Enchytraeidae (Oligochaeta) in a Changing Climate
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Zootaxa, Grania (Annelida: Clitellata: Enchytraeidae) of the Great Barrier
Zootaxa 2165: 16–38 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition) Grania (Annelida: Clitellata: Enchytraeidae) of the Great Barrier Reef, Australia, including four new species and a re-description of Grania trichaeta Jamieson, 1977 PIERRE DE WIT1,3, EMILIA ROTA2 & CHRISTER ERSÉUS1 1Department of Zoology, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden 2Department of Environmental Sciences, University of Siena, Via T. Pendola 62, IT-53100 Siena, Italy 3Corresponding author. E-mail: [email protected] Abstract This study describes the fauna of the marine enchytraeid genus Grania at two locations on the Australian Great Barrier Reef: Lizard and Heron Islands. Collections were made from 1979 to 2006, yielding four new species: Grania breviductus sp. n., Grania regina sp. n., Grania homochaeta sp. n. and Grania colorata sp. n.. A re-description of Grania trichaeta Jamieson, 1977 based on new material is also included, along with notes and amendments on G. hyperoadenia Coates, 1990 and G. integra Coates & Stacey, 1997, the two latter being recorded for the first time from eastern Australia. COI barcode sequences were obtained from G. trichaeta and G. colorata and deposited with information on voucher specimens in the Barcode of Life database and GenBank; the mean intraspecific variation is 1.66 % in both species, while the mean interspecific divergence is 25.54 %. There seem to be two phylogeographic elements represented in the Great Barrier Grania fauna; one tropical with phylogenetic affinities to species found in New Caledonia and Hong Kong, and one southern (manifested at the more southerly located Heron Island) with affinities to species found in Southern Australia, Tasmania and Antarctica. -
Divergence of AMP Deaminase in the Ice Worm Mesenchytraeus Solifugus (Annelida, Clitellata, Enchytraeidae)
SAGE-Hindawi Access to Research International Journal of Evolutionary Biology Volume 2009, Article ID 715086, 10 pages doi:10.4061/2009/715086 Research Article Divergence of AMP Deaminase in the Ice Worm Mesenchytraeus solifugus (Annelida, Clitellata, Enchytraeidae) Roberto Marotta,1 Bradley R. Parry,2 and Daniel H. Shain2 1 Department of Biology, University of Milano, via Celoria 26, 20133 Milano, Italy 2 Department of Biology, Rutgers The State University of New Jersey, 315 Penn Street, Science Building, Camden, NJ 08102, USA Correspondence should be addressed to Daniel H. Shain, [email protected] Received 7 April 2009; Accepted 22 May 2009 Recommended by Dan Graur Glacier ice worms, Mesenchytraeus solifugus and related species, are the largest glacially obligate metazoans. As one component of cold temperature adaptation, ice worms maintain atypically high energy levels in an apparent mechanism to offset cold temperature-induced lethargy and death. To explore this observation at a mechanistic level, we considered the putative contribution of 5 adenosine monophosphate deaminase (AMPD), a key regulator of energy metabolism in eukaryotes. We cloned cDNAs encoding ice worm AMPD, generating a fragment encoding 543 amino acids that included a short N-terminal region and complete C-terminal catalytic domain. The predicted ice worm AMPD amino acid sequence displayed conservation with homologues from other mesophilic eukaryotes with notable exceptions. In particular, an ice worm-specific K188E substitution proximal to the AMP binding site likely alters the architecture of the active site and negatively affects the enzyme’s activity. Paradoxically, this would contribute to elevated intracellular ATP levels, which appears to be a signature of cold adapted taxa. -
Colecciones De Invertebrados Del Museo Nacional De Ciencias Naturales (Csic)
HISTORIA Y PRESENTE DE LAS COLECCIONES DE INVERTEBRADOS DEL MUSEO NACIONAL DE CIENCIAS NATURALES (CSIC) Miguel Villena Sánchez-Valero Conservador de las colecciones de Invertebrados 1 .- RESEÑA HISTÓRICA Para encontrar el origen de la Colección de Invertebrados de Museo Nacional de Ciencias Naturales de Madrid tenemos que remontarnos al último tercio del siglo XVIII, cuando, tras numerosas gestiones y diversos intentos, una Real Orden de Carlos III, promulgada el 17 de octubre de 1771, crea el Real Gabinete de Historia Natural y pone punto final a las enormes carencias que, en ese sentido, tenía España respecto a otros países europeos. En estos momentos iniciales, y hasta que se inaugure de forma definitiva el 4 de noviembre de 1776, las colecciones custodiadas en este establecimiento tendrán como base el excelente Gabinete de Historia Natural formado en París por el sabio ilustrado Pedro Franco Dávila, quien, gracias a sus desvelos en la formación del Gabinete y, sobre todo, gracias a los conocimientos en Historia Natural, adquiridos en una estancia de casi 26 años en París, en contacto con los científicos más reputados del momento, será nombrado Primer Director del establecimiento. Con este nombramiento Don Pedro recibió un triple encargo: que se coloquen en Madrid en debida forma las preciosidades actuales del Gabinete, y las demás con que el Rey providenciará enriquecerle, que se verifique la instrucción pública y, sobre todo, el encargo especial de que le tenga a su cuidado y procure difundir el gusto y nociones de tan importante materia.1 A partir de ese momento el interés principal del Gabinete recién creado y de sus dirigentes será el incremento de las colecciones con ese, cuando menos, triple objetivo que tiene que tener todo Museo2 que se precie de tal, es decir: • Conservar, catalogar, restaurar y exhibir de forma ordenada sus colecciones. -
Biological Assessment of the Patapsco River Tributary Watersheds, Howard County, Maryland
Biological Assessment of the Patapsco River Tributary Watersheds, Howard County, Maryland Spring 2003 Index Period and Summary of Round One County- Wide Assessment Patuxtent River April, 2005 Final Report UT to Patuxtent River Biological Assessment of the Patapsco River Tributary Watersheds, Howard County, Maryland Spring 2003 Index Period and Summary of Round One County-wide Assessment Prepared for: Howard County, Maryland Department of Public Works Stormwater Management Division 6751 Columbia Gateway Dr., Ste. 514 Columbia, MD 21046-3143 Prepared by: Tetra Tech, Inc. 400 Red Brook Blvd., Ste. 200 Owings Mills, MD 21117 Acknowledgement The principal authors of this report are Kristen L. Pavlik and James B. Stribling, both of Tetra Tech. They were also assisted by Erik W. Leppo. This document reports results from three of the six subwatersheds sampled during the Spring Index Period of the third year of biomonitoring by the Howard County Stormwater Management Division. Fieldwork was conducted by Tetra Tech staff including Kristen Pavlik, Colin Hill, David Bressler, Jennifer Pitt, and Amanda Richardson. All laboratory sample processing was conducted by Carolina Gallardo, Shabaan Fundi, Curt Kleinsorg, Chad Bogues, Joey Rizzo, Elizabeth Yarborough, Jessica Garrish, Chris Hines, and Sara Waddell. Taxonomic identification was completed by Dr. R. Deedee Kathman and Todd Askegaard; Aquatic Resources Center (ARC). Hunt Loftin, Linda Shook, and Brenda Decker (Tetra Tech) assisted with budget tracking and clerical support. This work was completed under the Howard County Purchase Order L 5305 to Tetra Tech, Inc. The enthusiasm and interest of the staff in the Stormwater Management Division, including Howard Saltzman and Angela Morales is acknowledged and appreciated. -
Nabs 2004 Final
CURRENT AND SELECTED BIBLIOGRAPHIES ON BENTHIC BIOLOGY 2004 Published August, 2005 North American Benthological Society 2 FOREWORD “Current and Selected Bibliographies on Benthic Biology” is published annu- ally for the members of the North American Benthological Society, and summarizes titles of articles published during the previous year. Pertinent titles prior to that year are also included if they have not been cited in previous reviews. I wish to thank each of the members of the NABS Literature Review Committee for providing bibliographic information for the 2004 NABS BIBLIOGRAPHY. I would also like to thank Elizabeth Wohlgemuth, INHS Librarian, and library assis- tants Anna FitzSimmons, Jessica Beverly, and Elizabeth Day, for their assistance in putting the 2004 bibliography together. Membership in the North American Benthological Society may be obtained by contacting Ms. Lucinda B. Johnson, Natural Resources Research Institute, Uni- versity of Minnesota, 5013 Miller Trunk Highway, Duluth, MN 55811. Phone: 218/720-4251. email:[email protected]. Dr. Donald W. Webb, Editor NABS Bibliography Illinois Natural History Survey Center for Biodiversity 607 East Peabody Drive Champaign, IL 61820 217/333-6846 e-mail: [email protected] 3 CONTENTS PERIPHYTON: Christine L. Weilhoefer, Environmental Science and Resources, Portland State University, Portland, O97207.................................5 ANNELIDA (Oligochaeta, etc.): Mark J. Wetzel, Center for Biodiversity, Illinois Natural History Survey, 607 East Peabody Drive, Champaign, IL 61820.................................................................................................................6 ANNELIDA (Hirudinea): Donald J. Klemm, Ecosystems Research Branch (MS-642), Ecological Exposure Research Division, National Exposure Re- search Laboratory, Office of Research & Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268- 0001 and William E. -
Laboratory Tests of Toxicity with Enchytraeids
MASARYK UNIVERSITY FACULTYOFSCIENCE RECETOX ResearchCentreforEnvironmental ChemistryandEcotoxicology Laboratory tests of toxicity with enchytraeids RIGOROUS THESIS Brno,2007MSc.KláraKobetičová 1 Acknowledgements: Mythanks belongstodr.JakubHofmanfor manyconsultationsatfieldofsoilecotoxicology; toMgr.Blanka Holubářová forimplementationofenchytraeidbreedings andtoxicitytest; todr.JitkaBezchlebová,dr.IvanaSochová,Mgr.JanLánafortesting thechemicalsontheearthworms,nematodesandspringtails; todr.JitkaBezchlebováfor practicaladviceinlabofsoilecotoxicology andpreparationoftwosubmittedarticles; tootherstudents andcoleaguesforfriendlyatmosphereat theworkplace ofRECETOX; tomyparents andfriendsfortheirloveandsupport. 2 Tableofcontents Abstract…………………………………………………….….……..4 Abstract (in Czech)…………………………………………………..5 List of original papers……………………………………………….6 International meetings………………………………………..……..6 Abbreviations………………………………………………….……..7 The main goals of the rigorous thesis………………………………8 1. Theoretical part of the rigorous thesis……………………….9 1.1. Enchytraeids……………………………………………………………10 1.1.1.Biologyofenchytraeids……………………………………………………………...10 1.1.2.Functionofenchytraeidsinsoils……………………………………………………12 1.1.3.Distributionof enchytraeidsinsoils………………………………………………..12 1.2. Laboratory tests on enchytraeids……………………………………...13 1.2.1. Watertest…………………………………………………………………………….14 1.2.2. Agartest………………………………………………………………………...……14 1.2.3. Sublethaltestwith Cognettia sphagnetorum (Vejdovský)1877 ……………….…...16 1.2.4. Enchytraeidreproductiontest (ERT) ………………………………………….…. .16 -
SOP #: MDNR-WQMS-209 EFFECTIVE DATE: May 31, 2005
MISSOURI DEPARTMENT OF NATURAL RESOURCES AIR AND LAND PROTECTION DIVISION ENVIRONMENTAL SERVICES PROGRAM Standard Operating Procedures SOP #: MDNR-WQMS-209 EFFECTIVE DATE: May 31, 2005 SOP TITLE: Taxonomic Levels for Macroinvertebrate Identifications WRITTEN BY: Randy Sarver, WQMS, ESP APPROVED BY: Earl Pabst, Director, ESP SUMMARY OF REVISIONS: Changes to reflect new taxa and current taxonomy APPLICABILITY: Applies to Water Quality Monitoring Section personnel who perform community level surveys of aquatic macroinvertebrates in wadeable streams of Missouri . DISTRIBUTION: MoDNR Intranet ESP SOP Coordinator RECERTIFICATION RECORD: Date Reviewed Initials Page 1 of 30 MDNR-WQMS-209 Effective Date: 05/31/05 Page 2 of 30 1.0 GENERAL OVERVIEW 1.1 This Standard Operating Procedure (SOP) is designed to be used as a reference by biologists who analyze aquatic macroinvertebrate samples from Missouri. Its purpose is to establish consistent levels of taxonomic resolution among agency, academic and other biologists. The information in this SOP has been established by researching current taxonomic literature. It should assist an experienced aquatic biologist to identify organisms from aquatic surveys to a consistent and reliable level. The criteria used to set the level of taxonomy beyond the genus level are the systematic treatment of the genus by a professional taxonomist and the availability of a published key. 1.2 The consistency in macroinvertebrate identification allowed by this document is important regardless of whether one person is conducting an aquatic survey over a period of time or multiple investigators wish to compare results. It is especially important to provide guidance on the level of taxonomic identification when calculating metrics that depend upon the number of taxa. -
Diversity Patterns in Neotropical Collembola: Elevational Gradients
Dec 2015 Vol.6, Issue 4 Diversity Patterns in Neotropical Collembola: Investigating the Significance of Elevational Gradients News Applications Updates from Estimating Symposia Held Coextinction Around the Rates through World DNA Barcoding News Briefs The Slovak National Museum- Natural History Museum obtained financial support of 1.7 M € from the EU European Regional Development Fund for Welcome to our December 2015 issue. building a DNA lab and other infrastructure to barcode the Another eventful year has passed with the 6th International Barcode flora and fauna of Slovakia in of Life conference as a fantastic highlight. 600 researchers from 50 2016 – 2023. With the added nations, over 200 talks, more than 100 posters - far more than our little capacity, the museum plans newsletter can ever convey even in a year with 4 jam-packed issues. to barcode 1000 species in the coming years. Nevertheless, we are looking back at another successful year, and we will try to keep the momentum going that the conference started. The German Barcode of Life Network (GBOL) was awarded This issue contains more prize winners from the conference and a lot a further 6.3 M € by the German of good news with respect to funding and national initiatives. Federal Ministry of Education and Research to extend the German We wish you a happy holiday season and a healthy and prosperous barcode reference library to New Year. contain all common and frequent species, as well as important agricultural pests, invasive, Dirk Steinke health-relevant, Red List, FFH Editor-in-chief (Flora Fauna Habitat Directive), indicator and specific application- relevant species, and to develop Table of Contents DNA barcoding applications. -
(Clitellata: Annelida) Adrian Pinder TRIN Taxonomic Guide 2
Tools for identifying selected Australian aquatic oligochaetes (Clitellata: Annelida) Adrian Pinder TRIN Taxonomic Guide 2. 1 Tools for identifying selected Australian aquatic oligochaetes (Clitellata : Annelida) Adrian Pinder Science Division Department of Environment and Conservation PO Box 51, Wanneroo 6946 Western Australia Taxonomy Research and Information Network (TRIN) TRIN Taxonomic Guide 2. Presented at the Taxonomic Workshop held at La Trobe University, Albury-Wodonga Campus, Wodonga, February 10-11 th 2009. 2 Tools for identifying selected Australian aquatic oligochaetes (Clitellata: Annelida) Adrian Pinder Science Division, Department of Environment and Conservation, P.O. Box 51, Wanneroo, 6946, Western Australia. CONTENTS INTRODUCTION...................................................................................................................3 CLASSIFICATION.................................................................................................................5 EXPLANATION OF CHARACTERS ......................................................................................6 Fixation and preservation ................................................................................. 14 Examination of specimens ............................................................................... 14 Recipe for Grenacher’s borax carmine ........................................................... 15 Examination of the genitalia ............................................................................. 15 KEY TO ANNELID -
Freshwater Oligochaetes (Oligochaeta, Clitellata, Annelida) of North Pribaikalye (East Siberia, Russia)
I. A. KAYGORODOVA, P. F. M. VERDONSCHOT, L. S. KRAVTSOVA Turk J Zool 2012; 36(1): 47-58 © TÜBİTAK Research Article doi:10.3906/zoo-1003-140 Freshwater oligochaetes (Oligochaeta, Clitellata, Annelida) of North Pribaikalye (East Siberia, Russia) Irina A. KAYGORODOVA1,*, Piet F. M. VERDONSCHOT2, Lyubov S. KRAVTSOVA1 1Limnological Institute, Siberian Branch of Russian Academy of Sciences, Ulan-Batorskaya, 3, 664033 Irkutsk - RUSSIA 2Freshwater Ecology Team, Alterra, Centre for Ecosystem Studies, P.O. Box 47, 6700 AA Wageningen - THE NETHERLANDS Received: 24.03.2010 Abstract: Th e oligochaete fauna of freshwater reservoirs and rivers in North Pribaikalye was investigated for the fi rst time. In total, 38 oligochaete species were collected. Of these, 16 species belong to the subfamily Naidinae, 6 to Pristininae, and 10 to the 3 subfamilies of Tubifi cidae. In addition, 5 species belonging to Enchytraeidae and 1 widespread species belonging to the family Lumbriculidae, Lumbriculus variegatus, were collected. Key words: Oligochaeta, fauna, North Pribaikalye Introduction Th e rivers and lakes start freezing between 25 Th e area of Pribaikalye is situated in East Siberia October and 30 October. Th e average duration of (the Asian part of Russia) and includes Lake Baikal. the ice cover is about 200 days. In late May, all water Th e area is dissected by a well-developed river and reservoirs and rivers of North Pribaikalye are usually a regularly divided river network with a density in free of ice cover. the north exceeding 0.5 km km−2 (Bachurin, 1980). Th e temperature of the littoral zone of the lakes Small- and medium-sized rivers fl ow down from the can exceed 20 °C in summer and fl uctuates between slopes of the Verkhne-Angarsk Ridge. -
Annelida, Oligochaeta, ENCHYTRAEIDAE): Proposed Precedence Over Euenchytraeus Bretscher, 1906 and Chamaedrilus Friend, 1913 (Case 3689; See BZN 72: 186–192)
303 Bulletin of Zoological Nomenclature 72(4) December 2015 Comments on Cognettia Nielsen & Christensen, 1959 (Annelida, Oligochaeta, ENCHYTRAEIDAE): proposed precedence over Euenchytraeus Bretscher, 1906 and Chamaedrilus Friend, 1913 (Case 3689; see BZN 72: 186–192) (1) Emilia Rota Department of Physics, Earth and Environmental Sciences, University of Siena, Via P.A. Mattioli 4, IT-53100 Siena, Italy (e-mail: [email protected]) Svante Martinsson Systematics and Biodiversity, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden (e-mail: [email protected]) Christer Erséus Systematics and Biodiversity, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Göteborg, Sweden (e-mail: [email protected]) *Open access article As we were responsible for re-establishing Euenchytraeus Bretscher, 1906 and Chamaedrilus Friend, 1913, suggesting that Cognettia Nielsen & Christensen, 1959 should be treated as a junior synonym of Chamaedrilus (Martinsson et al., 2014; cited as 2015a by Schmelz et al.), we would like to give some supplementary information on the case, and also explain the reasoning behind the reestablishments. In their appeal to the Commission, Schmelz et al. (BZN 72: 186–192) give a good repetition of the taxonomical history of the taxa involved (detailed by us in Rota et al., 2008; Martinsson et al., 2014, 2015). However, we would like to highlight a few additional points. 1. The case in question (our invalidation of Cognettia in favour of Chamaedrilus and Euenchytraeus) arose after two of us (Martinsson & Erséus, 2014) provided molecular evidence that Cognettia sphagnetorum (Vejdovský, 1878) in its commonly accepted definition, based on Nielsen & Christensen’s (1959) revisionary work, is a non-monophyletic complex of species. -
Groundwater Oligochaetes (Annelida, Clitellata) from the Mercantour National Park (France), with the Descriptions of One New Genus and Two New Stygobiont Species
Groundwater oligochaetes (Annelida, Clitellata) from the Mercantour National Park (France), with the descriptions of one new genus and two new stygobiont species Patrick MARTIN Institut royal des Sciences naturelles de Belgique, Biologie des Eaux douces, 29 rue Vautier, B-1000 Brussels (Belgium) [email protected] Rüdiger M. SCHMELZ ECT Oekotoxikologie GmbH, 61459 Flörsheim (Germany) and Universidad de A Coruña, Fac. Ciencias, Departamento Biología Animal, Biología Vegetal, y Ecología, Rua da Fraga 10, E-15008 A Coruña (Spain) [email protected] Marie-José DOLE-OLIVIER Université Lyon 1, CNRS, UMR 5023, LEHNA, Laboratoire d’Écologie des Hydrosystèmes naturels et anthropisés, Bâtiment Forel, F-69622 Villeurbanne cedex (France) [email protected] Published on 31 December 2015 urn:lsid:zoobank.org:pub:1CDE356F-BEF2-4888-8580-7AB600A97E2B Martin P., Schmelz R. M. & Dole-Olivier M.-J. 2015. — Groundwater oligochaetes (Annelida, Clitellata) from the Mer- cantour National Park (France), with the descriptions of one new genus and two new stygobiont species, in Daugeron C., Deharveng L., Isaia M., Villemant C. & Judson M. (eds), Mercantour/Alpi Marittime All Taxa Biodiversity Inventory. Zoosystema 37 (4): 551-569. http://dx.doi.org/10.5252/z2015n4a2 ABSTRACT Although recognized as an outstanding hotspot of biodiversity for both flora and fauna, the Mercan- tour massif remains almost totally unexplored in terms of its groundwater fauna. This work presents the first overview of groundwater oligochaete assemblages of the Mercantour National Park after a standardized exploration of both consolidated (fractured massif) and unconsolidated (porous) aquifers. About 40 species of oligochaetes were found at 49 stations representative of the main hydrogeological basins of the Mercantour National Park, from both spring and hyporheic zone habitats.