MASARYKUNIVERSITY FACULTYOFSCIENCE RECETOX ResearchCentreforEnvironmental ChemistryandEcotoxicology Laboratorytestsoftoxicity withenchytraeids RIGOROUSTHESIS Brno,2007MSc.KláraKobetičová

1 Acknowledgements: Mythanksbelongstodr.JakubHofmanformanyconsultationsatfieldofsoilecotoxicology; toMgr.BlankaHolubářováforimplementationofenchytraeidbreedings andtoxicitytest; todr.JitkaBezchlebová,dr.IvanaSochová,Mgr.JanLánafortesting thechemicalsontheearthworms,nematodesandspringtails; todr.JitkaBezchlebováforpracticaladviceinlabofsoilecotoxicology andpreparationoftwosubmittedarticles; tootherstudentsandcoleaguesforfriendlyatmosphereattheworkplace ofRECETOX; tomyparentsandfriendsfortheirloveandsupport.

2 Tableofcontents Abstract…………………………………………………….….……..4 Abstract(inCzech)…………………………………………………..5 Listoforiginalpapers……………………………………………….6 Internationalmeetings………………………………………..……..6 Abbreviations………………………………………………….……..7 Themaingoalsoftherigorousthesis………………………………8 1. Theoreticalpartoftherigorousthesis……………………….9 1.1. Enchytraeids……………………………………………………………10 1.1.1.Biologyofenchytraeids……………………………………………………………...10 1.1.2.Functionofenchytraeidsinsoils……………………………………………………12 1.1.3.Distributionofenchytraeidsinsoils………………………………………………..12 1.2.Laboratorytestsonenchytraeids……………………………………...13 1.2.1. Watertest…………………………………………………………………………….14 1.2.2. Agartest………………………………………………………………………...……14 1.2.3. Sublethaltestwith Cognettia sphagnetorum (Vejdovský)1877 ……………….…...16 1.2.4. Enchytraeidreproductiontest(ERT) ………………………………………….…. .16 1.2.5. Avoidancetest………………………………………………………………………..18 1.2.6. Bioaccumulationtest…………………………………………………………….…..20 1.3. References………………………………………………………...……. .22 2. Experimentalpartoftherigorousthesis……………………27 2.1. Toxicityofselectedorganicpollutants:shortchainchlorinated paraffins; toxaphene;NPAHs( acridine,phenazine,1,10phenanthroline, quinoline) to Enchytraeus albidus /Enchytraeus crypticus ……………...28 2.1.1.Abstract..……………………………………………………………………………..28 2.1.2. Introduction………………………………………………………………………….28 2.1.3. Materialsandmethods……………………………………………………………...32 2.1.4. Resultsanddiscussion………………………………………………………………33 2.1.5. References…………………………………………………………………………...41 3. Conclusions…………………………………………………...45 4. Appendices……………………………………………….…...47

3 Abstract Enchytraeids(Oligochaeta,Annelida)belongtoanimportantgroupofsoildecomposers thathavebeenusinginthesoilecotoxicologyformorethanfiftyyears.Severalshorttolong termlaboratorytestswithvarioustestmedium(water,agar,artificialorfieldsoil)havebeen realizedduringthistime.However,thetestswithartificialmediumarenotverysuitablefor theassessmentofchemicalsinsoilorforsoilqualityassessment.Therefore,thechronictests have been developed for enchytraeids in soil (SECOFASE, 1994 and ASTM, 2000/ ISO, 2002/OECD,2003). Afewofenchytraeidspecies(genus Enchytraeus ,species Cognettia sphagnetorum )are commonlyusedinthesoiltests.Thedurationofthetestrangesfrom4to10weeksdepending ontheusedspecies.Themeasuredendpointsaremostlyreproduction(numberofjuveniles, cocoons, fragments) and adult mortality. The research have been focusing on toxicity of organic compounds, heavy metals, wastes or soil quality assessment since the time. In addition,thestudieshavemoreoftenprogressedfrompuremeasurementthetoxiceffectsof individual pollutants (expressed as LCx, ECx values) into the more comprehensive investigationofbioavailabilityaffectingthetoxicity. SomeofthemethodsasAvoidancetestorBioaccumulationtesthavebeenjustundera development. The first of them usually lasts 2 days and is based on the presumption that enchytraeidsareabletoavoidorescapetheunsuitablesoils(undersomeenvironmentalor antropogenicstressfactors).Thebioacumulationtesthasconcernedwiththekineticpatternof thechemicaluptakeandelimination,theanalyseofthesublethalconcentrationinsiteoftoxic actionorinthewholeorganism. Thetoxiciyofselectedorganicpollutants(toxaphene,shortchainchlorinatedparaffins, Npolycyclicaromatichydrocarbons:quinoline,acridine,phenazine,1,10phenanthroline)to enchytraeidspecies E. crypticus , E. albidus (ortobothspecies)ispresentedinthefollowing chapture. The chronic soil test was used for testing of all organic pollutants and artificial (OECD)soilasatestsubstrate.Thetestwithshortchainchlorinatedparaffinsaffordedthese results: NOEC mortality ( E.albidus ) = 10,000 mg/kg, NOEC mortality ( E.crypticus ) = 6,000 mg/kg, LC50 mortality ( E.albidus, E.crypticus )couldnotbeestimated,NOEC reproduction ( E.albidus ) =3,000mg/kg , NOEC reproduction( E. crypticus ) =6,000mg/kg , EC50 reproduction(E.albidus) =6,027mg/kg,EC50 reproduction (E.crypticus) =7,809mg/kg.Toxaphenedidnotshowanytoxiceffectfor E. albidus becausethe highest tested concentration 620 mg/kg corresponded to NOEC value for mortality and reproduction.TheNpolycyclicaromatichydrocarbonsshowedrelativelythesameorderof magnitudeforthetoxiceffects.Nevertheless,thetoxicity(nominalconcentrationinmg/kg) decreasedinthisorderforthebothmeasuredendpoints:1,10phenanthroline>quinoline> phenazine≥acridine.Afterthedatarecalculationoneffectconcentrationinsoilporewater (mol/l),thereversedrankoftoxicitywasobtained.Thesefindingsareinaccordancewiththe higher toxicity of more lipophilic compounds in aquatic environment described in some literature. Key–words :enchytraeids, Enchytraeus albidus , Enchytraeus crypticus ,testsoftoxicity,toxic effects,shortchainchlorinatedparaffins,toxaphene,NPAHs,acridine,quinoline,phenazine, 1,10phenanthroline.

4 Abstrakt (Česky) Roupice(máloštětinatci,kroužkovci)jsoudůležitouskupinoupůdníchdekompozitorů, která je vekotoxikologii půdy využívána již více než 50 let. Během tohoto období bylo realizovánoněkolikkrátkodobýchaždéletrvajícíchlaboratorníchtestůsrůznýmitestovacími médii (voda, agar, umělá nebo přírodní půda). Avšak testy sumělým médiem nejsou příliš vhodnéproodhadnegativníchvlivůvyplývajícíchzpřítomnostichemikáliívpůděnebopro posouzení půdní kvality. Ztěchto důvodů byl pro roupice vpůdě vyvinut chronický test (SECOFASE,1994;ASTM,2000/ISO,2002/OECD,2003). Vpůdních testech se běžně používá několik druhů roupic (rod Enchytraeus , druh Cognettia sphagnetorum ). Testy trvají většinou 410 týdnů vzávislosti na použitém druhu. Sledovanými parametry bývají nejčastěji reprodukce (počet mláďat, kokonů, fragmentů) a mortalitadospělců.Testsroupicemijetakodtédobyvyužívánvestudiíchzaměřujícíchsena výzkumtoxicityorganickýchlátek,kovů,aplikaceodpadůneboktestováníbiologickékvality přírodních půd. Navíc, studie stále častěji přechází od pouhého zjišťování toxicity jednotlivých látek (vyjadřované hodnotami LCx, ECx) ke komplexnějšímu studiu biodostupnostiatímisamotnétoxicity. Některéztestůjako„avoidance“testnebobioakumulačnítestjsoustáleještěvrozvoji. Prvníznichtrváobvykle2dnyajezaložennapředpokladu,žeroupicejsouschopnévyhýbat se nevhodné půdě nebo zní unikat (pod vlivem environmentálních anebo antropogenních stresových faktorů). Bioakumulační test je zaměřen na kinetiku příjmu a eliminaci látky, stanovením neletální koncentrace látky vcílovém místě nebo její celkovou koncentrací vtestovanémorganismu. Následující kapitola se věnuje toxicitě vybraných organických polutantů (toxafen, chlorované parafíny skrátkým Cřetězcem, dusíkatéheterocyklické aromatické uhlovodíky: chinolin,akridin,fenazin,1,10fenantrolin)propůdníroupicedruhu E. crypticus , E. albidus (nebo pro oba druhy). Kotestování látek byl použit chronický půdní test a jako testovací substrát artificiální (OECD) půda. Test schlorovanými parafíny poskytl tyto výsledky: NOEC mortalita ( E.albidus ) = 10,000 mg/kg, NOEC mortalita ( E.crypticus ) = 6,000 mg/kg, LC50 mortalita (E.albidus, E.crypticus )nemohlbýtvypočítán,NOEC reprodukce( E.albidus ) =3,000mg/kg , NOEC reprodukce( E. crypticus ) = 6,000 mg/kg , EC50 reprodukce ( E.albidus ) = 6,027 mg/kg, EC50 reprodukce ( E.crypticus ) = 7,809 mg/kg. Toxafen neměl negativní vliv na roupici E. albidus ani na jeden ze sledovanýchparametrů,protožehodnotěNOECodpovídalaažnejvyššítestovanákoncentrace 620 mg/kg. Dusíkaté polycyklické aromatické uhlovodíky vpřípadě druhu E .crypticus ukázaly řádově podobný efekt. Jejich toxicita (nominální koncentrace v mg/kg) se přesto snižovalavtomtopořadí:1,10fenanthrolín>chinolín>fenazin≥akridin.Popřepočtutěchto datnaefektivníkoncentracivpůdnípórovévodě(mol/l)setoxicitalátekzcelaobrátila.To odpovídá závěrům o vyšší toxicitě lipofilnějších látek ve vodním prostředí, jak je uváděno vliteratuře. Klíčová slova: roupice, Enchytraeus albidus , Enchytraeus crypticus , testy toxicity, toxický efekt, chlorované parafíny skrátkým řetězcem, toxafen, NPAHs, akridin, chinolin, fenazin, 1,10fenantrolin.

5 Listof original papers • Bezchlebová,Jitka,Černohlávková,Jitka ,Kobetičová,Klára, Lána,Jan,Sochová,Ivana, Hofman, Jakub. Effects of shortchain chlorinated paraffins on soil organisms. EcotoxicologyandEnvironmentalSafety,67(2):206211.June2007(AppendixI.). • Bezchlebová,Jitka,Černohlávková,Jitka,Lána,Jan,Sochová , Ivana, Kobetičová,Klára , Hofman, Jakub . Effects of toxaphene on soil organisms . Ecotoxicology and EnvironmentalSafety,Acceptedashighlightedarticle(AppendixII.). • Kobetičová,Klára ,Bezchlebová,Jitka,Sochová,Ivana,Lána,JanandHofman,Jakub. Toxicityoffourpolycyclicaromaticnitrogenheterocycles(PAHs)tosoilorganisms. EcotoxicologyandEnvironmentalSafety,submitted(AppendixIII.). International meetings • Kobetičová,Klára ,Lána,Jan,Bezchlebová,Jitka,andHofman,Jakub. Toxicityeffects ofPANHstosoilinvertebratesFolsomiacandidaandEnchytraeuscrypticus. InBook ofAbstractsofECOTOX2005.ISBN8021037997.p.158.Brno,CzechRepublic,5 7.9.2005.Posterpresentation. • Hofman Jakub, Bezchlebová Jitka, Sochová Ivana, Černohlávková Jitka, Kobetičová Klára, Lána Jan, and Holoubek Ivan. SOILETOX Effects of priority persistent organic pollutants (POPs) on soil organisms. In Book of Abstracts of Soil Protection strategy – needs and approaches for policy support .Pulawy,Poland,812.3.2006.p.63 64,ISBN8389576031.Posterpresentation. • Bezchlebová, Jitka, Černohlávková, Jitka, Sochová, Ivana, Lána, Jan, Kobetičová, Klára , Hofman, Jakub . Effects and ecological risk assessment of short chain chlorinated paraffinsinsoil. In Abstract Book of SETAC Europe the 15th Annual Meeting .Brussels: SETAC,2005.p.388388.Posterpresentation. • Bezchlebová, Jitka, Černohlávková, Jitka, Kobetičová, Klára , Lána, Jan, Sochová, Ivana, Hofman, Jakub. Efekt chlorovaného parafínu skrátkým řetězcem na půdní organismy. In: Sborník Študentské vedecké konferencie, svazok 1 – biologická a environmentální sekce . Bratislava : Univerzita Komenského v Bratislave; Bratislava, Slovensko,26.4.2006.203206ps.ISBN8088870585.Oralpresentation. • Kobetičová,Klára ,Bezchlebová,Jitka,Sochová,Ivana,Lána,Jan,Hofman,Jakuband Holoubek,Ivan. Toxicityoffourpolycyclicaromaticnitrogenheterocycles(PANHs) to soil organisms. In Abstracts of International Conference on Ecotoxicology 2006 - Trends and Perspectives .Wisla,Poland,17.20.9.2006,p.7575.Posterpresentation. • Hofman, Jakub, Bezchlebová Jitka, Sochová Ivana, Černohlávková Jitka, Kobetičová Klára, Lána Jan, and Holoubek, Ivan. Effects of selected priority persistent organic pollutants (POPs) on soil organisms. In The Book of Abstracts of The Seventh European Meeting on Environmental Chemistry EMEC. Brno, Czech Republic: VUT Brno,2007.p.121..ISBN8021433205.Posterpresentation.

6 Abbreviations ASTM …………..AmericanSocietyforTestingandMaterials ATSDR …………AgencyforToxic SubstancesandDiseaseRegistry BAF …………….Bioaccumulationfactor ECx ……………..Effectconcentrationforx%effect ERT …………….Enchytraeidreproductiontest EU ………………EuropeanUnion EURAR ………..EuropeanUnion Risk Assessment Report HSDB …………..HazardousSubstancesDatabank IARC …………...InternationalAgencyforResearchofCancer ISO .……………..InternationalOrganisationforStandardisation Kow …………….Octanolwaterpartitioncoefficient Kd ………………Partitioningcoefficientsoilwater LCx ……………Effectconcentrationforx%morthality OECD …………..OrganisationforEconomicCooperationandDevelopment LOEC …………..Thelowesteffectconcentration NICNAS ………..NationalIndustrialChemicalsNotificationAndAssessmentScheme NOEC …………..Noobservedeffectconcentration NPAH …………Npolycyclicaromatichydrocarbon PAC ……………Polycyclicaromaticcompound PAH …………….Polycyclicaromatichydrocarbon PCB ……………..Polychlorinated biphenyl POP …………….Persistentorganicpollutant RECETOX ……..ResearchCentreforEnvironmentalChemistryandEcotoxicology SCCP ……………ShortChainChlorinatedParrafin SECOFASE …….SublethalEffectsofChemicalsonFaunaintheSoilEcosystem UNEP …………...UnitedNationsEnvironmentProgramme UNECE ………...UnitedNationsEconomicCommisionforEurope WHC ……………WaterHoldingCapacity WHO ……………World Health Organisation

7 Themaingoalsofthe rigorous thesis : • Thesummaryofenchytraeidbiology,functionanddistributioninsoilsandusingof theindividuallaboratorytestswithenchytraeids(history,norms,design,testmedium andenchytraeidspecies,testedpollutants) • The study of toxic effects of shortchain chlorinated paraffins to Enchytraeus crypticus and Enchytraeus albidus • Thestudyoftoxiceffectsoftoxapheneto Enchytraeus albidus • ThestudyoftoxiceffectsofsomeNheterocyclicaromatichydrocarbons(acridine, phenazine,quinoline,1,10phenanthroline)to Enchytraeus crypticus

8 1.Theoreticalpartoftherigorousthesis

9 1.1.Enchytraeids TheenchytraeidsbelongtothephylumAnnelidaand,alongwiththelumbricids,tothe class Oligochaeta. They may inhabit the terrestric, limnic or sea environment. At present, about900speciesaredescribedworldwide.Totalof200–300speciescanbeestimatedfor CentralEuropeonly( Römbkeetal.,1997 ). 1.1.1.Biologyofenchytraeids Enchytraeidsareusuallycolorlessandasadultsreachasizeofabout2–40mm.Their bodyiscomposedofmanysegmentswitharingorsaddleshapedglandularbelt(clitellum). Thenumberofsegmentsincreaseswiththeage. Enchytraeid´sbodyiscoveredbythincuticule.Setaewithspecificshape,sizeandthe numberofsetaeperbundlesgrowupthecover.Enchytraeidsdonothaveeyes.Thefrontal segmentoftheirbodyiscalledprostomium(Bucharetal.1995;Sedlák,2000).Thefoodmay passthroughthepharynx,oesophagusintothegut.Itwasshowedthatspecies Lumbricillus rivalis isabletodigestivetheproteins,hydrocarbons,sacharidesandfats(Learner,1972).The presence/absenceandshapeoftheoesophagealappendages(peptonephridia)belongstothe deterministicsigns.Theirpossiblefunctionasafoodmoinsteningorganorosmoregulatory organwasdiscussedinsomestudies(e.g.SchmelzetWestheide,2000).Theresiduesoffood withsoilparticlesmaybedefecatedthroughthepygidium.Enchytraeidsdonothavespecial respiratorysystem,thegasesandiontspermeatetheskin.Coelomfluidcontainslessormore amount of lymphocytes differed by the shape, size, colour or granulation (Nielsen et Christensen,1959).

b r a i n

p h a r y n x

peptonephridia

ectal glands am pulla spherm ateca ental opening oesophagus

septal glands dorsal blood vessel n e p h r i d i a

oesophageal-intestinal transition origin of dorsal blood vessel sem inal vesicles

m ale funnel

penial bulb o o c y t e s

Schema1 . Descriptionofenchytraeidbody( O´Connor ,1967).

10 Enchytraeids may also have chloragogen cells (Nielsen et Christensen, 1959), which have several important function in worm’s metabolism (Sedlák, 2000): fat or glykogen deposition,theproductionofhemoglobin,thefixationand neutralisationoftoxins,catabolic degradation of protein and accumulation of ammonium substances. As the next excretion organscouldbealsonephridie,thatshouldbepresentedinmostsegments.Enchytraeidshave twoormoreseptalglandsinthefrontpartofthebody.Theirfunctionhasnotbeenclearyet (NielsenetChristensen,1959). Theenchytraeidsaremostlyhermaphrodits.Thesignificantpartofenchytraeidbodyis clitellum (several glandular segments) with ducts of sexual glands. The clitellum forms at adultwormsandshouldpersistthewholelifeofindividuals.Thehealthyadultshavemale andfemaleorgans.Thereproductionprocessofearthworms,whicharethecloserelativesof enchytraeids (Sedlák, 2000), was taken for a description of reproduction behaviour at enchytraeidworms:

Schema2. Processofsexualreproductionofoligochaeteworms(Sedlák,2000). Duringthecopulation,twoadultsareconnectedbytheirventralsidesintheopposite position. Worms insert the penial bulb (in area of clitellum) into the spermatheca (III.VI. segment) the others (A). Oocytes shift to the mucous locus (B). Mature eggs in a mucous locuspassoverspermathecaandmaybefertilized(C).Themucouslocusisstrippedupthe wormascocoon(D).Cocoonsofenchytraeidsmaysinkseveraleggsandlatencytimelasts tens days (Christensen, 1956). Juveniles are set free when the cocoon ruptures. Young enchytraeids have not developed sexual organs yet. Therefore, their determination is very difficultandtheyarerecognizedonlyintothegenus.However,thereproductionispossiblein range from 5 to 25 oC in temperate zone. The temperature over 25 oC may be lethal. Observation of three Enchytraeus species in laboratory conditions from borning to the reachingofmaturitymaylast65120days(Reynolds,1939). Some species are able to reproduce via parthenogenesis ( C. glandulosa , Buchholzia appendiculata) . Another reproductive strategy is fragmentation ( Enchytraeus fragmentosus , Enchytraeus japonensis , Cognettia sphagnetorum ),whereanindividualautonomouslybreaks upintoseveralparts,eachofwhichregeneratesintoacompleteindividual(Bell,1959).

11 1.1.2.Thefunctionofenchytraeidsinsoils The enchytraeids belongs to the significant decomposers in soils. Their function is similartolumbricidsthatmaybereplacedbyenchytraeidsatstronglyacidlocalities(mostly atforestsoilswithlowpHvalues).Attheseareas,enchytraeidsmayreachveryhighdensities andconstitutethemaintaxonofsoil(WestheideandBethkeBeilfuss,1991).They usually feed on slightly to strongly decomposed remains of plants and microorganisms (bacteria and fungi). 80 % of their diet consisting of microorganisms and 20 % of dead organic matter ( Zachariae, 1965 ; Didden, 1993 ). They are concerned at humus formation, produceexcrementsandprovidethecomebackofnutrientstosoils,thatareavailabletoplants or the following soil decomposers. Worms transport also the mineral particles due to their ingestion(O´Connor,1967)oroverlappingontheirbody(Ponge,1984).Mineralparticlesare sotransferdfromdeeperlayersintothecoverofsoilandorganicmattermoredeeplywhich mayhelptoprocessesofdecomposition.Inadditional,enchytraeidsconsumemicroorganisms containingimmobilenutrientsandindirectlyhelptonutrientinvolvinginthedecomposition cycle. 1.1.3.Distributionofenchytraeidsinsoils Enchytraeids may appear in high abundance in different soils with varying species compositions(rangingfrom1to30differentspeciespersite).Interrestrialecosystems,their averageannualabundanceliesbetween20,000and60,000individuals/m 2,butissubjectto strongseasonalfluctuations (Römbkeetal.1997). The density (Didden, 1993) is influenced by many abiotic (soil acidity, humidity, temperature, etc.) and biotic (competition, predation, parasitismus, vegetation, etc.) factors. Enchytraeids have thin cuticule permeable for water and therefore they need a suitable humidityofthesoil.They livingmainlyinclosecontactwithsoilporewateraswellassoil nematodes(AchazietvanGestel,2003). The enchytraeids mostly prefer from slightly acid to slightly alcaline soils (Didden, 1993). However, some species as Cognettia sphagnetorum or Marionina clavata favour stronglyacidsoilenvironment.Theymaybeadominanttaxonofsoiloligochatesandareable toreplaceearthwormsatsuchlocalities(Healy,1980). Most of enchytraeids is found in the upper layer of soil (to 20 cm from cover), the number of enchytraeids decreases with a higher depth (Peachey, 1963, O’Connor 1971, Chalupský 1989, Kobetičová et Schlaghamerský, 2002). A. Federschmidt and J. Römbke (1992)hasmentionedthat70%ofenchytraeidsoccursintheupper8cmofsoilprofile.Some speciespreferedhigherdepthsthantheothers.J.A.Springettdescribedthatthreeenchytraeid species ( C. sphagnetorum, Marionina simillina, Achaeta eiseni ) preferably inhabitat the differentsoillayer(Springett,1963).Theoccurenceofenchytraeidsunderthecoveris obviousbecausemanyorganisms,biologicalactivitiesanddecomposerprocessesare there proceeded. The upper 10 cm of soil offers to worms optimal condition includingenoughoffoodandoxygen.Theverticalmigrationofsoilorganismsdepending on season and temperature inversion during the year was well described by Prof. Rusek (Rusek, 2000). Enchytraeids are able to move also horizontally. They have tendency to clustering(therandomorregulardistributionisunlikely).Itwasshowedthattheyappearin multispecies aggregation centres (Chalupský et Lepš, 1985). The explanation for such behaviourmightbepresenceoffood,thefavourablephysicalconditioninaheterogenoussoil environment, massive breeding of juveniles from cocoons (Chalupský et Lepš, 1985) or heterogenouscontaminationofsoil(SalminenetSulkava,1996).

12 1.2.Testsoftoxicity Enchytraeidshavebeenusinginthesoilecotoxicologysince70tiethyearsofthelast century (Römbke, 2003). For enchytraeids there have been developed several different laboratorytests,buttheycanbedividedintwogroups:shorttermtestsinaqueousoragar medium(RömbkeandKnacker,1989;Westheideetal.,1991)andshorttomediumtermsoil test(Römbke,2003).However,thetestwithartificialmediumisnotverysuitablefortesting of chemicals in soils as well as for soil quality assessment. From this reason, the chronic Enchytraeid Reproduction Test (ERT) was developed and validated nationally and internationally.Recently,theERTwasstandardised(ASTM,2000;ISO,2002;OECD,2003). Inaddition,someoftheothersoiltestsasAvoidanceorBioccumulationtestarestillundera development. Andwhytheenchytraeids….? Theobjectivesofecotoxicologicaltestsare,ontheonehand,tobeabletounderstand andpredicttheeffectsofchemicalstressontheecosystemleveland,ontheotherhand,tobe abletointerpretfielddataintermsofecologicalrelevanceofxenobioticsubstancespresent (DiddenetRömbke,2001).Thefollowinglinesgivesthemainreasonswhytheenchytraeids shouldbeconsideredaspartofabatteryofecotoxicologicaltests(Römbke,2003): • theyhaveahighecologicalrelevance • theyplayakeyroleinthefunctioningofthesoilecosystem • theycoveranexposureroutedifferenttothoseofothertestorganisms (viathesoilsolution,thesolidphase,andthegaseousphaseinsoil) • theyaresensitivetomanychemicalsandotherstressors • theyareeasilyculturable • thepracticabilityofenchytraeidstestshasbeenproven(smallamountoftestsubstrate, relativelyshortduration) • thelaboratoryresultscanbeextrapolatedtohighertestlevelslikesemifieldandfield studieswithrelativeease,sincethesameorsimilarspeciesareusedatalllevels. Inthefollowingsubchapters(1.2.1;1.2.2.;1.2.3.;1.2.4.;1.2.5.;1.2.6.),theindividual tests are described in more detail (using enchytraeidspecies, design of test, measured endpoints,advantages/nonadvantagesoftests,reviewofgroupsoftestpollutants).

13 1.2.1.Watertest Water test was firstly described by Weuffen (Weuffen, 1968 in Römbke et Moser, 2002).IthasbeenagainusedbyRömbkeandKnacker(1989)afterthenext20thyyears(see Table 1). The test condition were chosen in analogy to the Daphnia Acute Immobilization Test(OECD,1984).Watertesthasbeenusingseveraltimessincethetime(seeTable2). The measured endpoint is mostly mortality but behavioral or pathological symptoms may be also recorded every day (Römbke a Knacker, 1989; Šuteková, in press). Its advantages are simple design and short duration (4 days). However, it was found that a chemicalinwatercouldbe600timesmoretoxicthaninsoil,althoughthesameenchytraeid speciesisusedinbothexperiments(RömbkeaKnacker,1989). Table1 . Watertestonenchytraeids . GuidelineorReference RömbkeandKnacker,1989 Testprinciple Acutelaboratorytest Testparameter Mortality,behavioralorpathologicalchanges Testduration 96hours Testspecies Enchytraeus albidus orotherspeciesofthisgenus;inallcases originatingfrommassculture Testsubstrate Destilled water or reconstituted water (222 mg CaCL2, 123 mg MgSO 4.7H 2O,65mgNaHCO 3,5.8mgKClperlitre) Applicationoftest Aquaticsolutionofcontaminant substance Testconditions 10adult(=clitellate)wormspertestvessel(glasswithlid; temperature:20±2°C;permanentlynolight;wormsarenotfeed duringthetestperiod Control Untreateddestilledorreconstitutedwater Validitycriteria(control) Mortality<20%(adults) Testassessment NOECorECx(treatmentversuscontrol) Referencesubstance K2Cr 2O7: LC50(mortality)=1.9mg/l Limitationsandremarks PossiblemodificationsdependingontheEnchytraeusspeciesandon thecasestudy Table2 .Overviewofwatertestonenchytraeids. Referenceandyear Typeoftest,enchytraeidspecies,chemical Weuffen(1968)* Acute, E. albidus ,variousveterinarydrugs RömbkeetKnacker(1989) Acute, E. albidus ,andfourotherspecies,eightchemicals Graefe(1991)* Acute, E. minutus, E. lacteus, soilextracts Willuhnetal.(1994) Acute, E. buchholzi ,Cadmium Christensen et Jensen Sublethal, E . bigeminus ,threepesticides (1995)* Šutekováetal.(inpress) Acute, E. albidus , E. crypticus ,sixchemicals(biomarkers) *inRömbkeetMoser,2002. 1.2.2.Agartest ThefirstreferenceabouttheusingofagarmediumoriginatesfromWestheideandhis colleagues (Westheide et al., 1989). The test design was established during the following years (Westheide et BethkeBeilfuss, 1991) (see Table 3) and some metals, pesticides and otherchemicalshavebeentested(seeTable4).

14 Table3 .Agartestonenchytraeids. GuidelineorReference WestheideetBethkeBeilfuss,1991 Testprinciple Sublethallaboratorytest Testparameter Cocoonproduction,hatchability(numberoffertiledcocoons) Testduration 30days:25daysforcocoonproduction,thenext5daysfor hatchability Testspecies Genus Enchytraeus ;inallcasesoriginatingfromsynchronizedculture (8daysoldmatureworms) Testsubstrate 1.5%agar(1gCa(NO 3)2,0.25gMgSO 4.7H 2O,0.25gKNO 3,0.25g KH 2PO 4,tracesofFeSO 4per1Lofdestilledwater) Applicationoftest Mixthecompoundconcentrationwiththeagarbeforethepouredinto substance thePetridishes Testconditions 3adultsperglassPetridishwithlid(diameter5cm);temperature:21 °C;permanentlyindark;flakedoatsareusedforfoodduringthetest period) Control Untreatedagarmedium Validitycriteria(control) Mortality<20%(adults) Testassessment NOECorECx(treatmentversuscontrol) Limitationsandremarks PossiblemodificationsdependingontheEnchytraeusspeciesandon thecasestudy Table4. Overviewofagartestonenchytraeids. Referenceandyear Typeoftest,enchytraeidspecies,chemical Westheideetal.(1989)* Sublethal, E. crypticus ,ninechemicals,liquidmanure RutheretGreven(1990)* Acute, E. buchholzi ,fourmetals Purscheetal.(1991)* Sublethal, E. crypticus, variouspesticides WestheideetBethkeBeilfuss Sublethal, E. crypticus ,threepesticides (1991) Westheideetal.(1991) Prolonged, E. crypticus, E. mintuus ,Benomyl Kristufeketal.(1995)* Sublethal, E. crypticus ,sevenchemicals Arrateaetal.(2004) Sublethal, E. coronatus ,carbendazim,threechemicals *inRömbkeetMoser,2002 The positive side of the agar test is that the parameters as cocoon production and hatchingsuccessareobservablebetterinthisartificialmediumthaninsoils.Inaddition,the sublethal effects of some tested compound as fungicide benomyl (Westheide et al., 1991) couldbereconciledwithsoilpopulationtests:lowerabundancewasduetoaverylownumber ofjuvenilesinthebenomyltreatedcultures. Inthelastmentionedstudy(seeTable4),theeffectofcarbendazim,4nitrophenoland potassiumdichromatewasmeasuredonsurvivalandonseveralsublethalvariablesasnumber ofjuvenilesandcocoonsperadult,numberofeggspercocoon,percentofhatchingandadult biomass in chronic agar tests. The number of juveniles per adult was the most sensitive variablemeasuredforthethreesubstances.Thereductioninthenumberofjuvenilescouldbe explainedmainlybyanegativeeffectoncocoonhatchingduetocarbendazim.Theeffectof 4nitrophenolonthenumberofjuvenileswasinterpretedasaconsequenceofareductionin thenumberofeggspercocoon,associatedwithareductioninparentalbiomass.Potassium dichromatedecreasedreproductionbyareductionincocoonproductionduerathertoafailure ofwormreproductivephysiology.Theagartestshowedvariouseffectsoftestedcompounds onwormreproductionbiologyandcontributedtobetterunderstandingoftheeffectsofthese substancesmeasuredinERTsoiltoxicitytests(Arrateaetal.,2004).

15 1.2.3.Sublethaltestwithspecies Cognettia sphagnetorum (Vejdovsky)1877 The authors of the test are Rundgren and Augustsson (1998) (see Table 5). The test organismisexclusivelyenchytraeid Cognettia sphagnetorum (Vejdovsky)1877.Thisspecies occursmostlyinpoorconiferousforestsoilsbutisalsofrequentingrasslandoracidmeadows (Springett,1970;Standen,1984inRuntgrenetAugustsson,1998).Someauthorsreferedto the sexual reproduction (e. g. Schlaghamerský, 2002) but main reproductive strategy is fragmentation(NielsenetChristensen,1959).Thisimpliesthatanindividualbreaksupintoa numberoffragments,whichhavepotencialtodevelopintonewworms(Bell,1959). Inspiteofthattwoexperimentswithlitterassubstratewasrecorded(seeTable6),the testhasbeenusedfirstlyasatoxicitytestinRundgrenandAugustssonstudy(1998). Table5. Sublethaltestwithspecies Cognettia sphagnetorum (Vejdovsky)1877. GuidelineorReference RundgrenandAugustsson(1998) Testprinciple Sublethallaboratorytest Testparameter Mortality (adults), asexual reproductionfragmentation (number of survival fragments), growth (number of segments per individual fragment) Testduration Effectsaredeterminatedafteronceaweekover10weeks Testspecies Cognettia sphagnetorum (Vejdovsky)1877 Testsubstrate Sphagnumpeat(75%)+LUFA2.2(25%);pHabout4 Applicationoftest Mixwiththesoil substance Testconditions 2gramesofsoiland1wormpertestvessel(glass vials with screw caps;5cm 3);temperature:15±1°C;24hourslight;moisture:80%of the WHCmax., food: Baker´s yeast or fungae Mortierella isabellina , extractionofthewormsandfragmentsbyflushingthecontentofvials withwater;determinationusingthemicroscope,thewholeprocedure is repeated once a week, the studied worms or fragments are then introduced into the soil in the new test vessels with the same test concentrationfromthepreviousweek Control Untreatedtestsubstrate Validitycriteria(control) Mortality<10%(adults);growthrateis≥1segmentsperweek Testassessment ECx(treatmentversuscontrol) Referencesubstance Copperchloride:variousECxvaluesaredescribedinRundgrenand Augustsson(1998) Table6 .Overviewoflaboratorytestwith Cognettia sphagnetorum (Vejdovsky)1877. Referenceandyear Substrate,typeoftest,chemical Heugens(1984)* Litter,acute,pHandsalt Huhta(1984)* Litter,soil,acute,pHandnutrients RundgrenetAugustsson Soil,sublethal, threechemicals (1998) *inRömbkeetMoser,2002 1.2.4.Enchytraeidreproductiontest(ERT) The Enchytraeid Reproduction Test (ERT) has carried out in well – defined artificial soil such as the commonly used OECD soil from earthworm acute tests (OECD, 1984). Enchytraeus albidus ismostlyusedspeciesinERT. E. albidus hasbeenusedinecotoxicology aswellasphysiology,biochemistryandgeneticsformorethan50years(RömbkeetMoser,

16 2002). This is due to its worldwide distrubution and relatively high size (1540 mm). However,theotherspeciesofgenus Enchytraeus (usuallysmallerspeciesas E. crypticus , E. luxorius or E. bulbosus )havebeenalsousedinthetoxicologicaltests. InERT,asublethalparametrfecundity(numberofjuveniles)isamainendpoint.Lethal effect and behavioural changes should be also recorded. The test can be divided into two steps:(a)arangefindingtestinwhichadultmortalityisestablishedafter2weeksandthe resultsallowtofindasuitablerangeconcentrationforadefinitivereproductiontest(b).The mortalityofadultsisstudiedinahalfoftestperiodandreproductionafterfinishingofthe definitivetest. The application of test substance differes depending on its solubility. Watersoluble substancesareapplicatedasaquaticsolutionintoatestsoil.Chemicalslittlesolubleinwater are dilluted in organic solvent that is evaporated after application into the soil. The other chemicalsaremixedwithalittleamountofsandandafterthatwithothercomponents(for moredetailsoftestdesignseeTable7). Table7. TheEnchytraeidReproductionTest(ERT;Römbke,2003). GuidelineorReference DraftGuidelineaccordingtoASTME167697(2000),ISO16387 (2002)orOECD220(2003) Testprinciple Chronic,sublethallaboratorytest Testparameter Mortality(adults),reproduction(numberofjuveniles) Testduration RangeFindingTest:2weeks;Definitivetest:variable,dependingonthe species; E. albidus :6weeks;othersspecies:4weeks Testspecies Enchytraeus albidus ( )orotherspeciesofthegenus Enchytraeus ;inallcasesoriginatingfrommassculture Testsubstrate Artificialsoil:quarzsand,kaoline,sphagnumpeat,calciumcarbonate anddestillledwater(OECD1984);alsofieldsoilsispossible Applicationoftest Mixedintotheartificialsoil;mixturesofcontaminatedandcontrolsoil substance alsopossible Testconditions 10adult(=clitellate)wormspertestvessel(glasswithlid;0.2–0.25L volume);temperature:20±2°C;permanentlynolight;moisture:40– 60%oftheWHCmax.,pHofsoil=6.0±0.5;rolledoatsaremixedwith soilonceaweek,extractionofthejuvenilesusingBengalred Control Untreatedtestsubstrate(e.g.artificialsoilorareferencesoilsuchasthe GermanLUFA2.2) Validitycriteria(control) Mortality<20%(adults);numberofjuvenilespertestvessel(attheend ofthetest)>25( E. albidus )or>50(otherspecies),acoefficientof variation<50%attheendofthedefinitivetest Testassessment NOECorECx(treatmentversuscontrol) Referencesubstance EC50(reproduction)ofCarbendazim:1.2±0.8mg/kg Limitationsandremarks PossiblemodificationsdependingontheEnchytraeusspeciesand,inthe caseofsoilqualityassessment,onthetestsoil ThestainingwithBengalredhasbeenmostlyusedforextractionofenchytraeidsfrom soilsbutwetfunnelextractionandfloatationmethodarerecommendedastheotherpossible techniques (e.g. ISO, 2002). Wet extraction could be used in laboratory test as well as ecological or deterministic research, however, due to the properties of artificial soil this method is sometimes to difficult to perform (Römbke et Moser, 2002). In addition, some resultsshowthattheLudoxFlotationMethodismoreefficient,faster,andlesslaboriousthan the wet extraction method (Phillips et al., 1999) but it has been the least using extraction methodforthepresent. As reference substance was choosen fungicide Carbendazim, which is very toxic for oligochaetes.ItsLC50valueoverreached10mg/kgbutEC50valuewasestablishedinrange

17 from0.4to2.0mg/kginaninternationalRingtest.Thisreferencesubstanceshouldbetested either at regular intervals to verify that response of the test organisms has not changed significantlyovertime(RömbkeetMoser,2002). ERThasbeenusedfortestingofmanyindividualorganiccompounds,heavymetalsor somepharmaceuticals(seeTable8).Later,thetestwasalsovalidatedandmodificatedforsoil qualityassessment,usuallyincaseswherethesoilswerecontaminatedwithmixofpolycyclic aromatic compounds, heavy metals or TNT (e.g. Achazi et al., 1996; Schaefer et Achazi., 1999;FilimonovaetPokarshevskii,2000;Kupermannetal.,2003;Pokarshevskietal.,2003; Frouzetal.,2005).Theenchytraeidtestwasalsousedinprocessofsoilremediation(Juvonen etal.,2000).Inaddition,thestudieshavemoreoftenprogressedfrompuremeasurementthe toxic effects of individual pollutants (LCx, ECx values) into the more comprehensive investigationofbioavailabilityaffectingthetoxicity.Theaspectsasstructureofchemical,test speciesandphysicochemicalpropertiesofsoil,testdesignorinfluenceofageinghasbeen investigated(seeTable8). Table8 .OverviewofEnchytraeidReproductionTest(ERT). Chemical Measuredeffects Referenceandyear (numberofstudies**) Pharmaceuticals(4) toxicity Achazietal.(1997);Bagueretal. (2000);Diaoetal.(2007),Kolaretal. (inpress) Explosivematerial(5) ageing,toxicity,juveniles SchaeferetAchazi(1999),Dodardetal., adultdifferencies (2003;2004),Kupermanetal.,(2003, 2006) Surfactants(2) toxicity Geiljsbergetal.(2001), HolmstrupetKrogh(2001) Halogenatedflame sensitivityofsoilorganisms Sverdrupetal.,(2006) retardants(1) PACs(4) toxicity,modeofaction Bleekeretal.(2003) Sverdrupetal.(2002a,b,2007) Heavymetals(10) ageing,soilproperties,soil KratzetBrose(1997);Lokhorst,1997; types,adaptationprocesses, Posthumaetal.(1997);Posthumaet bioavailability Notenboom,(2000)*;Beylich(2001)*; Lock(2002)*,LocketJanssen,(2003 a,b,c);Amorimetal.(2005) Pesticides(10) influenceofsoilmoisture, PuurtinenetMartikainen(1997); influenceofpHoneffects, Amorimetal.(1999,2005);Colladoet ringtest,enchytraeidspecies al.(1999)*;Kupermanetal.(1999); sensitivity,differentsoiltypes, HundRinkeetal.(2002c)*;Locketal. soil/speciesdifferences (2002);RömbkeetFederschmidt(1995); RömbkeetMoser(2002) *inRömbkeetMoser,2002, **thenumbersofstudiesareonlyorientation,itispossiblethatmoreworksexist(worksofstudents,articles inbulletinsandnationalpapers,etc). 1.2.5.Avoidancetest ThefirststudyaboutusingofenchytraeidsinanAvoidancetestcameupinthemid 1990s(Achazietal.,1996).Generally,theavoidanceorescapebehaviourofsoilinvertebrates is based on the fact that the organisms dispose of chemoreceptors sensitive to unsuitable antropogenic or environmental condition (e.g. Römbke et Schmidt, 1999 in Amorim et al., 2005b).

18 EnchytraeidshavebeenveryrearlyusedinAvoidancetest(Achazietal.,1996;Achazi etal.,1999;Amorimetal.,2005)andmostofthestudiesarenotcommonlyavailablesince some of them are diploma thesis (e.g. Panneck, 2000; WagnerVaske, 2000). The existing worksarebrieflydescribedintheTable9. Table9. OverviewofAvoidancetestwithenchytraeids. Referenceandyear species endpoint testchemicalorsoil Achazietal.(1996)* E. crypticus Avoidanceand PCBandmetals escapereaction Achazietal.(1999)* E. crypticus Avoidancereaction Former irrigation fields, sewage sludges Panneck(2000)* E. crypticus Escapereaction Cuacetate,Cdchloride WagnerVaske(2000)* E. crypticus Escapereaction Phenmediphan,Ethiofencarb, Carbofuran,cypermethrin, SchaferetAchazi(2004) E. crypticus Escapereaction Hexyl Amorimetal.(2005) E. albidus Avoidancereaction OECD and several natural soils, Carbendazim,Phenmediphan, Kobetičováetal.,(2007) E. albidus , Avoidancereaction OECDsoil+5naturalsoils E. crypticus *inRömbkeetMoser,2002 The results from the mentioned studies indicate that avoidance tests are useful as methodfortheassessmentofchemicalsinsoils(seeTable9)orforsoilqualityassessment (Amorim et al., 2005b), however, this test is suitable only for chemicalsthatcauseirritant effectstotestorganisms(Yeardly,1996). Theavoidancetestwithenchytraeidsisstillunderadevelopmentandsomedifferencies intestdesignareunderadisccusion(WagnerVaske2000inRömbke,2003,Amorimetal., 2005b,Kobetičováetal.,2007).Nevertheless,theproposalfromoneofthefirstpublicized study(Achazietal.,1999)isdescribedintheTable10.andshortdescriptionoftestdesignis visibleintheSchema3. Table10. TheproposalofdesignofAvoidancetestwithenchytraeids(Achazietal.,1999inRömbke, 2003). GuidelineorReference Achazietal.(1999) Testprinciple Determinationofthesitechoiceoftheenchytraeids Testparameter Behaviour(movementactivity,stayattheendofthetest) Testduration 48hours Testspecies E. crypticus oranother Enchytraeus species;adultindividualsfrom synchronisedlaboratorymasscultures Testsubstrate Spikedcontrolsoilorcontaminatedfieldsoils(10replicates) Applicationoftest Mixedintotheartificialsoil;mixtureofcontaminatedandcontrolsoil substance alsopossible Testconditions 20adult(=clitellate)wormspertestvessel(10gcontroland10gtest soil,separatedbygaze(1mm);temperature20±1°C;permanentlyno light;moisture:50%WHCmax Control Untreatedfieldsoil(LUFAstandardsoil2.2) Validitycriteria(control) Mortality≤20% Testassessment Differentdistributioncomparedtothecontrol(LUFAsoilonbothsides) ornumberofwormsinthetestsoil≤20% Referencesubstance Notspecified Remarks Avoidancetest:20wormsaresetonthecontrolsoil;Escapetest:20 wormsaresetonthetestsoil;Combinedtest:Either20wormsonthe linebetweenthetwosidesor10wormsonbothsidesofthetestvessel

19

Schema3 .Schematicrepresentationoftheexperimentalproceduresofenchytraeidavoidancetest:(1) introductionofthemovablewallinthecentreofthetestvessel;(2)introductionofthesoilstobe tested;(3)movablewallisremoved;(4)placementoftheenchytraeidwormsinthecentreofthesoils; (5)coveringthetestvesselwithalid(perforated);(6)reintroductionofthewalltoseparatethesoils andcountingoftheorganismspresentineachside(Amorimetal.,2005b). 1.2.6.Bioaccumulationtest Thebioaccumulationisdefinedastheincreasingaconcentrationofthetestsubstancein or on an organism relative to the concentration of the test substance in the surrounding medium, including uptake of a chemical from both medium and food via all possible pathways (e.g. OECD, 1996). Its degree could be expressed as the bioaccumulation factor (BAF), which is calculated as thequocient of the concentration of the test chemical in the divided by the concentration in the soil. Bioaccumulation is a direct measure of chemicalconcentrationsinanorganismresultingfromthenetfluxofchemicalsfromthesoil due to the balance between uptake and depuration processes (Lanno et al., 2004). Bioaccumulationisassociatedwithchemicalresiduesaccumulatedatthesiteoftoxicaction butbelowa toxic threshold, as well asresidues in other tissues containing no site of toxic action(Lannoetal.,2004).

Schema4 : Schematicmodelofbioavailability(Lanno,2003).

The significance of research of bioaccumulation at soil invertebrates consists in the detectionandunderstandingthepotencialenrichingofpollutantconcentrationthroughafood chain(seeSchema5):

Cl

Cl Cl

Cl Cl Cl Schema5 .Schemaofbiomagnicationthefoodchainbychemical.

20 The insecticide Lindane and the fungicide Hexachlorobenzene (HCB) were used in a bioaccumulationstudyfromGermany(Brunsetal.,2001).Thetestwasperformedwithtwo enchytraeidspecies( E. albidus, E. luxuriosus )asmodelorganismswithanartificialsoilanda naturalstandardsoil(LUFA2.2)astestsubstrates.Uptakeaswellastheeliminationofthe test substances were examined in a closed test system for 42 days. The smaller species E. luxuriosus accumulatedthe two chemicals to agreater degree than E. albidus . Theauthors suggested two possible explanation for this: 1. E. luxorius may selectively feed on small particles,whichmaycarryhigheramountsofchemicalthancoarsermaterial.2.Thesmaller sizeof E. luxorius leadstoalargebodysurfacearearelativelytotheweightwhichsupports anenhanceddiffusionoftestsubstanceviathebodywall.Inanycase,thebioaccumulation patternwasconsiderableforboththeenchytraeidspecies(Brunsetal.,2001). In the other study (Amorim et al., 2002), the uptake and elimination of lindane in Enchytraeus albidus wasanalysedinOECDsoilandanaturalagriculturalsoil.Theuptake andeliminationphaseslasted10days.Theresultsindicatedthecorrelationamongthetotal soilconcentration,thebiovailableconcentrationinsoil(waterextracts)andconcentrationin worms(theconcentrationdecreasedinallsubstratesequally)inOECDsoil.Onthecontrary, the bioavailable fraction of lindane in the natural soil decreased faster than the total soil concentration.Thehigherbioaccumulationoccuredinthenaturalsoilthanintheartificialsoil duetoahigherorganicmattercontentofOECDsoil,whichcausedalowerbioavailability and accumulation in this soil (see Table 11). However, the higher elimination rate was observedintheOECDsoil.Theauthorssupposedthatthelargeamountofsandparticlesin OECDsoilwasinchargeofraisingeliminationthesoilparticleswithlindanefromworm‘s gut . Table11 .BAFvaluesoflindaneandHexachlorobenzene(HCB). E. albidus E. luxorius Reference Lindane OECDsoil 6.4*; 12±1.1 Brunsetal.,2001*; 12±0.7 Amorimetal.2002 LUFA2.2 22±0.4 36±1.1 Brunsetal.,2001 Agriculturalsoil 9.6 Amorimetal.2002 HCB OECDsoil 14±4.4 27±0.9 Brunsetal.,2001 LUFA2.2 28±0.8 35±0.7 Brunsetal.,2001 Independentlyfromthetwoworksdescribedabove,bioaccumulationtestswithheavy metals using enchytraeids have been done by Postuma et al. (1998b) and Lock et Janssen (2001), confirming the suitability of enchytraeids as model organisms in bioaccumulation tests(seeTable12). Table12 .OverviewoftheBioaccumulationtest. Referenceandyear Testspecies,Chemical Postumaetal.(1998)* 2species,Zn Brunsetal.(2001) E. albidus , E. luxorius ,LindaneandHCB LocketJanssen(2001)* E. albidus ,Zn,Cd Amorimetal.(2002) E. albidus ,Lindane *inRömbkeetMoser,2002 .

21 1.3.References Achazi,R.K.,Chroszcz,G.,Pilz,B.,Rothe,B.,Steudel,I.,Throl,C.(1996):DerEinflussdes pHWertsundvonPCB52aufReproduktionundBesiedlungsaktivitätvonterrestrischen Enchytraeen in PAK, PCB und schwermetallbelasteten Rieselfeldböden. VerhandlungenderGesellschaftfürÖkologie,26:37–42. AchaziR.K.,VanGestelC.A.M.(2003):UptakeandAccumulationofPAHsbyTerrestrial Invertebrates. PAHs: Edited by Peter E.T. Douben. An Ecotoxicological Perspective: 173190. Amorim,M.J.D.,Römbke,J.,Schallnass,H.J.,Mortagua,A.,Soares,V.M.(2005c):Effect of soil properties and aging on the toxicity of copper for Enchytraeus albidus, Enchytraeus luxuriosus, and Folsomia candida. Environmental Toxicology and Chemistry,24:18751885. Amorim,M.J.,Römbke,J.,Scheffczyk,A.,Soares,A.M.V.M.(2005a):Effectofdifferent soiltypesontheenchytraeidsEnchytraeusalbidusandEnchytraeusluxuriosususingthe herbicidePhenmedipham.Chemosphere,24:18751885. Amorim,M.J.,Sousa,J.P.,Nogueira,A.J.A.,Soares,A.M.V.M.(2002):Bioaccumulation and elimination of 14 Clindane by Encyhtraeus albidus in artificial (OECD) and a naturalsoil.Chemosphere,49:323329. Amorim,M.,Soares,A.,Römbke,J.(2005b):AvoidancebehaviourofEnchytraeusalbidus: Effects of Benomyl, Carbendazim, phenmedipham and different soil types. Chemosphere,59:501510. Arratea,J.A.,Rodrigueza,P.,MartinezMadrida,M.(2002):Effectsofthreechemicalson thesurvivalandreproductionoftheoligochaetewormEnchytraeuscoronatusinchronic toxicitytests.Pedobiologia,46:136149. ASTM(AmericanSocietyforTestingandMaterials)(2000):Standardguideforconducting laboratorysoiltoxicityorbioaccumulationtestswiththelumbricidearthworm Eisenia fetida andtheenchytraeidpotworm Enchytraeus albidus .ASTMGuidelineNo.E1676– 97(Draft). Baguer,A.J.,Jensen,J.,Krogh,P.H.(2000):Effectsoftheantibioticsoxytetracyclineand tylosinonsoilfauna.Chemosphere,40:751757. Bell, A.W. (1959): Enchytraeus fragmentosus, a new species of naturally fragmenting oligochoetaworm.Science(Wash.D.C.),129:1278. Bleeker,E.A.J.,Wiegman,S.,Droge,S.T.J.,Kraak,M.H.S.,vanGestel,C.A.M.(2003): ChronictoxicityofPACstoFolsomiacandidaandEnchytraeuscrypticus.In:Towards an improvement of the risk assessment of polycyclic (hetero)aromatic hydrocarbons. Report200301ofthedepartmentofAquaticEcologyandEcotoxicology,Universityof Amsterdam, Amsterdam, The Netherlands. Report 200304 of the Institute of EcologicalScience,VrijeUniversiteit,Amsterdam,TheNetherlands:2732.. Bruns,E.,Egeler,P.,Römbke,J.,Scheffczyk,A.,Spoerlein,P.(2001):Bioaccumulationof lindane and hexachlorobenzene by the oligochaetes Enchytraeus luxuriosus and Enchytraeusalbidus(Enchytraeidae,Oligochaeta,Annelida).Hydrobiologia,463:185 196. Buchar,J.,Ducháč,V.,Hůrka,K.,Lellák,J.(1995):Klíčkurčováníbezobratlých.Scientia: 285pp. Diao,X.,Jensen,J.,DuusHansen,A.(2007):Toxicityoftheanthelminticabamectintofour speciesofsoilinvertebrates.EnvironmentalPollution,148:514519. Didden,W.A.M.(1993):EcologyofterrestrialEnchytraeidae.Pedobiologia,37:229. Didden,W.,Römbke,J.(2001):EnchytraeidsasIndicatorOrganismsforChemicalStressin TerrestrialEcosystems.EcotoxicologyandEnvironmentalSafety,50:2543.

22 Dodard, S. G., Powlowski, J., Sunahara, G. I. (2004): Biotransformation of 2,4,6 trinitrotoluene (TNT) by enchytraeids (Enchytraeus albidus) in vivo and in vitro. EnvironmentalPollution,131:263273. Dodard, S. G., Renoux, A. Y., Sunahara, G. I. (2003): Lethal and SubChronic Effects of 2,4,6Trinitrotoluene (TNT) on Enchytraeus albidus in Spiked Artificial Soil. EcotoxicologyandEnvironmentalSafety,54:131–138. Federschmidt, A., Römbke, J. (1992): Bodenbiologische Untersuchungen an einer Streuobstwiese und einem EichenHainbuchenwald: Die Enchyträen und Tubificidenzönose.VerhandlungenderGesellschaftfürÖkologie,21:59–64. Filimonova, Z. V., Pokarzhevskii, A. D., Zaitsev, A. S. (2000): Ecological Mechanisms of SoilBiotaTolerancetoMetalContamination.BiologicalSciences,370:7780. Frouz,J.,Krištůfek,V.,Bastl,J.,Kalčík,J.,Vaňková,H.(2005):Determinationoftoxicityof spoil substrates after brown coal mining using a laboratory reproduction test with Enchytraeuscrypticus(Oligochaeta).WaterAirandSoilPollution,162:3747. Gejlsbierg, B., Klinge, C., SamsoePetersen, L., Madsen, T. (2001): Toxicity of linear alkylbenzene sulfonates and nonylphenol in sludgeamended soil. Environmental ToxicologyandChemistry,20(12):27092716. Healy,B.(1980):DistributionofterrestrialEnchytraeidaeinIreland.Pedobiologia,20:159 175. Holmstrup, M., Krogh, P. H. (2001): Effects and risk assessment of linear alkylbenzene sulfonatesinagriculturalsoil.3.Sublethaleffectsonsoilinvertebrates.Environmental ToxicologyandChemistry,20:16731679. Chalupský,J.(1989):Metodystanoveníživočišnýchpopulacívpůdě.In:D.Dykyjová(ed.): Metodystudiaekosystémů.Academia,Praha:503–512. ChalupskýJ.,Lepš,J.(1985):ThespatialpatternofEnchytraeidae(Oligochaeta).Oecologia (Berl.),68:153157. Christensen,B.(1956):StudiesonEnchytraeidae.6.TechniqueforculturingEnchytraeidae, withnotesoncocoontypes.Oikos,7:302307. ISO (International Organisation for Standardisation) (2002): Soil Quality – Effects of Pollutants on Enchytraeidae ( Enchytraeus sp.). Determination of effects on reproduction.ISONo.16387. Juvonen,R.,Martikainen,E.A.T.,Schultz,E.,Joutti,A.,Ahtiainen,J.,Lehtokari,M.(2000): A Battery of Toxicity Tests as Indicators of Decontamination in Composting Oily Waste.EcotoxicologyandEnvironmentalSafety,47:156166. Kobetičová,K.,Hofman,J.,Holoubek,I.(2007):Vlivpůdníchvlastnostínachováníroupic (Enchytraeus albidus , Enchytraeus crypticus ) v Avoidance testech. In: Sborník recenzovaných příspěvků, 1. svazek – biologická a environmentální sekce. Univerzita KomenskéhovBratislave;PrírodovedeckáFakulta,Slovakia:261263. Kobetičová,K.,Schlaghamerský,J.(2003):Ontheefficiencyofthreeschemesofenchytraeid wetfunnelextraktion.NewsletteronEnchytraeidae,8:25–31. Kolar, L., Kozuh Erzen, N., Hogerwerf, L., van Gestel, C. A. M. (in press): Toxicity of abamectinanddoramectintosoilinvertebrates.EnvironmentalPollution,xx:18. Kratz,W.,Brose,A.(1997):BodenokologischeUntersuchungenzurWirkungundVerteilung von organischen Stoffgruppen (PAK, PCB) in ballungsraumtypischen Okosystemen. BundesministeriumfurBildung,Wissenschaft,ForschungundTechnologie,Berlin. Kuperman,R.G.,Checkai,R.T.,Simini,M.,Phillips,C.T.,Kolakowski,J.E.,Kurnas,C. W., Sunahara, G. I. (2003): Survival and reproduction of Enchytraeus crypticus (Oligochaeta, Enchytraeidae) in a natural sandy loam soil amended with the nitro heterocyclic explosives RDX and HMX: The 7th international symposium on earthwormecology,Cardiff,Wales,2002,Pedobiologia,47:651656.

23 Kuperman, R. G., Checkai, R. T., Simini, M., Phillips, C. T., Kolakowski, J. E., Kurnas, Davis,E.A.(2006):ToxicityofemergingenergeticsoilcontaminantCL20topotworm Enchytraeus crypticus in freshly amended or weathered and aged treatments. Chemosphere,62:12821293. Kuperman,R.G.,Simini,M.,Philips,C.T.,Cheackai,R.T.(1999):ComparisonofMalathion toxicityusingenchytraeidreproductiontestandearthwormtoxicitytestindifferentsoil types.Pedobiologia,43:630634. Lanno,R.P.,LeBlanc,S.C.,Knight,B.,Tymowski,R.,Fitzgerald,D.G.(2003):Application ofbodyresiduesasatoolintheassessmentofsoiltoxicity.In:AdvancesinEarthworm Ecotoxicology.SETAC. Lanno, R., Wells, J., Conder, J., Bradham, K., Basta, N. (2004): The bioavailability of chemicalsinsoilforearthworms.EcotoxicologyandEnvironmentalSafety,57:3947. Learner, M. A. (1972): Laboratory studies on the lifehistories of four enchytraeid worms (Oligochaeta)whichinhabitsewagepercolatingfilters.AnnalsofAppliedEcology,70: 251266. Lock, K., Janssen, C. R. (2002a): Ecotoxicity of Chromium (III) to Eisenia fetida , Enchytraeus albidus and Folsomia candida .EcotoxicologyandEnvironmentalSafety, 51:203205. Lock,K.,Janssen,C.R.(2002b):Ecotoxicityofnickelto Eisenia fetida , Enchytraeus albidus and Folsomia candida .Chemosphere,46:197200. Lock,K.,Janssen,C.R.(2002c):Multigenerationtoxicityofzinc,cadmium,copperandlead tothepotworm Enchytraeus albidus .EnvironmentalPollution,117:8992. Lokhorst, A. (1997): Heavy metal and fungicide toxicity in E. albidus Evaluation of a proposed enchytraeid toxicity test with artificial OECD soil. Studentenverslag Landbouwuniversiteit,VakgroepTerrestrischeOecologieenNatuurbeheer,Wageningen. Nielsen,C.O.,Christemsen,B.(1959):TheEnchytraeidae,criticalrevisionandof Europeanspecies.NaturaliaJutlandica,8–9:1–160. O´Connor, F. B. (1967): The Enchytraeidae. In: Burges, A., Raw, F. (eds) Soil biology. AcademicPress,London,NewYork:213257. O´Connor, F. B. (1971): Methods of Study in Quantitative Soil Ecology: population, productionandenergyflow7.TheEnchytraeids.IBPHandbook18:83106. OECD (Organisation for Economic Cooperation and Development) (1984): Earthworm, acute toxicity tests. OECD guideline for testing of chemicals, No. 207. OECD. Earthwormtoxicitytests,Paris,France. OECD (Organisation for Economic Cooperation and Development) (1984): Daphnia sp. acute immobilisation test and reproduction test. OECD Guideline for testing of chemicals,No.202.OECD,Paris,France:16pp. OECD (Organisation for Economic Cooperation and Development) (1996): Guidelines for TestingofChemicalsNo.305.Bioconcentration:FlowthroughFishTest.OECD,Paris: 9pp. OECD(OrganisationforEconomicCooperationandDevelopment)(2003):OECDGuideline forTestingofChemicalsNo.220.EnchytraeidaeReproductionTest.Paris. Peachey, J. E. (1963): Studies on the Enchytraeidae (Oligochaeta) of moorland soil. Pedobiologia,2:8195. Phillips,C.T.,Kuperman,R.G.,Checkai,R.T.(1999):Arapidandhighlyefficientmethod forextractingenchytraeidsfromsoil.Pedobiologia,43:523527. Pokarzhevskii,A.D.,Goryachev,O.A.,Filimonova,Z.V.,Pushnikova,Z.N(2003):Toxic effectsofcrudeoilsaturatedsoilsonthesurvivalandreproductionoftheenchytraeid Enchytraeus cryptius in a short term testing experiment. Fresenius Environmental Bulletin,12:844847.

24 Puartinen,H.M.,Martikainen,E.A.T.(1997):Effectsofsoilmoistureonpesticidetoxicityto anenchytraeidworm,Enchytraeussp..ArchivesofEnvironmentalContaminationand Toxicology,33:3441. Ponge, J. F. (1984): Étude écologique d´un humus forestier par l´observation d´un petit volume, premier résultats. I. – La couche Ll d´un moder sous pin sylvestre. Revue d´ÉcologieetdeBiologieduSol,21:161187. Posthuma, L., Baerselman, R., Van Veen, R. P. M., DirvenVan Breemen, E. M. (1997): SinngleandJointToxicEffectsof CopperandZinconReproductionof Enchytraeus crypticus inRelationtoSorptionofMetalsinSoils.EcotoxicologyandEnvironmental Safety,38:108121. Reynolds, T. B. (1939): On the life history and ecology of Lumbricillus lineatus Mull. (Oligochaeta).AnnualofAppliedBiology,26:782798 Römbke, J., Beck, L., Forster, B., Frund, H.C., Horak, F., Ruf, A., Rosciczewski, K., Scheurig, M., Woas, S. (1997): Boden als Lebensraum fur Bodenorganismen und die bodenbiologischeStandortklassifikation:EineLiteraturstudie.TexteundBerichtezum Bodenschutz4/97.LandesanstaltfurUmweltschutzBadenWurttemberg(Karlsruhe). Römbke,J.,Federschmidt,A.(1995):E!ectsofthefungicideCarbendazimonEnchytraeidae inlaboratoryandfieldtests.NewsletteronEnchytraeidae, 4:7996. Römbke,J.,Knacker,T.(1989):Aquatictoxicitytestforenchytraeids.Hydrobiologia,180: 235242. Römbke,J.,Moser,T.(2002):Validatingtheenchytraeidreproductiontest:organisationand resultsofaninternationalringtest.Chemosphere,46:11171140. Rungren, S., Augustsson, A. K. (1998): Test on the Enchytraeid Cognettia sphagnetorum (Vejdovsky) 1877. In Lokke, H., van Gestel, C. A. M. (Eds.), Handbook of Soil InvertebrateToxicityTests.JohnWiley&SonsLtd.,Chichester. Rusek,J.(2000):Živápùda(5).Sukcesnívývojpùdyaekosystémù.Živa,5:217221. Salminen,J.,Sulkava,P.(1996):Distributionofsoilinpatchilycontaminatedsoil. SoilBiologyandBiochemistry,28:13491355. SECOFASE (1994): Progress Report 1994 of SECOFASE. Third Technical Report. ISBN: 8777722043. Sedlák,E.(2000):Zoologiebezobratlých.Skriptum.PřF,MUvBrně:336pp. Schäfer, R., Achazi, R. K. (1999): The toxicity of soil samples containing TNT and other ammunition derived compounds in the enchytraeid and collembolabiotest. EnvironmentalScienceandPollutionResearch,6:213219. Schlaghamersky,J.(2002):TheEnchytraeidaeofspruceforestplotsofdifferentexposureand acid deposition in a German mountain range. European Journal of Soil Biology, 38: 305309. Schmelz, R. M., Westheide, W. (2000): Ultrastructure of oesophageal appendages („peptonephridia“)inenchytraeids(Annelida,).InvertebrateBiology,119:94 103. Springett,J.A.(1963):ThedistributionofthreespeciesofEnchytraeidaeindifferentsoils. In:DoeckenJ.etDriftJ.(eds),Soilorganisms.Amsterdam:414–419pp. Springett,J.A.(1970):ThedistributionandlifehistoriesofsomemoorlandEnchytraeidae (Oligochaeta).JournalofAnimalEcology,39:725–737. Sverdrup,L.E.,Hartnik,T.,Mariussen,E.,Jensen,J.(2006):Toxicityofthreehalogenated flame retardants to nitrifying bacteria, red clover (Trifolium pratense), and a soil invertebrate(Enchytraeuscrypticus).Chemosphere,64:96103. Sverdrup,L.E.,Jensen,J.,Kelley,A.,Krogh,P.H.,Stenersen,J.(2002b):Effectsofeight polycyclic aromatic compounds on the survival and reproduction of Enchytraeus

25 crypticus(Oligochaeta,Clitellata).EnvironmentalToxicologyandChemistry,21:109 114. Sverdrup,L.E.,Krogh,P.H.,Nielsen,T.,Stenersen,J.(2002c):Relativesensitivityofthree terrestrial invertebrate tests to polycyclic aromatic compounds. Environmental ToxicologyandChemistry,21:19271933. Šuteková, E., Hilscherová, K., Hofman, J. (in press): Oxidative stress in enchytraeidae ( E. albidus, E. crypticus ) Establishment and optimalization of methods. Folia Facultatis scientiarumnaturaliumUniversitatisMasarykianaeBrunensis. Westheide,W.,BethkeBeilfuss,D.(1991):Thesublethalenchytraeidtestsystem:guidelines andsomeresults.ModernEcology:497508. Westheide,W.,BethkeBeilfuss,D.,Hagens,M.,Brockmeyer,V.(1989):Enchytraeidenals Testorganismen – Voraussetzungen fur ein terrestrisches Testverfahren und Testergebnisse.VerhandlungenderGesellschaftfürÖkologie,17:793798. Yeardley, R. B., Lazorchak, J. M., Gast, L. C., 1996. The potential of an earthworm avoidancetestforevaluationofhazardouswastesites.EnvironmentalToxicologyand Chemistry,15:1532–1537. Zachariae,G.(1967):DieStreuzersetzungimKöhlgartengebiet.In:Graff,O.,Satchell,J.E. (eds)ProgressinSoilBiology.Braunschweig,Amsterdam:490506.

26 2.Experimentalpartoftherigorousthesis

27 2.1.Toxicityofselectedorganicpollutants:toxaphene;shortchain chlorinatedparaffins andNPAHs(1,10phenanthroline,acridine, phenazine,quinoline)to Enchytraeus albidus /Enchytraeus crypticus 2.1.1. Abstract Effects of shortchain chlorinated paraffins (industrial chemicals), Toxaphene (insecticide)andfourNheterocyclicaromatichydrocarbonsacridine,phenazine,quinoline, 1,10phenanthroline(byproductsofcombustionprocesses)werestudiedinsoilchronictest (ERT).Thespecies Enchytraeus crypticus and/or Enchytraeus albidus wereusedasthetest organism and artificial soil as test substrate. The measured endpoints were reproduction (numberofjuveniles)andadultmortality.TheresultswereexpressedasECxandLCxvalues orNOECvalues,respectively. Thetestwithshortchainchlorinatedparaffinsdemonstratedtheverysimilarresultsfor bothenchytraeidspecies:LC 50( E.albidus, E.crypticus )couldnotbeestimated,EC 50(E.albidus) =6,027 mg/kg,EC 50(E.crypticus) =7,809mg/kg.Toxaphenedidnotshowanytoxiceffectfor E. albidus because the highest tested concentration 620 mg/kg corresponded to experimental NOEC valueformortalityandreproduction.ThetestswithNheterocyclicPAHsshowedrelatively thesameorderoftoxiceffectsforallcompound(LC 50 =1,6922,610mg/kg;EC 50 =796 1,412 mg/kg). The toxicity (nominal concentration in mg/kg) decreased in the rank for mortality and reproduction: 1,10phenanthroline > quinoline > phenazine ≥ acridine. After data recalculation on equilibrium porewater concentrations (ųmol/l), the reversed order of toxicity was obtained. These findings are in accordance with the data from literature describingahighertoxicityofmorelipophiliccompoundsinaquatictestswithinvertebrates 2.1.2. Introduction Thepersistentorganicpollutants(POPs)aredistributedinallmatrices(soils,sediments, air,limnic,seaandundergroundwaters,ice)worldwideduetotheirlongrangeatmospheric transport.Theyarestableinanenvironmentandhavetendencytoacummulationandtoxicity foraquaticandterrestrialorganismsincludinghuman(UNECE,1994).Fromthesereasons, theyhavebeenunderastrongattentionofmanyresearchteams.SomePOPshaveoccured naturallyinanenvironmentbutmanyofthemhavespreadthankstoanthropogenicactivities (production and using of industrial chemicals, drugs, pesticides, coal and waste burning, miningofcoal,metalsoroils,byproductsofindustryandcombustionproducts,accidents, etc.). POPs have usually tendency to sorption into the soil matter. Their high sorption is related to their structure, higher lipofilicity (log Kow), lower solubility in water and other physicochemicalproperties.Ontheotherhand,tothemechanismsoftheirlossingfromsoils belong the anaerobic and aerobic microbial degradation, abiotic degradation, volatilisation, leachingintothegroundwatersanduptake,bioaccumulationandmetabolisationbyterrestrial organisms(UNEP,1999). Generally,heavymetals,polycyclicaromatichydrocarbons(PAHs)andsomeselected pesticides (Lindane, Carbendazim) have been relatively frequently studied in enchytraeid ecotoxicology (see chapture 1.2.). However, some of organic pollutants (e.g. halogenated flameretardants,N,S,Oheterocyclicaromatichydrocarbons,pharmaceuticals)havenotbeen studied so far and only a few of works about their toxic effects have been published (see Table8inthechapture1.2.4.).

28 +++Theexperimentswithsomeoftheunexploredchemicalsareintroducedinthisrigorous thesis: 1. Shortchainchlorinatedparaffins(industrialchemicals), 2. Toxaphene(pesticide), 3. Polyaromatic hydrocarbons with one or two nitrogen in place of carbon atom (by productsofanthropogenicactivities). Themoreinformationaboutthetestedchemicalsaredescribedinthefollowinglists: Shortchainchlorinatedparaffins(SCCPs) Shortchain chlorinated paraffins (SCCPs) are synthetic chlorinated alkanes of chain lenghtC 10 toC 13 inclusive . Theyhavenever beenoccurednaturallyintheenvironment.They have been produced since thirties last century and belongs to industrial chemicals using as flame retardants, additives in paints, coatings, adhesives, sealant materials or in a boot industry (NICNAS, 2001). They replaced the polychlorinated biphenyls (PCBs) in which the toxicity hadconfirmed(e.g.Johanssonetal.,2001). Recently,shortchainchlorinatedparaffinswerewroteup the list of prior persistent pollutants and the list of carcinogenchemicals(Europian Commision, 2002;UNEP, 2006). The physicalchemical properties of SCCPs are affected by different scale of chlorination,itslogKowmayrangedfrom5to12.6(Tommyetal.,1998).SCCPsareableto longdistanceatmospherictransport,strongsorptionintosolidmatricesassoils,sedimentsor sewage sludges and have also bioaccumulation and toxicological potencial (Europian Commision,2002). SCCPslevelswereanalysedinsomeEuropeanwatersandsediments(EURAR,1999). Theconcentrationreachedupthetensmg/kginsedimentsatsomeindustriallocalitiesortens mg/kgofdrymassofsewagesludgefromwastewaters.LevelsofSCCPswereevaluatedby usingtheregionalmodelinnatural(10.8g/kg)orinfieldandindustrialsoils(11.5g/kg) (EURAR,2000). ThetoxicityofSCCPstoaquaticorganismsisrelativelywellknown(EURAR,2000). However, analogous to toxaphene, there is a limited data on the toxicity of SCCPs to soil enchytraeidsbecauseonlyonearticleabouttoxicityofshortchainchlorinatedparaffinsand the other two chlorinated flame retardants to Enchytraeus crypticus has been publicated (Sverdrupetal.,2006). Toxaphene Toxaphene (CAS: 800352) is pesticide (insecticide) consisting of more than 670 congeners, mainly polychlorinated bornanes. Its formula is C 10 H10 Cl 8 and is also known like camphechlor, chlorocamphene, polychlorcamphene or chlorinated camphene. Toxaphene belongs to prior persistent organic pollutants. Its industrialproductionstartedinthe1945andwasveryfrequentlyused inprotectionofcotton,fruit,vegetable,cornorasacaricid(ATSDR,1998).Itwasapplicated inconcentration14kg/haintosomeagriculturalsoils(HSDB,2003). ToxaphenewasalsoveryoftenusedinthelastCzechoslovakia.Itwasthethirdmost usedpesticideinourRepublicbeforeitwasbanned.Pilotscreeningshowedconcentrations

29 below 1.6 ppb of toxaphene in arable or meadow soils with lower organic matter but the levels of toxaphene were detected up to 10 ppb in forest soils from Czech mountains contaminatedduetothelongdistanceatmospherictransport(Kosubováetal.,2003). Toxaphene distribution is worldwide as well as SCCPs due to the mentioned air transport. It was detected in ice and fat of arctic animals far from the original sources (Bidlemannetal.,1989). Toxapheneisalsoverypersistentinsoil,itshalflifecouldupto14 years(ATSDR,1998).That'sjustittheusingoftoxaphenewasbannedinmanycountriesdue to its high persistence in an environment, accumulation and toxic effects (nephrotoxicity, neurotoxicity, hepatotoxicity, effects on reproduction, mutagenity, endocrine toxicity) for mammals, birds, fishes or the other aquatic organisms (UN ECE 1994; ATSDR, 1998). In addition,toxapheneisalsopossiblecarcinogenforhuman(Group2B,IARC,2001). However, toxaphene has never been studied under laboratory test design with soil invertebratesandthedataaboutitspossibletoxicitytosoilorganismsarenotavailable. Npolycyclicaromatichydrocarbons(NPAHs) Although most research on polycyclic aromatic compounds (PACs) focused on homocyclic compounds, twothirds of the known organic compounds are heterocycles (AdrianetSuflita,1994).Nitrogencontainingpolycyclicaromatichydrocarbons(NPAHs),in whichoneormorecarbonatomhasbeenreplacedbyanitrogenatom,aresuchafamilyof heterocyclic compounds (Bleeker et al., 2003). Both, heterocyclic and homocyclic hydrocarbons tend to occur in a strong association in the environment due to same sources, in which belong incomplete combustion of fossil fuels, spills, refining, storage, woodpreservation,fires(AdamsetGiam,1984),pesticideuse(KuhnandSuflita,1989).In addition,NPAHshavebeenalsooccurednaturallye.g.asalkaloids(Kaiseretal.,1996). NPAHsareubiqitousandweredetectedinallmatrices(Jonesetal.,1989;Sandersetal. 1993; Kawamura et al., 1994; Van Genderen et al., 1994). However, concentrations of NPAHshavebeenpredominantlymeasuredinair(WildandJones,1995,Chuangetal.,1991) or in waters and sediments (Pereira et al., 1987; van Gender et al., 1994; Osborne et al., 1997).Strongaccumulationofthesecompoundswasalsodescribedforsoils(WHO,2004),in whichtheconcentrationsofPAHsandNPAHsmixturesmayreachseveraltensorhundreds mg/kgatindustrialsites. Thesubstitutionofanitrogenatominthefusedringstructurehasalargeeffectonthe physical/chemical properties of Nheterocycles. NPAHs are, for instance, more polar and bettersolubleinwaterincomparisonwiththeirparentalcompounds(Dijkmanetal.,1997; Pearlmanetal.,2002). InspiteofthatNPAHsarepresentintheenvironmentinlevelsupto110%oftheir homocyclic analogues (Nielsen et al., 1999), the toxic effects of both, heterocyclic and homocyclic compounds are comparable (Bleeker et al., 2003). The effects of heterocyclic aromatic hydrocarbons in water environment have been relatively well described (e.g. Bleeker,1999;deVoogtetal.,1999;Feldmanováetal.,2006).Inadditiontonarcosis,PACs can negatively influence the reproduction (Van Brummelen et al., 1996) and development (Bleekeretal.,2003)orevoketeratogenity(e.g.MillemannetEhrenberg,1982;Warshavsky, 1992,Burýškováetal.,2006). In addition, the PACs may be transformed some abiotic and biotic processes. Biotransformationusuallyleadtoexcretionofproductsfrombodybutitwasalsofoundthat someproductsofmetabolisationmaybemorereactiveandtoxicthanparentalhydrocarbons (Warshavsky,1992).ItwasalsofoundthattheUVradiationphotoenhancedtoxicityofsome Nheterocycliccompoundsinthewaterenvironment(e.g.Bleekeretal.,2003).Further,the

30 genotoxic potencial of Nheterocycles and their metabolits has been also recorded in the bacterial Mutatox test (e.g. Warshavsky, 1992; Bleeker, 1999) and some studies refered to carcinogenic activity of some Nheterocyclic compounds (e.g. Hirao et al., 1976; Warshawsky,1992). Incontrasttoaquatictoxicology,rarestudiesdescribingeffectsofseveralselectedNPAHs werepublishedforsoilmicroorganisms(Sverdrupetal.,2002a),terrestrialplants(Sverdrupet al., 2003; Pašková et al., 2006), springtails (Sverdrup et al., 2001; Bleeker et al., 2003), earthworms (Sverdrup et al., 2002c), enchytraeids (Sverdrup et al., 2002b; Bleeker et al., 2003),andsnails(Sverdrupetal,2006).However,exceptthestudyofPašková(Paškováet al., 2006), compounds containing only one nitrogen atom in place of inring carbon atom (mainlyacridine,quinolineandphenanthridineoncetime)havebeentestedinthementioned studies.

Tested NPAHs

Some physicochemical properties of tested compounds (Quinoline, Acridine, Phenazine,1,10phenanthroline)aredescribedinTable13.

Table 13. The tested chemicals, their structure and their main physico-chemical properties: molecular weight (Mw), water solubility (Sw), octanol-water partitioning coefficient (log Kow), organic carbon-water partitioning coefficient (log Koc), soil-water partitioning coefficient for our artificial soil (Kd).

1 Sw 1 2 3 Chemical Structure Mw LogK ow LogK oc Kd (mg/l)

Quinoline N CAS:99225 129.16 6,110 2.03 1.74 2.41

N Acridine 179.22 38.40 3.40 2.85 33.98 CAS:260946

Phenazine N CAS:92820 180.21 16.00 2.84 2.40 12.06 N

1,10 Phenanthroline N 180.21 2,690 1.78 1.54 1.66 CAS:66717 N

1 PHYSPROPDatabase:http://www.syrres.com/esc/physdemo.htm 2 logK oc wasestimatedbyformula:logK oc =0.1+0.81×log Kow (Sabljicetal.,1995) 3 Kd wascalculatedbyformula:K d=K oc ×f oc ,wheref oc isthefractionoforganiccarboninourartificialsoil (0.048 ).

31 2.1.3.Materialsandmethods Experimentalsoil Artificial soil (OECD, 1984) was used as experimetal soil in tests with all organic pollutants.Thissoilconsistof70%sand,20%caolineclay,10%sphagnumpeat(pHvalue wassetto6.0±0.5byCaCO 3). Species Enchytraeus crypticus Westheide & Graefe, 1992 and/or Enchytraeus albidus Henle, 1837 were used in the experiments. The enchytraeids are permanently maintained at RECETOX(Brno,CzechRepublic)andduringthetime,thebreedingandtestcondition of the both species were optimalized (Holubářová, 2004; Kozlová, 2006; Bezchlebová et Kobetičová,unpublicated).Finally, E. crypticus hasbeenbreedinginanartificialsoiland E. albidus (originalbreedingsfromGermany)inamixofgardensubstrateandarablesoil.Dried oatflakeswereaddedweeklyonthecoverofthebreedingsoilwithbothspecies. Chemicalsandspikingprocedure Thefollowingchemicalswereusedintheindividualtestswithenchytraeids: 1. Chlorinated paraffins (labeled as C12, 64 % chlorine content by weight; a viscous honeylike liquid) providing by Novácké závody Inc. (Slovakia) as an industrial product, 2. Toxaphenestandard(SigmaAldrich,Ltd.,CzechRepublic), 3. Acridinestandard(SigmaAldrich,Ltd.,CzechRepublic), 4. Quinolinestandard(SigmaAldrich,Ltd.,CzechRepublic), 5. Phenazinestandard(SigmaAldrich,Ltd.,CzechRepublic), 6. 1,10phenanthrolinestandard(SigmaAldrich,Ltd.,CzechRepublic). All chemicals were dissolved in acetone (HPLC purity; Chromservis Inc., Czech Republic) to obtain the highest test concentrations and then the appropriate dilutions were prepared.Thesolutionsweremixedwithartificialsoil(1mlperatestvessel).Thetestvessels werekeptinthefumehoodfor24hourstoevaporatethesolvent.Then,spikedandcontrol soilwasmoistenedbydestilledwateron50%ofitsWHC. Testdesign The rangefinding tests with all tested chemicals were done by Holubářová, the appropriateproceduresandresultsarewritteninherdiplomathesis(Holubářová,2004).In terms of the results, the test concentration in final tests were proposed. The final test was performedaccordingtonorm(OECD,2004).Thedifferenciesamongtheindividualtestsare describedinTable14. Fivereplicatesforcontrol(withoutchemical)+5replicatesforacetone+5replicates foreachconcentrationwasprepared.Atthestartoftest,dryoatflakes(food)wasmixedwith soiland10adultswithclitellumwereintroducedintothetestvessel.Thetestvesselswere closedbylidandwerestoredby 20±2 0Candunder16/8light–darkcycle.Thefoodwas addedeveryweekintothesoil.Attheendoftest,thewormswerekilledbyethanol(5ml) and coloured by Bengal red. The next day, the survival of adults and number of juveniles weremanuallycounted.

32 Table 14. The summary of toxicological tests with E. albidus or E. crypticus :test chemicals, enchytraeidspecies,testdurationandtestconcentration. Chemical Species Testduration Testconcentration(mg/kg) (days) SCCPs E. albidus 42 500;1,000;3,000;6,000;10,000 SCCPs E. crypticus 28 500;1,000;3,000;6,000;10,000 Toxaphene E. albidus 42 10;25;50;100;250;500;1,000 4individualNPAHs E. crypticus 28 100;500;1,000;1,500;2,000;2,500 Statisticalanalyses ProgramSTATISTICA6.0software( StatSoft,Inc.,2004 )wasusedfordataevaluation. Noobservedeffectconcentration(NOEC)wasdeterminedbyanalysisofvariance(ANOVA) andDunnett’sprocedureata5%significantlevel.Theconcentrationatwhichx%ofadult survivalwasobserved(LC x)andx%effectconcentrationforthereproductiveoutput(EC x) werecalculatedaccordingtoHaanstraetal.(Haanstraetal.,1985)usinglogisticregression analysis. 2.1.4. Resultsanddiscussion Shortchainchlorinatedparaffins The results indicate that SCCPs did not affect enchytraeid survival for species Enchytraeus albidus . The 30% mortality was occured in test with E. crypticus. From this reason,LC 50 valuescouldnotbeestimated.Reproductionwasmoresensitiveendpointthan survivalofadults.TheEC 50 =6,027(3,5768,478)mg/kgand7,809(4,38111,237)mg/kg wereestimatedfor E. albidus and E. crypticus ,respectively.

SCCPs - E. albidus

10 50 8 40 n n n n o o o o i i i i l l l l t t 6 30 t t a a a a c c c c v v v v i i u u i i u u v v v v d d d d r r r r 4 20 o o o o u u u u r r r r p p p p S S S S e e 2 10 e e R R R R 0 0 0 500 1000 3000 6000 10000

Concentration mg/kg ( ( ) ) ( ( ) ) Survival Number of juveniles

Figure 1 . Toxicity test with Shortchain chlorinated paraffins (SCCPs) and enchytraeid species E. albidus .Theresults(adultmortalityandreproduction=numberofjuveniles)areexpressedasmean values±standarderror(SE),n=5replicates .

33 Inconclusion,theusedspeciesweresimilarlylowsensitivetoSCCPsexposureinthe artificialsoil.Inaddition,theresultsareinagoodaccordancewiththedatafromliterature (Sverdrupetal.,2006a).TheytestedSCCPsinanagriculturalsoil(1.6%oforganiccarbon) withspecies E. crypticus .Similarly,thehighesttestconcentration(1,000mg/kg)hasnotany effectonenchytraeidsurvivalandreproductionintheirtest(Sverdrupetal.,2006a). SCCPs - E.crypticus

10 500 8 400 n n n n o o o o i i i i l l l l t t t 6 300 t a a a a c c c c v v v v u u i i u u i i v v v v d d d d r r r r 4 200 o o o o u u u u r r r r p p p p S S S S e e e 2 100 e R R R R 0 0 0 500 1000 3000 6000 10000

Concentration mg/kg ( ( ) ) ( ( ) ) Survival Number of juveniles

Figure 2 . Toxicity test with Shortchain chlorinated paraffins (SCCPs) and enchytraeid species E. crypticus .Theresults(adultmortalityandreproduction=numberofjuveniles)areexpressedasmean values±standarderror(SE),n=5replicates . ItspossiblethatlowtoxicityofSCCPstoenchytraeidsisinfluencedbytheirrelatively highmolecule(Mw=320500),theirlowwatersolubility(0.150.47mg/l)andhighsorption into soil matter. In any case, SCCPs most probably does not cause negative effects for enchytraeidsinsoils. Toxaphene The results of test with toxaphene are showed in the figure 3. Adult survival and reproduction (number of juveniles) were not markedly affected in the highest test concentrationandLC 50 /EC 50 valuescouldnotbeestimated.Nevertheless,theNOECvalues (620mg/kg)forboththeendpointswereestimatedbyANOVAanalysisatleast.Thespecies Enchytraeus albidus was similarly unsensitive to tested pesticide as well as the second enchytraeidspecies E. crypticus (seeTable2intheAppendixII.)(thetoxaphenetestwith E. crypticus wasmadebyDr.Bezchlebováandfromthisreason,theresultsfromthisexperiment arenotpresentedinthechapture„Resultsanddisccusion“ofmyrigorousthesisbuttheyare only included in the appropriate article – see Appendix II.). Unfortunatelly, there are no literaturedataontoxaphenetoxicitytosoilenchytraeidsunderlaboratorytestconditionand hence,thedataonenchytraeidsarecomparedwiththeresultsfromtheotherinvertebratetests fromthementionedarticle.

34 Toxaphene - E. albidus

10 50

8 40

6 30 4 20 urvival S

survival number of juveniles eproduction

2 10 R

0 0 0 10 25 50 100 250 500 1000

Concentration mg/kg ( ( ) ) ( ( ) ) Figure 3 . Toxicity test with Toxaphene and enchytraeid species E. albidus . The results (adult mortalityandreproduction=numberofjuveniles)areexpressedasmeanvalues±standarderror(SE), n=5replicates . Thebothenchytraeidsspecieswereunsensitivetotoxapheneexposureincomparisonto theothertestinvertebratesasspringtails,earthwormsornematodes(seeAppendixII.).The sensitivity of invertebrates decresing in the order: springtails > earthworms > nematodes > enchytraeids.Thepossibleexplanationfortheresultscouldbe: 1. Toxapheneisaninsecticidewithmorespecificmodeoftoxicaction(neurotoxicity)and thatiswhyspringtails(Arthropoda:Hexapoda)couldbemoresensitivethanworms. 2.Ithasbeenshownthatarthropodsareabletometabolisepollutantsbetterthansoilworms (vanBrummelenandvanStraalen,1996)whichhavehighertendencytobioaccumulation (Jager et al., 2000) and biotransforming animals could be more sensitive to than bioaccumulatingones(VanStraalen,2004). 3.Lowerbioavailabilityoflowsolubletoxaphenetosoilenchytraeidsviasoilporewater however,thesepossibilitiesdidnotexplainthehighertoxicityoftoxaphenetoearthwormsor nematodes. ThesensitivityofnematodeswouldhavebeendecreasedifwehadusedtheOECDsoil innematodetestaswellasinenchytraeidtest.Theusednaturalsoilwiththelowercontentof organic matter and different design of nematode test could finally increased bioavailability andtoxicityoftoxaphenetonematodewormsincomparisontoenchytraeidsinOECDsoil withahighercontentoforganicmatter(seeTable2inAppendixII.).Ontheotherhand,the varioustoxicitybetwenoligochaetes(earthwormsversusenchytraeids)couldnotbeexplained satisfactory. In some studies (Römbke et Moser, 2002), the sensitivity of earthworms and enchytraeidstovariouschemicalswascomparablebutintheothers,earthwormsweremore sensitivethantheirsmallerrelatives(Sverdrupetal.,2002b).There,oneexplanationismaybe disposable: smaller enchytraeids are in very close contact withsoilporewatersimilarlyas nematodes(AchazietvanGestel,2003)butbiggerearthwormsmayuptakemoretoxaphene viaingestionofcontaminatedsoilparticlesandfood(horsemanure)duetoahighersorption of toxaphene into solid phase (organic matter) in comparison to soil pore water. These hypothesis are partly supported by a field study, where the decreasing of abundance was

35 attributedtoindirecteffectvialackoffood(thisaspectwasnotrelevantinourstudybecause allorganismshadenoughfoodduringtheindividualtestperiods)ortoxapheneexposurevia ingestionorasensitivityofstudiedorganisms(Bäumleretal.,1978inDiddenetRömbke, 2001). Npolycyclicaromatichydrocarbons(NPAHs) Thedoseresponsecurvesweredifferentfortheindividualcompounds(seeFigure47). Theeffectofcompoundsonadultsurvivalwasinthesameorderofmagnitude,nevertheless theirtoxicitydecreasedintherank:1,10phenanthroline>quinoline≥phenazine≥acridine. The reproduction was more sensitive endpoint than survival of adults. The toxicity of compoundsdecreasednearlyinthesamerankasatsurvival:1,10phenanthroline≥quinoline >phenazine>acridine.TheLC 50 andEC 50 valuesaredescribedintheTable15. Table15 . Summary results of the toxicity of NPAHs: survival (LC 50 ) and reproduction (EC 50 ) of soil invertebrates and their 95% confidence intervals (in parentheses). Compound LC 50 (mg/kg)* LC 50 (mol/l)** EC 50 (mg/kg)* EC 50 (mol/l)** Quinoline 2093 6.72 990 3.18 (2012 - 2173) (7441237) Acridine 2610 0.43 1412 0.24 (2189 - 3031) (11871638) Phenazine 2488 1.15 1073 0.50 (2377 - 2599) (9161229) Phenanthroline 1692 5.66 796 2.66 (1433 - 1951) (653939) * values based on nominal concentrations (mg/kg soil dry weight). ** LC 50 and EC 50 values recalculated on concentrations in soil pore-water according to equilibrium partitioning method: L(E)Cwater (mmol/L) = L(E)Csoil (mg/kg) / Mw / Kd (Di Toro et al., 1991). Quinoline - E.crypticus 10 1000 n n n n o o o o l l l l i i i 8 800 i t t t t a a a a c c c c v v v v i i i i u u u 6 600 u v v v v d d d d r r r r o o o o u u u u r r r 4 400 r S p p S S p S p e e e e R R R 2 200 R 0 0 0 100 500 1000 1500 2000 2500 Concentration mg/kg ( ( ) ) ( ( ) ) Adult survival Reproduction

Figure 4. Toxicity test with Quinoline and enchytraeid species E. crypticus . The results (adult mortalityandreproduction=numberofjuveniles)areexpressedasmeanvalues±standarderror(SE), n=5replicates .

36 Acridine - E.crypticus 10 500 n n n n o o o o i i i 8 400 i t t t t l l l l c c c c a a a a u u u u v v v v d i d i d i d i 6 300 o v o v o v o v r r r r r r r r p u p u p u p u 4 200 e e e e S S S S R R R R 2 100 0 0 0 100 500 1000 1500 2000 2500 Concentration mg/kg ( ( ) ) ( ( ) ) Adult survival Reproduction Figure 5. Toxicity test with Acridine and enchytraeid species E. crypticus . The results (adult mortalityandreproduction=numberofjuveniles)areexpressedasmeanvalues±standarderror(SE), n=5replicates . Phenazine - E.crypticus 10 500 n n n n o o o o i i i 8 400 i l l l l t t t t a a a a c c c c v v v v u u u u i i i i 6 300 d d d d v v v v r r r r o o o o r r r r u u u u 4 200 p p p p S S S S e e e e R R R 2 100 R 0 0 0 100 500 1000 1500 2000 2500 Concentration mg/kg ( ( ) ) ( ( ) ) Adult survival Reproduction Figure 6. Toxicity test with Phenazine and enchytraeid species E. crypticus . The results (adult mortalityandreproduction=numberofjuveniles)areexpressedasmeanvalues±standarderror(SE), n=5replicates .

37 Phenanthroline - E.crypticus 10 500 n n n n o o o o i i i 8 400 i t t t t l l l l c c c c a a a a u u u 6 300 u v v v v d d d d i i i i o o o o v v v v r r r r r r r r p p p 4 200 p u u u u e e e e S S S S R R R 2 100 R 0 0 0 100 500 1000 1500 2000 2500 Concentration mg/kg ( ( ) ) ( ( ) ) Adult survival Reproduction Figure 7. Toxicitytestwith1,10phenanthrolineandenchytraeid species E. crypticus . The results (adultmortalityandreproduction=numberofjuveniles) are expressed as mean values ± standard error(SE),n=5replicates . Theeffectsofphenazineand1,10phenanthrolineonsoilenchytraeidshaveneverbeen studied.Thus,comparisonwiththeliteraturedataispossibleonlyforacridineandquinoline, which have been tested in two studies among some other PAHs (Sverdrup et al. 2002b; Bleeker et al., 2003). It was found that acridine has lower toxic effects than quinoline (Bleeker et al., 2003) and this is in agreement with our data (compare Table 15 and 16). Toxicitydescribedinthisholandwork(Bleekeretal.,2003)wasalsohigherthantoxicityin ourstudy.Thismightberelatedtothelowerorganicmattercontentinnaturalsoilusingin Bleker´s study. Surprisingly, the results from the second study (Sverdrup, 2002b) were relativelysimilartooursbutreasonforthatremainsunclear(toxicityfromthisstudyshould havebeenthehighestincomparisonwithBleker´sandourresultsduetothelowestorganic carboncontentofagriculturalsoilseeTable16). Table16. Initialsoilconcentrations(mg/kg)ofacridineandquinolineatwhich50%mortality(LC 50 ) and50%inhibitionofreproductionincomparisontocontrol(EC 50 )with95%confidentintervalsfor E.crypticus ;originandcontentoforganiccarbon(%)oftestedsoilandliteraturesources. Species Compound LC 50 EC 50 Soil Source (95%CI) (95%CI) (origin,%OC) (mg/kg) (mg/kg) E. crypticus Acridine 3,600 1,500 Agricultural, Sverdrup (2,7004,000) (1,2001,600) 1.6%OC (2002b) E. crypticus Acridine 904* 172904* LUFA2.2, Bleekeretal. 2.3%OC (2003) E. crypticus Quinoline 526* 285* LUFA2.2, Bleekeretal. (243810) (257313) 2.3%OC (2003) *theoriginaldataareexpressedinmol/kg(Bleekeretal.2003). It is very well known that only bioavailable part of nominal concentration (mg/kg) applied to soil could cause toxicity to soil organisms. The bioavailability of compounds is influencedbymanyfactorsasstructureofchemicals,physicochemicalpropertiesofsoiland

38 surrounding environment, ageing and sensitivity of the test species (e.g. Lanno, 2003). No lessimportancehavealsotheexposurepathwaysfortheorganism(uptakeofchemicalinor on an organism). Enchytraeids could be exposed via contaminated food or soil pore water whereas contamination through a gase phase is mostly neglectable (Achazi et van Gestel, 2003). Theporewater exposure is treated as the most important route because oligochaete worms are in close contact with soil solution. The exposure via contaminated food raises significanceratherforcompoundswithhigherlipophilicity(LogKow over5.5)(Achaziet vanGestel,2003). All organic compounds are able to cause narcosis and many studies have shown that narcosisisstronglyrelatedtothelipophilicityofthecompound,expressedasthenoctanol water partitioning coefficient = Log Kow (e.g. Chen et al., 1997). These conclusions were confirmedinaquaticaswellasterrestrialenvironment(e.g.Sverdrupetal.,2002c;Bleekeret al., 2003). The effective concentration from soil tests of toxicity has been more often overestimatedoneffectiveconcentrationinsoilporewateraccordingtotheformula: L(E)C water (mmol/L)=L(E)C soil (mg/kg)/Mw/Kd, where: L(E)C water (mmol/L)=effectiveconcentrationinsoilporewater, L(E)C soil (mg/kg)=nominaleffectiveconcentrationinsoil, Mw=molecularweight, Kd=partitioningcoefficientsoilwater(overtakenfromSverdrupetal.,2002c). Theoretically, this concentration express the concentration of compound in soil pore waterthatmaycausethex%effectinsoil.However,theusingofthismethodassumesthat organismsareexposedexclusivelyviaporewaterinsoils.Theotherdisadvantageisthatthe finalvalue( LC or EC (mmol/L) )isstronglyinfluencedbyKdvalueofthetestsoil.Thisaspect makescomparisontheexperimentaldatawiththedatafromliteraturemoredifficultbecause the coefficients often differs in orders of magnitude due to the various physicochemical properties of used soils and different values of experimental or estimated Log Koc (e.g. Doucette,2003). Inmystudy,therecalculatedL(E)C water (mol/L)valuesshowedtheoppositetoxicityin comparison to primary results from the tests. Acridine was the most toxic compounds followed by phenazine, quinoline and the least toxic compound seemed to be 1,10 phenanthroline (see Table 15). It is obvious that the more lipophilic compounds may potenciallycausethehighertoxicityaswellasintheaquatictests(e.g.Bleekeretal.,2003). The similar conclusions were found also for soil nematodes in aquatic test of toxicity (Sochováetal.,inpress).Nematodespecies Caenorhabditis elegans wassensitivetotested compounds in this order (from the most toxic to the least toxic compound): acridine > phenazine>1,10phenanthroline>quinoline.Ontheotherhand,thenematodeLC50values (Sochováetal.,inpress)wereoneortwoordersofmagnitudehigherthantheoverestimated LC50valuesforenchytreidsinmytests.Thiscouldbecausedthedifferentdesignoftheboth tests (duration of test, species sensitivity, water or soil medium, etc.). The EC 10 = 1.77 (mol/L) from the other test with E. crypticus (Sverdrup et al., 2002b) showing lower toxicityforacridineintheirDanishnaturalsoilincomparisonwithtoxicityinartificialsoil frommystudy.However,thecomparisonofmydatawiththeonesfromacuteaquatictests with Chironomus riparius (Bleekeretal.,2003)showedalmostthesametoxicityforacridine (LC 50 value=0.4mol/L)(comparewithTable15)andaboutoneorderofmagnitudehigher for quinoline (LC 50 value = 37.9 mol/L) for larvae of chironomids(Bleeker et al., 2003). Theirresultsoftoxicityfor Chironomus riparius werealsoverywellinaccordancewiththe

39 EC 50 valuesfor E. crypticus inporewaterinLUFA2.2soilfromthesamestudy(Bleekeret al.,2003).Ontheotherhand,thetoxicityfromacuteorchronicaquatictestswithdaphnids showedhigherdifferenciesintoxicity(oneorderofmagnitudelower,higherorinthesame orderofmagnitude)asforenchytraeidsfordifferentNPAHs(Feldmannováetal.,2006).In addition,thesefindingsarerelevantfornarcosisbutNPAHsarethankstoincorporationof nitrogen atom candidates also for the more specific mode of toxic action. Nevertherless, NPAHs indicated rather narcosis to soil invertebrates in the present available studies (Sverdrupetal.,2002b,c;Bleekeretal.,2003).

40 2.1.5.References Adams,J.andGiam,C.S.(1984): Polynuclearazaarenesinwoodpreservativewastewater. EnvironmentalScienceandTechnology,18:391394. Adrian, N. R., Suflita, J. M. (1994): Anaerobic biodegradation of halogenated and nonhalogenated N, S, and Oheterocyclic compounds in aquifer slurries. EnvironmentalToxicologyandChemistry,13:15511557. ATSDR (1998): Toxicological profile for toxaphene. Atlanta, GA, Agency for Toxic SubstancesandDiseaseRegistry.CentreforDeseaseControlandPrevention. Bidleman, T. F., Patton, G. W., Walla, M. D., Hargrave, B. T., Vass, W. P., Erickson, P., Fowler, B., Scott, V., Gregor, D. J. (1989): Toxaphene and other organochlorines in ArcticOceanfauna:evidenceforatmosphericdelivery.Arctic,42:307–313. Bleeker, E. A. J. (1999): Toxicity of Azaarenes: Mechanisms and Metabolism. Disertation thesis.UniversiteitvanAmsterdam,Amsterdam,TheNetherlands.145pp. Bleeker,E.A.J.,Wiegman,S.,Droge,S.T.J.,Kraak,M.H.S.,vanGestel,C.A.M.(2003): ChronictoxicityofPACstoFolsomiacandidaandEnchytraeuscrypticus.In:Towards an improvement of the risk assessment of polycyclic (hetero)aromatic hydrocarbons. Report200301ofthedepartmentofAquaticEcologyandEcotoxicology,Universityof Amsterdam, Amsterdam, The Netherlands. Report 200304 of the Institute of EcologicalScience,VrijeUniversiteit,Amsterdam,TheNetherlands:2732. Burýšková,B.,Hilscherová,K.,Bláha,L.,Maršálek,B.,Holoubek,I.(2006):Toxicityand modulationsofbiomarkersinXenopuslaevisembryosexposedtopolycyclicaromatic hydrocarbons and their Nheterocyclic derivatives. Environmental Toxicolology, 21: 5901598. Chen, J. , Wang, L., Lu, G., Zhao, T. (1997): Quantitative structureactivity relationship studies of selected heterocyclic nitrogen compounds. Bulletin of Environmentall Contamination,andToxicollogy,58:372379. Chuang, J. C., Mack, G. A., Kuhlman, M. R., Wilson, N. K. (1991): Polycyclic aromatic hydrocarbons and their derivatives in indoor and outdoor air in an 8home study. AtmosphericEnvironmentPartBUrbanAtmosphere,25:369380. de Voogt, P., Bleeker, E. A. J., van Vlaardingen, P. A. L., Fernandéz, A., Slobodník, J., Wever, H., Kraak, M. H. S. (1999): Formation and identification of azaarene transformation products from aquatic invertebrate and algae metabolism. Journal of ChromatographyB:265274. Dijkman,N.A.,VanVlaardingen,P.L.A.,Admiraal,W.A.(1997):Biologicalvariationin sensitivitytonheterocyclicPAHs,effectsforacridineonsevenspeciesofmicroalgae. EnvironmentallPollution,95(10):121126. EU RAR (1999):Alkanes,C1013,Chloro,CASNo.:85535848,EINECSNo.:2874765. European Union Risk Assessment Report Publication: EUR 19010 EN. European ChemicalsBureau.Website:http://ecb.jrc.it/DOCUMENTS/ExistingChemicals/RISK ASSESMENT/REPORT/sccpreport010.pdf. European Commission (2000): European Commission Joint Research Centre. European UnionRiskAssessmentReport.Vol.4:alkanes,C10–13,chloro.EuropeanChemicals Bureau,Brussels,Belgium:166pp. Feldmannová,M.,Hilscherová,K.,Maršálek,B.,Bláha,L.(2006):EffectsofNheterocyclic polyaromatic hydrocarbons on survival, reproduction, and biochemical parameters in Daphniamagna.EnvironmentalToxicolology,21:425431. Gejlsbierg, B., Klinge, C., SamsoePetersen, L., Madsen, T. (2001): Toxicity of linear alkylbenzene sulfonates and nonylphenol in sludgeamended soil. Environmental ToxicologyandChemistry,20(12):27092716.

41 Haanstra, L., Doelman, P., Voshaar, J. H. O. (1985): The use of sigmoidal dose–response curvesinsoilecotoxicologicalresearch.PlantSoil,84:293–297. Hirao, K., Shinohara, Y., Tsuda, H., Fukushima, S., Takahashi, M., Ito, N. (1976): Carcinogenicactivityofquinolineonratliver. CANCERRES,36:329335. Holubářová,B.(2004):TestováníekotoxickéhovlivuPOPsnapůdníroupice(Enchytraeidae, Oligochaeta).Diplomovápráce,PřF,MU,Brno:70pp. HSDB (2001): Toxaphene toxicology data file number 1616 in Hazardous Substances Databank (HSDB). Toxicology data network TOXNET. National Medicine Library (NML). IARC(2001):Toxaphene.WorldHealthOrganisation,InternationalAgencyforResearchof Cancer,Geneva,Switzerland. Jager, T.,.Sanchez, F. A. A., Muijs, B., van der Welde, E. G., Posthuma, L. (2000): Toxicokinetics of polycyclic aromatic hydrocarbons in Eisenia andrei (Oligochaeta) usingspikedsoil.EnvironmentalToxicologyandChemistry,19:953961. Johansson,N.,Hanberg,A.,Bergek,S.,Tysklind,M.(2001):PCBinsealantisinfluencing thelevelsinindoorair.OrganohalogenCompounds,52:436440. Jones, K. C., Stratford, J. A., Tidridge, P., Waterhause, K. S., Johnston, A. E. (1989): Polynucleararomatichydrocarbonsinanagriculturalsoil;longtermchangesinprofile distribution.EnvironmentalPollution,56:337351. Kaiser, J. P., Feng, Y., Bollag, J. M. (1996): Microbial metabolism of pyridine, quinoline, acridine, and their derivates under aerobic and anaerobi conditions. Mikrobiology review,60:483498. Kawamura, K., Suzuki, I., Fujii, Y., Watanabe, O. (1994): Ice core record of polycyclic aromatichydrocarbonsoverthe400years.Naturwissenschaften,81:502505. Kosubová, P., Grabic, R., Holoubek, I. (2003): (HR)GCMS/MS analysis of toxaphene congenersinvariousmatricesfromtheCzechenvironment.Fresenius´Environmental Bulletin,12:13031308. Kozlová,K.(2006):Ekotoxicitavybranýchperzistentníchorganickýchpolutantůvpůdáchve vztahukjejichbiodostupnosti.Diplomovápráce,PřF,MU,Brno:83pp. Kraak, M. H. S., Ainscough, C., Fernández, A., van Vlaardingen, P. A. L., de Voogt, P., Admiraal,W.(1997):Shorttermandchronicexposureofthezebramussel( Dreissena polymorpha )toacridine:effectandmetabolism.Aquatictoxicology,37:920. Kuhn,E.P.andSuflita,J.M.(1989):Microbialdegradationofnitrogen,oxygenandsulphur heterocyclic compounds under anaerobic conditions. Environmental Toxikology and Chemistry,8:11491158. Millenmann, R. E., Ehrenberg, D. S. (1982): Chronic toxicity of the azaarene quinoline, a synthetic fuel component, to the pond snail Physa gyrina. Environmental Technology Letters,3(5):193198. NICNAS(NationalIndustrialChemicalsNotificationAndAssessmentScheme)(2001): Short chainchlorinatedparaffins(SCCPs).PriorityExistingChemicalAssessmentReportNo. 16.ISBN0642709831. Nielsen,T.,Feilberg,A.,Binderup,M.L.andTonnesen,J.(1999):ImpactofRegulationsof traffic Emissions on PAH Level in the Air. Environmental project report no. 447, DanishEnvironmentalProtectionAgency. OECD (Organisation for Economic Cooperation and Development) (1984): Earthworm, acute toxicity tests. OECD guideline for testing of chemicals, No. 207. OECD. Earthwormtoxicitytests,Paris,France. OECD (Organisation for Economic Cooperation and Development) (2004): Test no. 220. Enchytraeid Reproduction Test. OECD Guidelines for the Testing of Chemicals, OrganisationforEconomicCooperationandDevelopment.

42 Pašková,V.,Hilscherová,K.,Feldmannová,M.,Bláha,L.(2006):Toxiceffectsandoxidative stress in higher plants exposed to polycyclic aromatic hydrocarbons and their N heterocyclicderivatives.EnvironmentalToxicologyandChemistry,25:32383245. Pearlman, R. S., Yalkowsky, S. H., Banerjee, S. (1984): Water solubility of polynuclear aromaticandheteroatomiccompounds.J.Phys.Chem.Ref.Data,13:555562. Pereira,W.E.,Rostad,C.E.,Garbarino,J.R.,Hult,M.F.,1983.Groundwatercontaminationby organicbasesderivedfromcoaltarwastes.EnvironmentalToxicologyandChemistry, 2:283294. Römbke,J.,Moser,T.(2002):Validatingtheenchytraeidreproductiontest:organisationand resultsofaninternationalringtest.Chemosphere,46:11171140. Sanders, G., Jones, K. C., HamiltonTaylor, J., Dorr, H. (1993): Concentrations and depositionfluxesofpolynucleararomatichydrocarbonsandheavymetalsinthedated sedimentsofaruralEnglishlake,EnvironmentalToxicologyandChemistry,12:1567 1581. Sochová,I.;Hofman,J.;Holoubek,I.(inpress): Effectsofsevenorganicpollutantsonsoil nematode Caenorhabditis elegans .EnvironmentInternational. StatSoft I. (2004): STATISTICA (data analysis software system), version 6 /http://www.statsoft.com . Sverdrup,L.E.,Ekelund,F.,Krogh,P.H.,Nielsen,T.,Johnsen,K.(2002a):Soilmicrobial toxicity of eight polycyclic aromatic compounds: Effects on nitrification, the genetic diversityofbacteria,andthetotalnumberofprotozoans.EnvironmentalToxicologyand Chemistry,21:16441650. Sverdrup,L.E.,Hartnik,T.,Mariussen,E.,Jensen,J.(2006a):Toxicityofthreehalogenated flame retardants to nitrifying bacteria, red clover (Trifolium pratense), and a soil invertebrate(Enchytraeuscrypticus).Chemosphere,64:96103. Sverdrup,L.E.,Jensen,J.,Kelley,A.E.,Krogh,P.H.,Stenersen,J.(2002b):Effectsofeight polycyclic aromatic compounds on the survival and reproduction of Enchytraeus crypticus (oligochaeta, clitellata). Environmental Toxicology and Chemistry, 21: 109 114. Sverdrup,L.E.,Krogh,P.H.,Nielsen,T.,Kjaer,C.,Stenersen,J.(2003):Toxicityofeight polycyclic aromatic compounds to red clover (trifolium pratense), ryegrass (lolium perenne),andmustard(sinapsisalba).Chemosphere,53:9931003. Sverdrup,L.E.,Krogh,P.H.,Nielsen,T.,Stenersen,J.(2002c):Relativesensitivityofthree terrestrial invertebrate tests to polycyclic aromatic compounds. Environmental ToxicologyandChemistry,21:19271933. Sverdrup, L.E., De Vaufleury, A., Hartnik, T., Hagen, S. B., Loibner, A. P., Jensen, J. (2006b):Effectsanduptakeofpolycyclicaromaticcompoundsinsnails( Helix aspersa ). EnvironmentalToxicologyandChemistry,25:19411945. Tomy,G.T.,Fisk,A.T.,Westmore,J.B.,Muir,D.C.G.(1998):Environmentalchemistry andtoxicologyofpolychlorinatedn/alkanes.ReviewEnvironmentalContaminationand Toxicolology,158:53–128. UN ECE (1994): United Nations Economic Commision for Europe. Descriptions of the Substances Identified in the EN ECE LRTAP Conventoin 1994: Task Force on PersistentOrganicPolutants. UNEP (2006): Summary of shortchained chlorinated paraffins proposal. United Nations Environment Programme/POPS/POPRC.2/14. Stockholm Convention on Persistent OrganicPollutants,PersistentOrganicPollutantsReviewCommittee,Secondmeeting, Geneva,Switzerland:610..

43 van Genderen, J., Noij, T. H. M., van Leerdam, J. A. (1994): Inventory and toxicological evaluationoforganicmicropollutants.RIWAreport,AssociationofRhineandMeuse WaterSupplyCompanies(RIWA),Amsterdam,TheNetherlands. vanStraalen,N.M.(2004):Theuseofsoilinvertebratesinecologicalsurveyofcontaminated soils.In:VitalSoilFunction,ValueandProperties.DevelopmentsinSoilScience,29: 159197. Warshawsky,D.(1992):Environmentalsources,carcinogenity,mutagenicity,metabolismand DNAbindingofnitrogenandsulphurheterocyclicaromatics.JournalofEnvironmental ScienceandHealthC,10:171. Wild,S.R.,Jones,K.C.(1995):PolynucleararomatichydrocarbonsintheunitedKingdom environment–apreliminarysourceinventoryandbudget.EnvironmetalPollution,88: 91108. WHO (2004): Concise International Chemical Assessment Document 62: COAL TAR CREOSOTE.WorldHealthOrganisation,Geneve,Switzerland.

44 3.Conclusions

45 3. Conclusions The existing laboratory tests of toxicity with enchytraeids in water, agar and soil medium were introduced in this rigorous thesis. All these tests have some advantages and disadvantagesanddifferintheirusing(studyofreproduction,lethality,behavioralchanges, biomass, physiological and morphological symptoms, etc.) for an assessment of individual chemicalsormixturesandorforasoilqualityassessment(incaseofsoiltests). Thetoxicityofsixorganicpollutants(SCCPs,Toxaphene,fourNPAHs)withnotvery known toxic potencial to soil organisms were studied in the experimental part of rigorous thesis. All of them were tested in chronic test (ERT) with artificial soil under standard condition. The results suggested the different toxicity of pollutants depending on their structure and properties. The toxicity is described by NOEC, LCx or ECx values and discussed with available literature. The results were also presented on several scientist meetingsand mainly,theyareapartofthreeaccepted/submittedscientistpapersaboutthe toxicity of these organic pollutants on soil organisms (Ecotoxicology and Environmental Safety,ELSEVIER).

46 4. Appendices

47 Appendices AppendixI. Bezchlebová, Jitka, Černohlávková, Jitka , Kobetičová, Klára, Lána, Jan, Sochová, Ivana, Hofman, Jakub. Effects of shortchain chlorinated paraffins on soil organisms. EcotoxicologyandEnvironmentalSafety,67(2):206211.June2007. AppendixII. Bezchlebová, Jitka, Černohlávková, Jitka, Lána, Jan, Sochová , Ivana, Kobetičová, Klára , Hofman,Jakub .Effectsoftoxapheneonsoilorganisms .EcotoxicologyandEnvironmental Safety,Acceptedashighlightedarticle. AppendixIII. Kobetičová,Klára ,Bezchlebová,Jitka,Sochová,Ivana,Lána,Jan,Hofman,Jakub. Toxicity of four polycyclic aromatic nitrogen heterocycles (PAHs) to soil organisms. EcotoxicologyandEnvironmentalSafety,submitted.

48