End-Of-Life Management: Solar Photovoltaic Panels,” International Renewable Energy Agency and International Energy Agency Photovoltaic Power Systems

Total Page:16

File Type:pdf, Size:1020Kb

End-Of-Life Management: Solar Photovoltaic Panels,” International Renewable Energy Agency and International Energy Agency Photovoltaic Power Systems © IRENA 2016 AND IEA-PVPS 2016 Unless otherwise stated, this publication and material featured herein are the property ISBN 978-92-95111-98-1 (Print, IRENA) of the International Renewable Energy Agency (IRENA) and the International Energy ISBN 978-92-95111-99-8 (PDF, IRENA) Agency Photovoltaic Power Systems (IEA-PVPS) and are subject to copyright by IRENA ISBN 978-3-906042-36-7 (IEA PVPS) and IEA-PVPS. Material in this publication may be freely used, shared, copied, reproduced, IEA-PVPS Report Number: T12-06:2016 printed and/or stored, provided that all such material is clearly attributed to IRENA and IEA-PVPS. Material contained in this publication attributed to third parties may be subject to third- party copyright and separate terms of use and restrictions, including restrictions in relation to any commercial use. This publication should be cited as: IRENA and IEA-PVPS (2016), “End-of-Life Management: Solar Photovoltaic Panels,” International Renewable Energy Agency and International Energy Agency Photovoltaic Power Systems. ABOUT IRENA IRENA is an intergovernmental organisation that supports countries in their transition to a sustainable energy future and serves as the principal platform for international co-operation, a centre of excellence and a repository of policy, technology, resource and financial knowledge on renewable energy. IRENA promotes the widespread adoption and sustainable use of all forms of renewable energy, including bioenergy, geothermal, hydropower, ocean, solar and wind energy, in the pursuit of sustainable development, energy access, energy security and low-carbon economic growth and prosperity. www.irena.org ABOUT IEA-PVPS The IEA, founded in November 1974, is an autonomous body within the framework of the Organisation for Economic Co-operation and Development (OECD) that carries out a comprehensive programme of energy co-operation among its member countries. The European Commission also participates in the work of the IEA. The IEA-PVPS is one of the collaborative research and development (R&D) agreements established within the IEA. Since 1993, participants in the PVPS have been conducting a variety of joint projects in the applications of PV conversion of solar energy into electricity. www.iea-pvps.org ACKNOWLEDGEMENTS This publication was prepared by IRENA in collaboration with IEA-PVPS Task 12 with valuable input from Dr. Karsten Wambach (bifa Umweltinstitut, consultant). This report benefited from contributions and review from a panel of experts: Tabaré A. Currás (WWF International Global Climate & Energy Initiative), Zhang Jia (IEA-PVPS Task 12), Keiichi Komoto (IEA-PVPS Task 12), Dr. Parikhit Sinha (IEA-PVPS Task 12) and Knut Sanders (Ökopol). Valuable input was also received from Henning Wuester, Rabia Ferroukhi, Nicolas Fichaux, Asiyah Al Ali, Deger Saygin, Salvatore Vinci and Nicholas Wagner (IRENA). IRENA and IEA-PVPS would like to extend their gratitude to the Government of Germany for supporting this publication. AUTHORS IRENA: Stephanie Weckend IEA-PVPS: Andreas Wade, Garvin Heath DISCLAIMER The designations employed and the presentation of materials featured herein are provided on an “as is” basis, for informational purposes only, without any conditions, warranties or undertakings, either express or implied, from IRENA and IEA-PVPS, its officials and agents, including but not limited to warranties of accuracy, completeness and fitness for a particular purpose or use of such content. The information contained herein does not necessarily represent the views of the Members of IRENA and IEA-PVPS. The mention of specific companies or certain projects, products or services does not imply that they are endorsed or recommended by IRENA and IEA-PVPS in preference to others of a similar nature that are not mentioned. The designations employed and the presentation of material herein do not imply the expression of any opinion on the part of IRENA and IEA-PVPS concerning the legal status of any region, country, territory, city or area or of its authorities, or concerning the delimitation of frontiers or boundaries. Shutterstock CONTENTS Glossary .............................................................................. 6 Figures, tables and boxes ............................................................... 7 Abbreviations ......................................................................... 9 EXECUTIVE SUMMARY .......................................................... 11 1. INTRODUCTION ............................................................. 19 2. SOLAR PV PANEL WASTE PROJECTIONS ............................... 23 2.1 Global solar PV growth ........................................................ 23 2.2 PV panel waste model ......................................................... 25 2.3 PV panel waste projections .................................................... 32 3. PV PANEL COMPOSITION AND WASTE CLASSIFICATION ........... 37 3.1 Panel composition ............................................................ 38 3.2 Waste classification ........................................................... 43 4. PV PANEL WASTE MANAGEMENT OPTIONS ........................... 47 4.1 Waste management principles for PV panels .................................... 47 4.2 Regulatory approach: European Union .......................................... 51 5. NATIONAL APPROACHES TO PV WASTE MANAGEMENT ............ 59 5.1 Germany: Mature market with EU-directed, PV-specific waste regulations .......... 59 5.2 UK: Young market with EU-directed, PV-specific waste regulations ................ 63 5.3 Japan: Advanced market without PV-specific waste regulations ................... 65 5.4 US: Established, growing market without PV-specific waste regulations ............ 69 5.5 China: Leading market without PV-specific waste regulations ...................... 70 5.6 India: Growing market without PV-specific waste regulations ...................... 72 6. VALUE CREATION FROM END-OF-LIFE PV PANELS ................... 75 6.1 Opportunities to reduce, reuse and recycle PV panels ............................ 75 6.2 Material supply and socio-economic benefits .................................... 85 7. CONCLUSIONS: THE WAY FORWARD ................................... 91 References ........................................................................... 94 5 END-OF-LIFE MANAGEMENT: SOLAR PHOTOVOLTAIC PANELS GLOSSARY Amorphous silicon Non-crystalline form of silicon formed using silicon vapour which is quickly cooled. Electrical and electronic The term electrical and electronic equipment (EEE) is defined as equipment designed for equipment use with a voltage rating not exceeding 1,000 Volts (V) for alternating current and 1,500 V for direct current, or equipment dependent on electric currents or electromagnetic fields in order to work properly, or equipment for the generation of such currents, or equipment for the transfer of such currents, or equipment for the measurement of such currents. Extended Producer Extended Producer Responsibility (EPR) is an environmental policy approach in which Responsibility a producer’s responsibility for a product is extended to the post-consumer stage of a product’s life cycle. An EPR policy is characterised by (1) shifting responsibility (physically and/or economically; fully or partially) upstream towards the producers and away from governments and (2) the provision of incentives to producers to take into account environmental considerations when designing their products. Monocrystalline silicon Silicon manufactured in such a way that if forms a continuous single crystal without grain boundaries. Raw material Basic material which has not been processed, or only minimally, and is used to produce goods, finished products, energy or intermediate products which will be used to produce other goods. Pay-as-you-go and In a pay-as-you-go (PAYG) approach, the cost of collection and recycling is covered by pay-as-you-put market participants when waste occurs. By contrast, a pay-as-you-put (PAYP) approach involves setting aside an upfront payment of estimated collection and recycling costs when a product is placed on the market. Last-man-standing-insurance is an insurance product that covers a producer compliance scheme based on a PAYG approach if all producers disappear from the market. In that situation, the insurance covers the costs of collection and recycling. In a joint-and-several liability scheme, producers of a certain product or product group agree to jointly accept the liabilities for waste collection and recycling for a specific product or product group. Poly- or multicrystalline Silicon manufactured in such a way that it consists of a number of small crystals, forming silicon grains. Thin-film Technology used to produce solar cells based on very thin layers of PV materials deposited over an inexpensive material (glass, stainless steel, plastic). 6 FIGURES, TABLES AND BOXES FIGURES, TABLES AND BOXES FIGURES Figure 16 End-of-life PV panel waste for Japan to 2050 . 66 Figure 1 Approach to estimating PV panel waste ...23 Figure 17 Comparison of PV panel end-of-life scenarios for Japan .....................................66 Figure 2 Projected cumulative global PV capacity ...25 Figure 18 FAIS PV panel recycling system .............68 Figure 3 Two-step PV panel waste model ..........26 Figure 19 End-of-life PV panel waste volumes for the US Figure 4 Exponential curve fit of projection of PV panel to 2050 .......................................69 weight-to-power ratio (t/MW) ............27
Recommended publications
  • A HISTORY of the SOLAR CELL, in PATENTS Karthik Kumar, Ph.D
    A HISTORY OF THE SOLAR CELL, IN PATENTS Karthik Kumar, Ph.D., Finnegan, Henderson, Farabow, Garrett & Dunner, LLP 901 New York Avenue, N.W., Washington, D.C. 20001 [email protected] Member, Artificial Intelligence & Other Emerging Technologies Committee Intellectual Property Owners Association 1501 M St. N.W., Suite 1150, Washington, D.C. 20005 [email protected] Introduction Solar cell technology has seen exponential growth over the last two decades. It has evolved from serving small-scale niche applications to being considered a mainstream energy source. For example, worldwide solar photovoltaic capacity had grown to 512 Gigawatts by the end of 2018 (representing 27% growth from 2017)1. In 1956, solar panels cost roughly $300 per watt. By 1975, that figure had dropped to just over $100 a watt. Today, a solar panel can cost as little as $0.50 a watt. Several countries are edging towards double-digit contribution to their electricity needs from solar technology, a trend that by most accounts is forecast to continue into the foreseeable future. This exponential adoption has been made possible by 180 years of continuing technological innovation in this industry. Aided by patent protection, this centuries-long technological innovation has steadily improved solar energy conversion efficiency while lowering volume production costs. That history is also littered with the names of some of the foremost scientists and engineers to walk this earth. In this article, we review that history, as captured in the patents filed contemporaneously with the technological innovation. 1 Wiki-Solar, Utility-scale solar in 2018: Still growing thanks to Australia and other later entrants, https://wiki-solar.org/library/public/190314_Utility-scale_solar_in_2018.pdf (Mar.
    [Show full text]
  • Contact: Kevin Thornton for IMMEDIATE RELEASE 1-800-331-0085
    Contact: Kevin Thornton FOR IMMEDIATE RELEASE 1-800-331-0085 WAL-MART ANNOUNCES SOLAR POWER PILOT PROJECT Pilot Project marks major step toward its goal of being supplied by 100 percent renewable energy BENTONVILLE, Ark., May 7, 2007 – Today Wal-Mart Stores, Inc. (NYSE:WMT), announced a major purchase of solar power from three solar power providers, BP Solar, SunEdison LLC, and PowerLight, a subsidiary of SunPower Corporation, for 22 combined Wal- Mart stores, Sam’s Clubs and a distribution center in Hawaii and California. As part of a pilot project to determine solar power viability for Wal-Mart, the total solar power production from the 22 sites is estimated to be as much as 20 million kWh (kilowatt-hours) per year. When fully implemented, the aggregate purchase could be one of the U.S., if not the world’s, top-10 largest ever solar power initiatives. “We are taking aggressive steps towards our goal of being supplied by 100 percent renewable energy,” said Kim Saylors-Laster, vice president of energy for Wal-Mart. “The pilot project is yet another example of Wal-Mart’s commitment to making decisions that are good for business and the environment.” “We applaud Wal-Mart's drive to increase its use of energy efficiency and renewable energy technologies and look forward to the long-term positive impact their efforts will have on our environment,” said Ron Judkoff, director of the Buildings and Thermal Systems Center at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL). “Wal-Mart's decision to take advantage of the economic and environmental benefits of solar power and energy efficiency technologies is a great step in the right direction.” The solar power pilot project is a major step toward Wal-Mart’s goal of being supplied by 100 percent renewable energy.
    [Show full text]
  • Renewable Energy
    Projects Projects Renewable Energy Representative Engagements • Represented the project sponsor in connection with • Advised client on a significant investment in Nemaska the non-recourse project financing of the development, Lithium Inc., a Canadian lithium company, in a trans- installation, operation and maintenance of over 150,000 formational market transaction involving a key input in small-scale solar kits in areas of Peru not connected to lithium batteries which are a key component in electric the grid. cars and other technologies as well as renewables • Represented the Buyer acquiring 100 percent of the storage projects. equity interests of two project companies that have two • Advised the underwriters in DTE Electric Company’s solar photovoltaic projects with a combined rating of milestone $525 million green bond offering. Proceeds 6.5MWac/8MWdc on Oahu, Hawaii. of the bonds will support the development and • Represented a multinational energy corporation in construction of low-carbon, clean energy projects like connection with the acquisition of, and its tax equity solar arrays and wind farms, as well as the transmission investment in, solar power generating facilities in infrastructure to support related renewable facilities. California, Texas and Arizona valued from $16 million Solar to $25 million, including one project located on a • Represented Duke Energy in connection with a $360 military base under the U.S. military’s renewable energy million non-recourse project financing of a portfolio procurement initiative. of 24 operating solar farms in North Carolina under • Represented one of the world’s largest solar energy contract with various utility and non-utility offtakers. project companies in its entry into Japan and projects The facility includes a $330 million term loan, a $105 utilizing the Japanese Feed-In Tariff.
    [Show full text]
  • Biomass Basics: the Facts About Bioenergy 1 We Rely on Energy Every Day
    Biomass Basics: The Facts About Bioenergy 1 We Rely on Energy Every Day Energy is essential in our daily lives. We use it to fuel our cars, grow our food, heat our homes, and run our businesses. Most of our energy comes from burning fossil fuels like petroleum, coal, and natural gas. These fuels provide the energy that we need today, but there are several reasons why we are developing sustainable alternatives. 2 We are running out of fossil fuels Fossil fuels take millions of years to form within the Earth. Once we use up our reserves of fossil fuels, we will be out in the cold - literally - unless we find other fuel sources. Bioenergy, or energy derived from biomass, is a sustainable alternative to fossil fuels because it can be produced from renewable sources, such as plants and waste, that can be continuously replenished. Fossil fuels, such as petroleum, need to be imported from other countries Some fossil fuels are found in the United States but not enough to meet all of our energy needs. In 2014, 27% of the petroleum consumed in the United States was imported from other countries, leaving the nation’s supply of oil vulnerable to global trends. When it is hard to buy enough oil, the price can increase significantly and reduce our supply of gasoline – affecting our national security. Because energy is extremely important to our economy, it is better to produce energy in the United States so that it will always be available when we need it. Use of fossil fuels can be harmful to humans and the environment When fossil fuels are burned, they release carbon dioxide and other gases into the atmosphere.
    [Show full text]
  • Fire Fighter Safety and Emergency Response for Solar Power Systems
    Fire Fighter Safety and Emergency Response for Solar Power Systems Final Report A DHS/Assistance to Firefighter Grants (AFG) Funded Study Prepared by: Casey C. Grant, P.E. Fire Protection Research Foundation The Fire Protection Research Foundation One Batterymarch Park Quincy, MA, USA 02169-7471 Email: [email protected] http://www.nfpa.org/foundation © Copyright Fire Protection Research Foundation May 2010 Revised: October, 2013 (This page left intentionally blank) FOREWORD Today's emergency responders face unexpected challenges as new uses of alternative energy increase. These renewable power sources save on the use of conventional fuels such as petroleum and other fossil fuels, but they also introduce unfamiliar hazards that require new fire fighting strategies and procedures. Among these alternative energy uses are buildings equipped with solar power systems, which can present a variety of significant hazards should a fire occur. This study focuses on structural fire fighting in buildings and structures involving solar power systems utilizing solar panels that generate thermal and/or electrical energy, with a particular focus on solar photovoltaic panels used for electric power generation. The safety of fire fighters and other emergency first responder personnel depends on understanding and properly handling these hazards through adequate training and preparation. The goal of this project has been to assemble and widely disseminate core principle and best practice information for fire fighters, fire ground incident commanders, and other emergency first responders to assist in their decision making process at emergencies involving solar power systems on buildings. Methods used include collecting information and data from a wide range of credible sources, along with a one-day workshop of applicable subject matter experts that have provided their review and evaluation on the topic.
    [Show full text]
  • Commercialization and Deployment at NREL: Advancing Renewable
    Commercialization and Deployment at NREL Advancing Renewable Energy and Energy Efficiency at Speed and Scale Prepared for the State Energy Advisory Board NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Management Report NREL/MP-6A42-51947 May 2011 Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: mailto:[email protected] Available for sale to the public, in paper, from: U.S.
    [Show full text]
  • ANNUAL REPORT 2006 Looking, Lowercostsolarpowersolutions
    WWW.SUNPOWERCORP.COM ANNUAL REPORT 2006 GERMANY BOARD OF DIRECTORS T.J. Rodgers CHAIRMAN OF THE BOARD CHIEF EXECUTIVE OFFICER CYPRESS SEMICONDUCTOR William Steve Albrecht ELEGANT SIMPLE DIRECTOR PROFESSOR & ASSOCIATE DEAN BRIGHAM YOUNG UNIVERSITY Betsy S. Atkins DIRECTOR CHIEF EXECUTIVE OFFICER BAJA VENTURES NEW YORK Thomas H. Werner DIRECTOR CHIEF EXECUTIVE OFFICER SUNPOWER CORPORATION Pat Wood III DIRECTOR EFFICIENT POWERFUL PRINCIPAL WOOD3 RESOURCES MANAGEMENT JAPAN Thomas H. Werner CHIEF EXECUTIVE OFFICER, DIRECTOR Emmanuel T. Hernandez CHIEF FINANCIAL OFFICER PM Pai CHIEF OPERATING OFFICER Dr. Richard Swanson PRESIDENT & CHIEF TECHNICAL OFFICER Thomas Dinwoodie CEO, POWERLIGHT SUBSIDIARY Howard Wenger VICE PRESIDENT, GLOBAL BUSINESS UNITS SPAIN Bruce Ledesma SunPower Corporation is a global leader in solar power. Together with our recently GENERAL COUNSEL acquired PowerLight subsidiary, we apply innovative technology across the entire value chain with the aim of delivering to our customers higher-performance, better looking, lower cost solar power solutions. SUNPOWER CORPORATION 3939 North First Street San Jose, CA 95134 USA (408) 240-5500 ©2007 SunPower Corporation. All rights reserved. Dear Stockholders, We will remember 2006 as the year that SunPower emerged as a key player within the solar power industry. For more than a decade, our company had been known within the industry for breakthrough high-efficiency solar cell technology, but it was during 2006 that we transformed this technology advantage into a major commercial presence. By the end of the year, we were among the top 10 manufacturers by production volume, and our products established a leading market position, voted the top industry brand through a global third-party survey.
    [Show full text]
  • Letting in the Light: How Solar Photovoltaics Will Revolutionise The
    LETTING IN THE LIGHT HOW SOLAR PHOTOVOLTAICS WILL REVOLUTIONISE THE ELECTRICITY SYSTEM Copyright © IRENA 2016 ISBN 978-92-95111-95-0 (Print), ISBN 978-92-95111-96-7 (PDF) Unless otherwise stated, this publication and material herein are the property of the International Renewable Energy Agency (IRENA) and are subject to copyright by IRENA. Material in this publication may be freely used, shared, copied, reproduced, printed and/or stored, provided that all such material is clearly attributed to IRENA and bears a notation of copyright (© IRENA) with the year of copyright. Material contained in this publication attributed to third parties may be subject to third-party copyright and separate terms of use and restrictions, including restrictions in relation to any commercial use. This publication should be cited as: IRENA (2016), ‘Letting in the Light: How solar PV will revolutionise the electricity system,’ Abu Dhabi. About IRENA The International Renewable Energy Agency (IRENA) is an intergovernmental organisation that supports countries in their transition to a sustainable energy future and serves as the principal platform for international co-operation, a centre of excellence, and a repository of policy, technology, resource and financial knowledge on renewable energy. IRENA promotes the widespread adoption and sustainable use of all forms of renewable energy, including bioenergy, geothermal, hydropower, ocean, solar and wind energy, in the pursuit of sustainable development, energy access, energy security and low-carbon economic growth and prosperity. www.irena.org Acknowledgements IRENA is grateful for the valuable contributions of Mark Turner in the preparation of this study. This report benefited from the reviews and comments of numerous experts, including Morgan Bazilian (World Bank), John Smirnow (Global Solar Council), Tomas Kåberger (Renewable Energy Institute), Paddy Padmanathan (ACWA Power), Linus Mofor (UNECA), DK Khare (Ministry of New and Renewable Energy, India), Maurice Silva (Ministry of Energy, Chile), Eicke Weber (Fraunhofer ISE).
    [Show full text]
  • Optimization of Thin-Film Solar Cells for Lunar Surface Operations
    Optimization of Thin-Film Solar Cells for Lunar Surface Operations Shawn Breeding∗ and William E. Johnson† NASA Marshall Space Flight Center, AL, 35812 Thin-film solar cells have been in production for decades, but technology has only recently advanced enough to allow for comparable efficiencies to traditional rigid cells. Some of the benefits of thin-films, such as lighter weight and being foldable, are particularly advantageous to space applications since mass and volume are key considerations of any flight project. Using these thin-film cells in space, however, is outside of their ground-based design criteria. This requires special care to be taken in designing the power generation system of a spacecraft around a thin-film solar cell, particularly in regards to thermal management. Without the diffusion of an atmosphere to mitigate solar load, the temperature of the panels can rapidly exceed their design specification. In this paper a design solution is presented that allows for thin-film solar cells to be used in a robotic lunar lander. Due to the low thermal mass and in-plane conductivity of thin films, it is difficult to remove waste heat by any other method than radiation. On the lunar surface this means angling the arrays to increase their view factor to space, which has the negative consequence of decreasing their power generation. An optimization was developed to balance the heat rejection and power generation of the cells, using constraints on the maximum cell temperature and minimum spacecraft power requirements. The resulting solar panel angle was then used as an input to the Thermal Desktop model to verify the final panel temperatures.
    [Show full text]
  • Renewable Energy Resorces for Climate Change Mitigation
    Raghuvanshi et al.: Renewable energy resources for climate change mitigation - 15 - RENEWABLE ENERGY RESOURCES FOR CLIMATE CHANGE MITIGATION S.P. RAGHUVANSHI * – A.K. RAGHAV – A. CHANDRA Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India. (phone : +91-11-26591227) *Corresponding author e-mail: [email protected] (Received 13rd November 2006 ; accepted 4 th July 2007) Abstract. Climate change has been identified as one of the greatest challenge by all the nations, government, business and citizens of the globe. The threats of climate change on our green planet ‘Earth’ demands that renewable energy share in the total energy generation and consumption should be substantially increased as a matter of urgency. India’s energy development programme has been put under severe pressure with the ever-increasing demand supply gap. Due to predominance of fossil fuels in the generation mix, there are large negative environmental externalities caused by electricity generation. So it has become imperative to develop and promote alternative energy sources that can lead to sustainability of energy and environment system. Renewable electricity has become synonymous with CO2 reduction. Present communication provides a brief description about such alternative and sustained energy sources, i.e., renewable energy resources, their potential and achievements in India. Also role as important tool for climate change mitigation . Keywords: Renewable energy, GHGs, Climate change, Carbon dioxide, mitigation Introduction Climate change has implications for both human and natural systems and could lead to significant changes in resource use production and economic activity. In response to the impact and possible affects of climate change international, regional, national and local initiatives are being developed and implemented to limit and mitigate GHGs concentration in the Earth’s atmosphere.
    [Show full text]
  • Maximum Power Point
    Photovoltaic Efficiency: Maximum Power Point Fundamentals Article This article presents the concept of electricity through Ohm’s law and the power equation, and how it applies to solar photovoltaic (PV) panels. You’ll learn how to find the maximum power point (MPP) of a PV panel in order to optimize its efficiency at creating solar power. Real-World Applications PV panels are becoming an increasingly common way to generate power around the world for many different power applications. This technology is still expensive when compared to other sources of power so it is important to optimize the efficiency of PV panels. This can be a challenge because as weather conditions change (even cloud cover, see Figure 1), the voltage and current in the circuit changes. Engineers have designed inverters to vary the resistance and continuously find new maximum power point (MPP) in a circuit; this is called maximum power point tracking (MPPT). An inverter can be hooked up to one or many PV panels at a time. It is up to engineers to decide the right balance of cost and efficiency when including inverters in their designs. By understanding the factors that affect electrical circuits and knowing how to control the elements in circuits, engineers are able to design solar power systems that operate as efficiently as possible in different environments with changing weather conditions. Figure 1. Cloud shadow dilemma. Introduction Solar energy technology is an emerging energy field that provides opportunities for talented and bright engineers to make beneficial impacts on the environment while solving intriguing engineering challenges. K-12 However, before attempting to design solar energy power systems, engineers must understand for fundamental electrical laws and equations and how they apply to solar energy applications.
    [Show full text]
  • National Policies and the Role of Communities, Cities and Regions
    CLIMATE CHANGE AND RENEWABLE ENERGY NATIONAL POLICIES AND THE ROLE OF COMMUNITIES, CITIES AND REGIONS A report from the International Renewable Energy Agency (IRENA) to the G20 Climate Sustainability Working Group (CSWG) JUNE 2019 © IRENA 2019 Unless otherwise stated, material in this publication may be freely used, shared, copied, reproduced, printed and/or stored, provided that appropriate acknowledgement is given to IRENA as the source and copyright holder. Material in this publication that is attributed to third parties may be subject to separate terms of use and restrictions, and appropriate permissions from these third parties may need to be secured before any use of such material. ISBN: 978-92-9260-136-2 Citation: IRENA (2019), Climate Change and Renewable Energy: National policies and the role of communities, cities and regions (Report to the G20 Climate Sustainability Working Group (CSWG)), International Renewable Energy Agency, Abu Dhabi. About IRENA The International Renewable Energy Agency (IRENA) is an intergovernmental organisation that supports countries in their transition to a sustainable energy future and serves as the principal platform for international co-operation, a centre of excellence, and a repository of policy, technology, resource and financial knowledge on renewable energy. IRENA promotes the widespread adoption and sustainable use of all forms of renewable energy, including bioenergy, geothermal, hydropower, ocean, solar and wind energy, in the pursuit of sustainable development, energy access, energy security and low-carbon economic growth and prosperity. www.irena.org Acknowledgements G20 Climate Sustainability Working Group members provided valuable comments and suggestions on this study. The report was prepared by Elisa Asmelash and Ricardo Gorini.
    [Show full text]