of the Tethys Ocean, likely played a role in the appearance of grasslands, which in turn triggered the evolution of microtoid cricetids and, ultimately, the origin of arvicoline rodents.
    [Show full text]
  • A Unique Middle Miocene European Hominoid and the Origins of the Great Ape and Human Clade
    A unique Middle Miocene European hominoid and the origins of the great ape and human clade Salvador Moya` -Sola` a,1, David M. Albab,c, Sergio Alme´ cijac, Isaac Casanovas-Vilarc, Meike Ko¨ hlera, Soledad De Esteban-Trivignoc, Josep M. Roblesc,d, Jordi Galindoc, and Josep Fortunyc aInstitucio´Catalana de Recerca i Estudis Avanc¸ats at Institut Catala`de Paleontologia (ICP) and Unitat d’Antropologia Biolo`gica (Dipartimento de Biologia Animal, Biologia Vegetal, i Ecologia), Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; bDipartimento di Scienze della Terra, Universita`degli Studi di Firenze, Via G. La Pira 4, 50121 Florence, Italy; cInstitut Catala`de Paleontologia, Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; and dFOSSILIA Serveis Paleontolo`gics i Geolo`gics, S.L. c/ Jaume I nu´m 87, 1er 5a, 08470 Sant Celoni, Barcelona, Spain Edited by David Pilbeam, Harvard University, Cambridge, MA, and approved March 4, 2009 (received for review November 20, 2008) The great ape and human clade (Primates: Hominidae) currently sediments by the diggers and bulldozers. After 6 years of includes orangutans, gorillas, chimpanzees, bonobos, and humans. fieldwork, 150 fossiliferous localities have been sampled from the When, where, and from which taxon hominids evolved are among 300-m-thick local stratigraphic series of ACM, which spans an the most exciting questions yet to be resolved. Within the Afro- interval of 1 million years (Ϸ12.5–11.3 Ma, Late Aragonian, pithecidae, the Kenyapithecinae (Kenyapithecini ؉ Equatorini) Middle Miocene).
    [Show full text]
  • Fossil Primates
    AccessScience from McGraw-Hill Education Page 1 of 16 www.accessscience.com Fossil primates Contributed by: Eric Delson Publication year: 2014 Extinct members of the order of mammals to which humans belong. All current classifications divide the living primates into two major groups (suborders): the Strepsirhini or “lower” primates (lemurs, lorises, and bushbabies) and the Haplorhini or “higher” primates [tarsiers and anthropoids (New and Old World monkeys, greater and lesser apes, and humans)]. Some fossil groups (omomyiforms and adapiforms) can be placed with or near these two extant groupings; however, there is contention whether the Plesiadapiformes represent the earliest relatives of primates and are best placed within the order (as here) or outside it. See also: FOSSIL; MAMMALIA; PHYLOGENY; PHYSICAL ANTHROPOLOGY; PRIMATES. Vast evidence suggests that the order Primates is a monophyletic group, that is, the primates have a common genetic origin. Although several peculiarities of the primate bauplan (body plan) appear to be inherited from an inferred common ancestor, it seems that the order as a whole is characterized by showing a variety of parallel adaptations in different groups to a predominantly arboreal lifestyle, including anatomical and behavioral complexes related to improved grasping and manipulative capacities, a variety of locomotor styles, and enlargement of the higher centers of the brain. Among the extant primates, the lower primates more closely resemble forms that evolved relatively early in the history of the order, whereas the higher primates represent a group that evolved more recently (Fig. 1). A classification of the primates, as accepted here, appears above. Early primates The earliest primates are placed in their own semiorder, Plesiadapiformes (as contrasted with the semiorder Euprimates for all living forms), because they have no direct evolutionary links with, and bear few adaptive resemblances to, any group of living primates.
    [Show full text]
  • Miocene Leatherback Turtle Material of the Genus Psephophorus (Testudines: Dermochelyoidea) from the Gram Formation (Denmark)
    ISSN: 0211-8327 Studia Palaeocheloniologica IV: pp. 205-216 MIOCENE LEATHERBACK TURTLE MATERIAL OF THE GENUS PSEPHOPHORUS (TESTUDINES: DERMOCHELYOIDEA) FROM THE GRAM FORMATION (DENMARK) [Tortugas de cuero miocénicas del género Psephophorus (Testudines: Dermochelyoidea) de la Formación Gram (Dinamarca)] Hans-Volker KARL 1,2, Bent E. K. LINDOW 3 & Thomas TÜT K EN 4 1 Thüringisches Landesamt für Denkmalpflege und Archäologie (TLDA). Humboldtstr. 11. D-99423, Weimar, Germany. Email: [email protected] 2c\o Geobiology, Center of Earth Sciences at the University of Göttingen. Goldschmidtstraße 3. DE-37077 Göttingen, Germany 3 Natural History Museum of Denmark. University of Copenhagen. Øster Voldgade 5-7. DK-1350 Copenhagen K, Denmark. Email: [email protected] 4 Emmy Noether-Gruppe “Knochengeochemie”. Steinmann Institut für Geologie, Mineralogie und Paläontologie. Arbeitsbereich Mineralogie-Petrologie. Rheinische Friedrich-Wilhelms-Universität Bonn. Poppelsdorfer Schloß. 53115 Bonn, Germany. (FECHA DE RECEPCIÓN: 2011-01-12) BIBLID [0211-8327 (2012) Vol. espec. 9; 205-216] ABSTRACT: Several specimens of fossil leatherback turtle from the upper Miocene (Tortonian) Gram Formation are described and illustrated scientifically for the first time. The specimens are all referred to the taxon Psephophorus polygonus and constitute the northernmost occurrence of this taxon in the geological record. Additionally, they indicate that leatherback turtles were a common constituent of the marine fauna of the Late Miocene North Sea Basin. Key words: Testudines, Psephophorus, Miocene, Gram Formation, Denmark. RESUMEN: Se describen y figuran por primera vez algunos ejemplares de tortugas de cuero fósiles del Mioceno superior (Tortoniense) de la Formación Gram, en © Ediciones Universidad de Salamanca Studia Palaeocheloniologica IV (Stud. Geol. Salmant.
    [Show full text]
  • Forelimb Long Bones of Nacholapithecus (KNM-BG 35250) from the Middle Miocene in Nachola, Northern Kenya
    ANTHROPOLOGICAL SCIENCE Vol. 126(3), 135–149, 2018 Forelimb long bones of Nacholapithecus (KNM-BG 35250) from the middle Miocene in Nachola, northern Kenya Tomo TAKANO1*, Masato NAKATSUKASA2, Yutaka KUNIMATSU3, Yoshihiko NAKANO4, Naomichi OGIHARA5**, Hidemi ISHIDA6 1Japan Monkey Centre, Kanrin 26, Inuyama, Aichi 484-0081, Japan 2Laboratory of Physical Anthropology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan 3Faculty of Business Administration, Ryukoku University, Kyoto 612-8577, Japan 4Laboratory of Biological Anthropology, Department of Human Science, Osaka University, Suita, Osaka 565-0871, Japan 5Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan 6Professor Emeritus, Kyoto University, Kyoto 606-8502, Japan Received 1 May 2017; accepted 22 October 2018 Abstract This paper provides a thorough description of humeral, ulnar, and radial specimens of the Nacholapithecus holotype (KNM-BG 35250). A spool-shaped humeral trochlea (and keeled sigmoid notch of the ulna) is a hallmark of elbow joint evolution in hominoids. In lacking this feature, the elbow of Nacholapithecus is comparatively primitive, resembling that of proconsulids. However, the humer- oulnar joint in Nacholapithecus is specialized for higher stability than that in proconsulids. The humer- oradial joint (humeral capitulum) resembles that of extant apes and Sivapithecus. This condition may represent an intermediate stage leading to the fully modern elbow in extant apes. If this is the case, spe- cialization of the humeroradial joint preceded that of the humeroulnar joint. Nacholapithecus elbow joint morphology suggests more enhanced forearm rotation compared to proconsulids. This observation ac- cords with the forelimb-dominated positional behavior of Nacholapithecus relative to proconsulids, which has been proposed on the grounds of limb proportions and the morphology of the phalanges, shoulder girdle, and vertebrae.
    [Show full text]