Trabajo FOTOVOLTAICA

Total Page:16

File Type:pdf, Size:1020Kb

Trabajo FOTOVOLTAICA Máster en Eficiencia energética y Sostenibilidad en Plantas Industriales y Edificación SIH007 Fotovoltaica INSTALACIONES FOTOVOLTAICAS: LA TECNOLOGÍA EN LA PRÁCTICA Estela Rodríguez Alba Bellido Manuel Pastor Miguel Angel soria Sheila Peñarroja Raquel Cuesta 1 Máster en Eficiencia energética y Sostenibilidad en Plantas Industriales y Edificación SIH007 Fotovoltaica ÍNDICE 1. INTRODUCCION Y FABRICACIÓN 2. MERCADO DE LA INDUSTRIA FOTOVOLTAICA 3. COMPARATIVA PRECIOS ACTUALES DE LOS COMPONENTES 3.1 PANELES 3.2 INVERSOR 3.3 ESTRUCTRA 3.4 MATERIAL ELÉCTRICO 4. ANTECEDENTES Y COMPARATIVA DE PRECIOS SEGÚN BASES DATOS PREOC 5. ESTUDIOS COMBINADOS DE INSTALACIONES. 6. NUEVAS TECNOLOGÍAS 7. BIBLIOGRAFÍA 2 Máster en Eficiencia energética y Sostenibilidad en Plantas Industriales y Edificación SIH007 Fotovoltaica 1. INTRODUCCIÓN Y FABRICACIÓN La instalación fotovoltaica de conexión a red responde al sencillo esquema de la Figura 1 . El generador fotovoltaico está formado por una serie de módulos del mismo modelo conectados eléctricamente entre sí, y se encarga de transformar la energía del sol en energía eléctrica, generando una corriente continua proporcional a la irradiancia solar que incide sobre ellos. Sin embargo, no es posible inyectar directamente la energía del generador fotovoltaico en la red eléctrica precisando ser transformada en corriente alterna para acoplarse a la misma. Matriz de paneles Inversor Red eléctrica Figura 1 Esta corriente se conduce al inversor que, utilizando la tecnología de potencia, la convierte en corriente alterna a la misma frecuencia y tensión que la red eléctrica y de este modo queda disponible para cualquier usuario. La energía generada, medida por su correspondiente contador de salida, se venderá a la empresa distribuidora tal y como marca el Real Decreto 1578/2008, de 26 de septiembre en su adjudicación de la Convocatoria a la que se Prerregistra la instalación. Asimismo, la instalación cuenta con un contador de entrada para descontar posibles consumos de la instalación (stand-by nocturno del inversor, principalmente) De esta forma, la instalación de conexión a red se plantea como una inversión, facturándose la energía de la instalación fotovoltaica de forma independiente a la factura de consumo de la nave, por lo que es falsa la creencia de que sólo se vende a la compañía eléctrica el excedente de producción. 3 Máster en Eficiencia energética y Sostenibilidad en Plantas Industriales y Edificación SIH007 Fotovoltaica MATERIA PRIMA La materia prima para la fabricación de la células fotovoltaicas más utilizadas actualmente es el silicio.El silicio es el material más abndante en la Tierra, después del oxígeno, dado que la combinación de ambos formas el 60% de la corteza terrestre. El slicio utilizado actualmente en la fabricación de las células que componen los máodulos fotovoltaicos se presenta en trs formas diferentes. - Silicio monocristalino.Un único cristal.Igual red cristalina en todo el material y muy pocas imperfecciones.complicado y costoso. Mayor eficiencia de conversión de luz en energía eléctrica. - Silicio policristalino, la red cristalina no es la misma en todo el material. Proceso más barato con rendimientos ligeramente inferiores. - Silicio amorfo, no hay red cristalina y se obtiene un rendimiento inferior a la composición cristalina, pero además de su bajo coste, es muy absorvente por lo que basta una fina capa para captar la luz solar. Rendimientos actuales de las diferentes tecnologías de módulos solares en fase de comercialización. 4 Máster en Eficiencia energética y Sostenibilidad en Plantas Industriales y Edificación SIH007 Fotovoltaica TIPO DE SILICIO EFICIENCIA Monocristalino 14-18% Policristalino 12-14% Amorfo <10% Actuamente existen otras trecnologías o procesos de aceptable rendimiento no todas basadas en el silicio, que se encuentran en fase de desarrollo en laboratorio o iniciando su fabricación en pequeñas plantas. Es el caso del Teluro de cadmio, Arsenio de galio, células bifaciales El sector fotovoltaico se caracteriza por una larga cadena de actividades desde la extracción de la materia prima (silicio) hasta la explotación de la instalación de producción. Existen distintos procesos productivos , basados tanto en el polisilicio como en otros materiales. El proceso más común (ASIF 2008) Cadena de valor de la industria solar fotovoltaica. ASIF 5 Máster en Eficiencia energética y Sostenibilidad en Plantas Industriales y Edificación SIH007 Fotovoltaica Fabricacion de un lingote Fabricacion de un lingote El proceso se inicia con la extracción del silicio metalúrgico desde su matera prima, la harina de sílice.Este material se purifica para producir un silicio metálico con propiedades semiconductoras.El proceso continua con la producción de lingotes que se cortan en capas finas u obleas. El precio de los lingotes puede rondar los 97 euros por kilo. El proceso (monocristalino o policristalino) y el tamaño del lingote son factores críticos para determinar la cantidad de energía pproducida por cada oblea una vez trasnformada en célula. Las obleas son sometidas a varios tratamientos químicos e impresión para trasnformarlas en células. Un módulo está compuesto de células. Una instalación solar fotovoltaica se compone de muchos otros elementos además de los módulos. Estos elementos pueden constituir un 40% de los costes totales de la instalación.. 2. MERCADO DE LA INDUSTRIA FOTOVOLTAICA La industria solar es una industria global. Actualmente el negocio de fabricación de polisilicio está controlado, en su mayor medida por grandes grupos empresariales que además de suministrar al sector fotovoltaico, también proveen al sector de los semiconductores. La escala mínima eficiente para este negocio se sitúa entre 125 y 250 MWp equivalentes de polisilicio, lo que ha resultado que la industria de fabricación haya estado desconectada de la producción de polisilicio. 6 Máster en Eficiencia energética y Sostenibilidad en Plantas Industriales y Edificación SIH007 Fotovoltaica Según avanzamos por la cadena de valor, la industria del polisilicio se va fragmentando progresivamente. La estructura del mercado de lingotes y obleas está transformándose rápidamente con el crecimiento de las dimensiones de las células. La tendencia hacia células de mayor tamaño y menor espesor implica una creciente necesidad de inversión para adptar el proceso productivo y así consolidad del sector. El sector de la fabricación de células , tiende a diversificarse, ya que la escala óptima para la fabricación de células se ha mantenido estable al mismo tiempo que se producía un crecimiento significativo de la demanda. Las instalaciones más avanzadas tiene capacidades de producción que se sitúan entre 40 y 60 MWp/año, pero el negocio de fabricación de módulos ha tenido una escala óptima muy inferior entre 3 y 10 MWp/año.(datos referidos por ASIF 2008) La base industrial local española se ha centrado en la fabricación de células y módulos, a excepción de Isofotón, empresa que también está activa en lña fabricasción de obleas. La industria española, está inmersa en un proceso de integración verticalcompleta, para poder reducir la depedencia del exterior a través de proyectos empresariales en la producción de silicio. Esta integración dará mayor estabilidad de las compañías españolas ante posibles escenarios futuros de precios de polisilicio. Actividad empresarial desarrollada en España según ASIF 2009 7 Máster en Eficiencia energética y Sostenibilidad en Plantas Industriales y Edificación SIH007 Fotovoltaica En España el apoyo normativo ha permitido dar un salto cualitativo durante los últimos años, en 2008 se pusieron 2661 MW, más los 692 MW en años anteriores (datos ASIF) Este crecimiento ha posibilitado el desarrollo sostenido de la industria nacional. 8 Máster en Eficiencia energética y Sostenibilidad en Plantas Industriales y Edificación SIH007 Fotovoltaica • DEMANDA DE POLISILICIO En el 2003, debido a la demanda del mercado alemán, los precios de este material, básico para los generadores solares experimentaron na fuerte subida. Esto propició a que entraran nuevos empresas decidieran entrar el sector , así como las existentes incrementaron su capacidad de fabricación. Entonces se abastecía del polisilicio que sobraba después que se hubiera cubierto la demanda de la industria electrónica, en el 2008 la mayor parte de la materia prima se destinó a la producción de paneles solares. Distribución de la demanda global de polisilicio 2008 ( Photon internacional) Y este segmento, sigue estando concentrado por los cinco primeros fabricantes, que controlan más de un 50%, de la producción global. 9 Máster en Eficiencia energética y Sostenibilidad en Plantas Industriales y Edificación SIH007 Fotovoltaica Mercado mundial de polisilicio según datos 2010 ASIF. La bajada del polisilicio, obliga a la industria a a renegociación de contratos de suministro del polisilicio a lrga plazo, ya que sus precios eran superiores a los de contado y por tato no eran competitivos. Hasta el 2008, los precios se multilicaron por cuatro, en contratos de suministro a largo plazo y por diez en el mercado de pago al contado. A finales del 2008, hay un descenso progresivo. 10 Máster en Eficiencia energética y Sostenibilidad en Plantas Industriales y Edificación SIH007 Fotovoltaica Evolucion del precio del polisilico en el mercado al contado. La caída del precio, debido al incremento de la oferta y a la bajada de la demanda, tras la temporada de verano del 2008, esto spone un descenso gande de preciosen toda la cadena de valor industrial solar. Otros factores
Recommended publications
  • Contact: Kevin Thornton for IMMEDIATE RELEASE 1-800-331-0085
    Contact: Kevin Thornton FOR IMMEDIATE RELEASE 1-800-331-0085 WAL-MART ANNOUNCES SOLAR POWER PILOT PROJECT Pilot Project marks major step toward its goal of being supplied by 100 percent renewable energy BENTONVILLE, Ark., May 7, 2007 – Today Wal-Mart Stores, Inc. (NYSE:WMT), announced a major purchase of solar power from three solar power providers, BP Solar, SunEdison LLC, and PowerLight, a subsidiary of SunPower Corporation, for 22 combined Wal- Mart stores, Sam’s Clubs and a distribution center in Hawaii and California. As part of a pilot project to determine solar power viability for Wal-Mart, the total solar power production from the 22 sites is estimated to be as much as 20 million kWh (kilowatt-hours) per year. When fully implemented, the aggregate purchase could be one of the U.S., if not the world’s, top-10 largest ever solar power initiatives. “We are taking aggressive steps towards our goal of being supplied by 100 percent renewable energy,” said Kim Saylors-Laster, vice president of energy for Wal-Mart. “The pilot project is yet another example of Wal-Mart’s commitment to making decisions that are good for business and the environment.” “We applaud Wal-Mart's drive to increase its use of energy efficiency and renewable energy technologies and look forward to the long-term positive impact their efforts will have on our environment,” said Ron Judkoff, director of the Buildings and Thermal Systems Center at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL). “Wal-Mart's decision to take advantage of the economic and environmental benefits of solar power and energy efficiency technologies is a great step in the right direction.” The solar power pilot project is a major step toward Wal-Mart’s goal of being supplied by 100 percent renewable energy.
    [Show full text]
  • Renewable Energy
    Projects Projects Renewable Energy Representative Engagements • Represented the project sponsor in connection with • Advised client on a significant investment in Nemaska the non-recourse project financing of the development, Lithium Inc., a Canadian lithium company, in a trans- installation, operation and maintenance of over 150,000 formational market transaction involving a key input in small-scale solar kits in areas of Peru not connected to lithium batteries which are a key component in electric the grid. cars and other technologies as well as renewables • Represented the Buyer acquiring 100 percent of the storage projects. equity interests of two project companies that have two • Advised the underwriters in DTE Electric Company’s solar photovoltaic projects with a combined rating of milestone $525 million green bond offering. Proceeds 6.5MWac/8MWdc on Oahu, Hawaii. of the bonds will support the development and • Represented a multinational energy corporation in construction of low-carbon, clean energy projects like connection with the acquisition of, and its tax equity solar arrays and wind farms, as well as the transmission investment in, solar power generating facilities in infrastructure to support related renewable facilities. California, Texas and Arizona valued from $16 million Solar to $25 million, including one project located on a • Represented Duke Energy in connection with a $360 military base under the U.S. military’s renewable energy million non-recourse project financing of a portfolio procurement initiative. of 24 operating solar farms in North Carolina under • Represented one of the world’s largest solar energy contract with various utility and non-utility offtakers. project companies in its entry into Japan and projects The facility includes a $330 million term loan, a $105 utilizing the Japanese Feed-In Tariff.
    [Show full text]
  • Fire Fighter Safety and Emergency Response for Solar Power Systems
    Fire Fighter Safety and Emergency Response for Solar Power Systems Final Report A DHS/Assistance to Firefighter Grants (AFG) Funded Study Prepared by: Casey C. Grant, P.E. Fire Protection Research Foundation The Fire Protection Research Foundation One Batterymarch Park Quincy, MA, USA 02169-7471 Email: [email protected] http://www.nfpa.org/foundation © Copyright Fire Protection Research Foundation May 2010 Revised: October, 2013 (This page left intentionally blank) FOREWORD Today's emergency responders face unexpected challenges as new uses of alternative energy increase. These renewable power sources save on the use of conventional fuels such as petroleum and other fossil fuels, but they also introduce unfamiliar hazards that require new fire fighting strategies and procedures. Among these alternative energy uses are buildings equipped with solar power systems, which can present a variety of significant hazards should a fire occur. This study focuses on structural fire fighting in buildings and structures involving solar power systems utilizing solar panels that generate thermal and/or electrical energy, with a particular focus on solar photovoltaic panels used for electric power generation. The safety of fire fighters and other emergency first responder personnel depends on understanding and properly handling these hazards through adequate training and preparation. The goal of this project has been to assemble and widely disseminate core principle and best practice information for fire fighters, fire ground incident commanders, and other emergency first responders to assist in their decision making process at emergencies involving solar power systems on buildings. Methods used include collecting information and data from a wide range of credible sources, along with a one-day workshop of applicable subject matter experts that have provided their review and evaluation on the topic.
    [Show full text]
  • ANNUAL REPORT 2006 Looking, Lowercostsolarpowersolutions
    WWW.SUNPOWERCORP.COM ANNUAL REPORT 2006 GERMANY BOARD OF DIRECTORS T.J. Rodgers CHAIRMAN OF THE BOARD CHIEF EXECUTIVE OFFICER CYPRESS SEMICONDUCTOR William Steve Albrecht ELEGANT SIMPLE DIRECTOR PROFESSOR & ASSOCIATE DEAN BRIGHAM YOUNG UNIVERSITY Betsy S. Atkins DIRECTOR CHIEF EXECUTIVE OFFICER BAJA VENTURES NEW YORK Thomas H. Werner DIRECTOR CHIEF EXECUTIVE OFFICER SUNPOWER CORPORATION Pat Wood III DIRECTOR EFFICIENT POWERFUL PRINCIPAL WOOD3 RESOURCES MANAGEMENT JAPAN Thomas H. Werner CHIEF EXECUTIVE OFFICER, DIRECTOR Emmanuel T. Hernandez CHIEF FINANCIAL OFFICER PM Pai CHIEF OPERATING OFFICER Dr. Richard Swanson PRESIDENT & CHIEF TECHNICAL OFFICER Thomas Dinwoodie CEO, POWERLIGHT SUBSIDIARY Howard Wenger VICE PRESIDENT, GLOBAL BUSINESS UNITS SPAIN Bruce Ledesma SunPower Corporation is a global leader in solar power. Together with our recently GENERAL COUNSEL acquired PowerLight subsidiary, we apply innovative technology across the entire value chain with the aim of delivering to our customers higher-performance, better looking, lower cost solar power solutions. SUNPOWER CORPORATION 3939 North First Street San Jose, CA 95134 USA (408) 240-5500 ©2007 SunPower Corporation. All rights reserved. Dear Stockholders, We will remember 2006 as the year that SunPower emerged as a key player within the solar power industry. For more than a decade, our company had been known within the industry for breakthrough high-efficiency solar cell technology, but it was during 2006 that we transformed this technology advantage into a major commercial presence. By the end of the year, we were among the top 10 manufacturers by production volume, and our products established a leading market position, voted the top industry brand through a global third-party survey.
    [Show full text]
  • The History of Solar
    Solar technology isn’t new. Its history spans from the 7th Century B.C. to today. We started out concentrating the sun’s heat with glass and mirrors to light fires. Today, we have everything from solar-powered buildings to solar- powered vehicles. Here you can learn more about the milestones in the Byron Stafford, historical development of solar technology, century by NREL / PIX10730 Byron Stafford, century, and year by year. You can also glimpse the future. NREL / PIX05370 This timeline lists the milestones in the historical development of solar technology from the 7th Century B.C. to the 1200s A.D. 7th Century B.C. Magnifying glass used to concentrate sun’s rays to make fire and to burn ants. 3rd Century B.C. Courtesy of Greeks and Romans use burning mirrors to light torches for religious purposes. New Vision Technologies, Inc./ Images ©2000 NVTech.com 2nd Century B.C. As early as 212 BC, the Greek scientist, Archimedes, used the reflective properties of bronze shields to focus sunlight and to set fire to wooden ships from the Roman Empire which were besieging Syracuse. (Although no proof of such a feat exists, the Greek navy recreated the experiment in 1973 and successfully set fire to a wooden boat at a distance of 50 meters.) 20 A.D. Chinese document use of burning mirrors to light torches for religious purposes. 1st to 4th Century A.D. The famous Roman bathhouses in the first to fourth centuries A.D. had large south facing windows to let in the sun’s warmth.
    [Show full text]
  • The World's Standard for Solar™
    BUILT TO LAST YOUR ONE-STOP SOLAR SOLUTION T H E WORLD’S STANDARD FOR SOLAR™ RIGOROUSLY TESTED CONTINUALLY IMPROVED PEACE OF MIND FOR YEARS TO COME SOLAR BOOSTS • Thorough testing goes above and beyond • Millions of hours of performance analysis • Multi-billion dollar public company with over a quarter century of experience are reengineered back into our solar cells, HOME SALE PRICES industry standards and the competition • Complete solar solution for your home including panels, mounting system, inverters and monitoring panels and systems • We test for all conditions and perform • Industry-leading warranty, backed by a financially sound & stable company • We control the entire manufacturing tests with extended qualifications • Number one choice of U.S. homeowners and businesses U.S. Department of Energy’s process, so we know what real-life is – Our panels have been salt mist certified Lawrence Berkeley National like for our systems and can ensure that under the harshest conditions, so if you THE WORLD’S STANDARD BEST-IN-CLASS DEALER NETWORK Laboratory study found that solar the highest quality panels reach your live near the ocean they will be protected TM rooftop and produce the most energy FOR SOLAR homes with an average system size under warranty • You can count on your local SunPower® solar for years to come installer to provide the highest standard of of 3.1kW sold for approximately • The most reliable solar system you can buy quality and customer service $17,000 or $5,500/kW more • Use less roof space to produce the energy you SUNPOWER’S EXTENDED TESTING PERFORMANCE GUARANTEED – The best of the best—Only a small than non-solar homes.
    [Show full text]
  • The Business of Local Energy Symposium
    THE BUSINESS OF LOCAL ENERGY SYMPOSIUM Maximizing the Cost-Effective Development of Local, Renewable Energy Presented by: October 23, 2014 Petaluma, CA A Program of www.climateprotection.org Center for Climate Protection WELCOME ................................................................................................ Welcome and thank you for Susan Gorin Chair, Sonoma Clean Power participating! Supervisor, County of Sonoma We are hosting this symposium to foster new opportunities that both accelerate the clean energy revolution and address the climate crisis. Promoting economic prosperity and Marc Levine caring for the environment must Assembly Member, 10th District, State of California work hand in hand. Without financial incentives, clean energy innovations won’t occur. And without innovation, we will not reduce emissions to safe levels. This exciting and important endeavor requires new partnerships, markets, and your ideas and effort. May the results inspire us all. Jane Bender President, Center for Climate Protection Jane Bender Former Mayor, City of Santa Rosa President, Center for Climate Protection 2 ................................................................................. FEATURED SPEAKERS Jigar Shah Jigar Shah is the former CEO and current board member of the Carbon War Room, a global Welcome and organization founded by Richard Branson and Virgin United. Mr. Shah is also the Founder of SunEdison, which is recognized as the catalyst of the power purchase agreement (PPA) business model that helped turn solar PV into a multi-billion dollar industry worldwide. Shah previously worked with BP Solar and the Department of Energy and is the author of Creating thank you for Climate Wealth: Unlocking the Impact Economy (2013). participating! David Hochschild David Hochschild was appointed to the California Energy Commission by Governor Jerry Brown in February 2013.
    [Show full text]
  • Solar Technology Reference Guide
    Solar Technology Reference Guide January 2012 Aaron Binkley Prepared for and Funded by the NAIOP Research Foundation Help ensure that the NAIOP Research Foundation continues to promote industry success. Thank you for your choosing to download this report. Foundation research and analysis gives industry professionals unique insights in to the current business environment and emerging trends that lead to successful development and communities. Traditional sources of revenue cover only a portion of the costs of producing these reports. Additional support, provided by end users of this research through the Foundation’s Sustainer Fund, helps to ensure that the Foundation will have the funds to continue to proactively address the many research project requests it receives each year. Donate to the Sustainers Fund today! Gift Levels Benefactor Gifts of $2,500 and above (Contributions to the NAIOP Research Foundation Amount: Leader Gifts of $1,000-$2,499 are tax deductible to the extent allowed by law.) Donor Gifts of $500-$999 Sustainer Gifts of $250-$499 Please see below for contribution information. Learn how to become involved in the work of the Foundation. Yes, I am interested in ways I can Please call me to discuss support the work of the Foundation. Please send me information about Becoming a Foundation Governor Underwriting a Foundation project, or major initiative Area of interest __________________________ Making an annual gift How to apply for a research grant Contact Information NAME COMPANY TITLE ADDRESS CITY STATE ZIP PHONE E-MAIL Contribution Information *Make checks payable to NAIOP Research Foundation CARD HOLDER NAME CREDIT CARD TYPE NUMBER EXPIRATION DATE Call Bennett Gray at (703) 674-1436 to make a contribution by telephone.
    [Show full text]
  • To Download This Report (PDF)
    September 2012 Prepared for: Indiana Utility Regulatory Commission and Regulatory Flexibility Committee of the Indiana General Assembly Indianapolis, Indiana State Utility Forecasting Group | Energy Center at Discovery Park | Purdue University | West Lafayette, Indiana 2012 INDIANA RENEWABLEENERGY RESOURCES STUDY 2012 INDIANA RENEWABLE ENERGY RESOURCES STUDY State Utility Forecasting Group Energy Center Purdue University West Lafayette, Indiana David Nderitu Emrah Ozkaya Douglas Gotham Paul Preckel Darla Mize Marco Velastegui Tim Phillips September 2012 Table of Contents List of Figures .................................................................................................................... iii List of Tables ...................................................................................................................... v Acronyms and Abbreviations ............................................................................................ vi Foreword……………………………… ………………………………………………. .ix 1. Overview ............................................................................................................... 1 1.1 Trends in renewable energy consumption in the United States ................ 1 1.2 Trends in renewable energy consumption in Indiana ................................ 4 1.3 References ................................................................................................. 6 2. Energy from Wind ................................................................................................. 9 2.1 Introduction
    [Show full text]
  • Benchmarking the Performance of Solar Installers and Rooftop Photovoltaic Installations in California
    sustainability Article Benchmarking the Performance of Solar Installers and Rooftop Photovoltaic Installations in California Dadi Wang 1,2 1 Business School, China University of Political Science and Law, Beijing 100088, China; [email protected]; Tel.: +86-10-5890-9402 2 Desautels Faculty of Management, McGill University, Montreal, QC H3A 1G5, Canada Received: 20 June 2017; Accepted: 5 August 2017; Published: 9 August 2017 Abstract: Rooftop photovoltaic (PV) systems are rapidly proliferating around the world. Whether the PV systems have been efficiently installed is an issue of utmost importance for both solar installers and policymakers. However, the impact of solar installers on PV performance is not well understood. In this paper, we investigate the performance of rooftop PV installations and the solar installers using a dataset of 1035 projects developed by 213 installers in California. Based on data envelopment analysis (DEA), our study takes the PV system capacity, electricity generation, cost, modules, solar irradiance, and ambient temperature into account simultaneously to construct a unified measure for the efficiency of PV installations. We analyze the relationship between installer characteristics and PV system performance. We find PV installations with the installer also being the module manufacturer, exhibit significantly better performance than other installations. PV installations by subsidiaries of oil firms have inferior performance. PV installations by large installers on average do not perform better than the installations by small installers. Geographic diversification of an installer’s operations is significantly and inversely related to the performance of installations. We demonstrate the aforementioned findings have significant implications for policymakers and the solar installation industry.
    [Show full text]
  • Enphase Module Compatibility List Updated 08/13/09
    http://www.wholesalesolar.com/inverters.html Enphase Module Compatibility List Updated 08/13/09 The following is a list of approved modules with specifications recommended for use with the Enphase Microinverter. Module Model Compatible Manufacturer Name Number Enphase Model aleo solar AG S_18.230 M190-72 aleo solar AG S_18.225 M190-72 aleo solar AG S_18.220 M190-72 aleo solar AG S_18.215 M190-72 aleo solar AG S_18.210 M190-72 Andalay Solar, Inc. ST175-1 M190-72 Andalay Solar, Inc. ST170-1 M190-72 Andalay Solar, Inc. ST165-1 M190-72 BP Solar BP3230N M190-72 BP Solar BP3220N M190-72 BP Solar BP3210N M190-72 BP Solar BP7185S M190-72 BP Solar BP7180S M190-72 BP Solar BP4175B M190-72 BP Solar BP4175I M190-72 BP Solar BP4175N M190-72 BP Solar BP4175S M190-72 BP Solar BP7175S M190-72 BP Solar BP175 B M190-72 BP Solar SX3175B M190-72 BP Solar SX3175B_Q M190-72 BP Solar SX3175I M190-72 BP Solar SX3175N M190-72 BP Solar SX3175N_Q M190-72 BP Solar SX170B M190-72 BP Solar SX170I M190-72 BP Solar SX170N M190-72 BP Solar SX3170B M190-72 BP Solar SX3170I M190-72 BP Solar SX3170N M190-72 BP Solar SX3165B M190-72 BP Solar SX3165I M190-72 BP Solar SX3165N M190-72 201 1st Street, Suite 300, Petaluma, CA 94952 707 763 4784 f 707.763.0784 enphaseenergy.com http://www.wholesalesolar.com/inverters.html Module Model Compatible Manufacturer Name Number Enphase Model BP Solar SX160B M190-72 BP Solar SX150B M190-72 Canadian Solar Inc CS6P-230 M190-72 Canadian Solar Inc CS6P-225 M190-72 Canadian Solar Inc CS6P-220 M190-72 Canadian Solar Inc CS6P-215 M190-72 Canadian Solar Inc CS6P-210 M190-72 Canadian Solar Inc CS6P-200 M190-72 Canadian Solar Inc CS6P-190 M190-72 Canadian Solar Inc CS6P-180 M190-72 Canadian Solar Inc CS6P-170 M190-72 Canadian Solar Inc CS5A-180 M190-72 Canadian Solar Inc CS5A-170 M190-72 Canadian Solar Inc CS5B-170 M190-72 Canadian Solar Inc CS5A-160 M190-72 Canadian Solar Inc CS5B-160 M190-72 Canadian Solar Inc CS5A-150 M190-72 Canadian Solar Inc CS5B-150 M190-72 CEEG (Shanghai) Solar Science and SST 190-72M M190-72 Technology Co., Ltd.
    [Show full text]
  • Innovations in Wind and Solar PV Financing DE-AC36-99-GO10337
    A national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy National Renewable Energy Laboratory Innovation for Our Energy Future Innovations in Wind and Technical Report NREL/TP-670-42919 Solar PV Financing February 2008 K. Cory, J. Coughlin, and T. Jenkin National Renewable Energy Laboratory J. Pater Summit Blue B. Swezey Applied Materials NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Innovations in Wind and Technical Report NREL/TP-670-42919 Solar PV Financing February 2008 K. Cory, J. Coughlin, and T. Jenkin National Renewable Energy Laboratory J. Pater Summit Blue B. Swezey Applied Materials Prepared under Task No. ASA6.2004 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 • www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute • Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof.
    [Show full text]