Australian Crocodile Fossil Rewrites Evolution

Total Page:16

File Type:pdf, Size:1020Kb

Australian Crocodile Fossil Rewrites Evolution Perspectives Australian another continent can overturn the neat since virtually all the fossils are about evolutionary stories that were presented the same age, buried during the global crocodile fossil so confidently as fact. Salisbury et al. Flood catastrophe some 4,500 years acknowledge as much when they said ago. In that framework the fossil find rewrites evolution that the ‘emergence of taxa immediately gives us a better idea about when in ancestral to Crocodylia have remained this catastrophe these animals were Tas Walker one of the most poorly understood areas buried. of crocodyliform evolution.’3 Salisbury’s team have now re- ustralian paleontologists announced Ian Duncan, the former mayor of covered the complete skull from the Aa new fossil find (figure 1) which Isisford, a town in far western Queens- football-sized rock enclosing it. They they claim overturns previous ideas land, found the first skeleton, less its estimate the skull to be between 95 about crocodile evolution.1 Announcing head, in the mid 1990s. It was named million and 98 million years old since it their paper to the media, Steve Salisbury Isisfordia duncani after him. Sub- was recovered from the Winton Forma- from the University of Queensland sequent scientific explorations to the tion, which is interpreted as spanning said, remote site, 700 km from the nearest the transition between Early and Late ‘We’ve always assumed that mod- ocean, uncovered the remaining bones Cretaceous.3 However, the dates quoted ern crocodilians originated in plus the skull in a dried-up creek bed. simply reflect personal beliefs about North America or Europe. But this The international team of paleon- what the researchers think happened in discovery in Australia of the most tologists claims the fossils represent the past, based on their uniformitarian primitive member of that group the world’s ‘most primitive’ modern thinking.4 That framework of thinking indicates their origin probably took crocodile, but the term ‘primitive’ is ignores the historical fact of the global place in Gondwana or perhaps in really subjective opinion assuming evo- catastrophe of Noah’s Flood. When we Australia.’2 lution is fact. It is difficult to imagine take the Flood account seriously, it is a This illustrates how ideas about what they mean by the term since they simple matter to develop a different in- evolution keep changing because the show that the fossil is in fact similar terpretation for these fossils consistent fossil information is so incomplete. to modern crocodylians. This makes with creation and biblical history. One new find in a remote area of sense from a creationist perspective, At 95 to 98 million years, the Figure 1. Skeleton of crocodile Isisfordia duncani fossilized within in pieces of sandstone. (From Salisbury et al.9). JOURNAL OF CREATION 21(1) 2007 Perspectives researchers say that Isisfordia predates fluviatile (river) depositional environ- A new Neandertal/ modern crocodiles by about 20 million ment.7 However, the new crocodile years. This is another example of how fossil is ‘an almost complete, fully modern human the so-called fossil ranges keep expand- articulated skeleton’. It is clear that the ing as more fossils are discovered. As sediment deposition rate must have been fossil hybrid? the ranges extend, evolutionary progres- rapid if an animal of the size described sion becomes more and more blurred. were to be preserved so well, without Ryan Jaroncyk This trend means the data fits better with rotting or being scavenged. Volcano- the creationist framework of thinking clastic sedimentation3 was also occur- team of anthropologists claims where the fossil order represents the ring at the time, pointing to catastrophic A to have discovered the remnants sequence of burial during the year-long watery deposition consistent with the of a supposedly ‘30,000 year old’ Flood. biblical Flood. Uniformitarians have a Neandertal/modern human fossil Isisfordia was smaller than the time problem: where do they fit millions hybrid. Fossil fragments of a skull, American alligator and had a flatter of years into all those catastrophically upper and lower jaw, and shoulder and longer snout. It was only a metre deposited sediments? blade seem to reveal a blending long and weighed around three or four Fossils from the Winton Forma- of Neandertal and modern human kilograms. There is considerable pro- tion throughout Queensland include features. Study author Erik Trinkaus of fessional incentive (and it is common sauropod dinosaurs, lungfish, armoured Washington University said, ‘At least practice) for paleontologists to give dinosaurs, turtles, possible mammals, in Europe, the populations blended.’1 their fossil finds new species names, freshwater shellfish, plants, wood, This is exciting news for young-earth but how could anyone know that the spores and pollen.3,8 In other words, creationists! This discovery further Queensland crocodile was indeed a dif- the material buried includes terrestrial, enhances the circumstantial evidence ferent species (reproductively isolated) amphibian and marine animals and for Neandertals being fully human from the ones found in North America plants. So the catastrophe affected the beings. or Europe? We can’t do breeding ex- land, the coast and the ocean. periments with fossils. The small varia- Although this new crocodile fossil What was discovered? tions in skeletal shape are no more than has been described and announced in The skeletal remains were initially variation within the same biblical kind, evolutionary terms, it actually supports discovered in a Romanian cave in the the same sort of variation seen today in the biblical account of Earth history. 1950s. Because they looked superficial- dogs and bears—and cats such as lions ly very much like modern humans, they and tigers, which can interbreed and are References were filed away. That is until Trinkaus all descended from the one group. 1. Salisbury, S.W., Molnar, R.E., Frey, E. and his colleagues decided to reopen the and Willis, P.M.A., The origin of modern The new fossil crocodile discovery case and take a closer look. Their study shows that even within an evolution- crocodyliforms: new evidence from the Cretaceous of Australia, Proceedings of compared the fragments with those of ary frame of reference, evolution must the Royal Society of London, Series B, modern humans in Africa and Europe. have been stationary for 100 million doi:10.1098/rspb.2006.3613, 2006. Surprisingly (at least to progressive of these assumed years. Evolutionists 2. Desmond, R., Crocs may have originated creationists and other long-agers who call the problem ‘stasis’, but stasis is in Australia, Breaking News 14 June 2006, try to relegate the Neandertals to a not a problem for biblical creation—it <www.news.com.au/story/print/0,10119,194 69770,00.html>. less-than-human status), the Romanian predicts it. fragments showed a mosaic of Neander- From a biblical perspective, the 3. Salisbury et al., ref. 1, p. 2. tal and modern human characteristics. floodwaters were still rising on the 4. Woodmorappe, J., The Mythology of Modern For example, the skull had an occipital earth when these animals perished.5 Dating Methods, Institute for Creation Re- search, El Cajon, CA, 1999. bun at the back of the skull, and muscle They were still rising because animal attachment scars were present at the trackways are present throughout the 5. Walker. T., The Great Artesian Basin, Australia, Journal of Creation 10(3):379–390, 1996. back of the jaw. These characteristics, strata in western Queensland. At Lark in particular, are very Neandertal-like. Quarry near Winton they all tend to run 6. Oard, M.J., In the footsteps of giants, Creation 25(2):10–12, 2003. In addition, upper jaw, lower jaw and in the same direction, suggesting they shoulder blade fragments appeared to were all fleeing from the same disaster.6 7. Day, R.W. et al., Queensland Geology: A Companion Volume to the 1:250 000 scale reveal a blending of features. This Trackways would not be expected after geological map (1975), Geological Survey of evidence of interbreeding shows that the the floodwaters peaked because all the Queensland, Publication 383, p. 135, 1983. two groups ‘saw each other as socially terrestrial animals would have perished 8. Day et al., ref. 7, p. 138. appropriate mates’, Trinkaus said. by that time. 9. Salisbury et al., ref. 1, p. 3. This would not be the first Nean- The Winton Formation has been dertal/modern human skeletal mosaic interpreted within uniformitarian think- ever discovered. In 1998, Trinkaus and ing as a lacustrine (lake) and low-energy his team unearthed the Lagar Velho I JOURNAL OF CREATION 21(1) 2007 7.
Recommended publications
  • Craniofacial Morphology of Simosuchus Clarki (Crocodyliformes: Notosuchia) from the Late Cretaceous of Madagascar
    Society of Vertebrate Paleontology Memoir 10 Journal of Vertebrate Paleontology Volume 30, Supplement to Number 6: 13–98, November 2010 © 2010 by the Society of Vertebrate Paleontology CRANIOFACIAL MORPHOLOGY OF SIMOSUCHUS CLARKI (CROCODYLIFORMES: NOTOSUCHIA) FROM THE LATE CRETACEOUS OF MADAGASCAR NATHAN J. KLEY,*,1 JOSEPH J. W. SERTICH,1 ALAN H. TURNER,1 DAVID W. KRAUSE,1 PATRICK M. O’CONNOR,2 and JUSTIN A. GEORGI3 1Department of Anatomical Sciences, Stony Brook University, Stony Brook, New York, 11794-8081, U.S.A., [email protected]; [email protected]; [email protected]; [email protected]; 2Department of Biomedical Sciences, Ohio University College of Osteopathic Medicine, Athens, Ohio 45701, U.S.A., [email protected]; 3Department of Anatomy, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, Arizona 85308, U.S.A., [email protected] ABSTRACT—Simosuchus clarki is a small, pug-nosed notosuchian crocodyliform from the Late Cretaceous of Madagascar. Originally described on the basis of a single specimen including a remarkably complete and well-preserved skull and lower jaw, S. clarki is now known from five additional specimens that preserve portions of the craniofacial skeleton. Collectively, these six specimens represent all elements of the head skeleton except the stapedes, thus making the craniofacial skeleton of S. clarki one of the best and most completely preserved among all known basal mesoeucrocodylians. In this report, we provide a detailed description of the entire head skeleton of S. clarki, including a portion of the hyobranchial apparatus. The two most complete and well-preserved specimens differ substantially in several size and shape variables (e.g., projections, angulations, and areas of ornamentation), suggestive of sexual dimorphism.
    [Show full text]
  • From the Lower Cretaceous of Lightning Ridge, New South Wales, Australia
    Isolated teeth of Anhangueria (Pterosauria: Pterodactyloidea) from the Lower Cretaceous of Lightning Ridge, New South Wales, Australia Tom Brougham1, Elizabeth T. Smith2 and Phil R. Bell1 1 School of Environmental and Rural Science, University of New England, Armidale, New South Wales, Australia 2 Australian Opal Centre, Lightning Ridge, New South Wales, Australia ABSTRACT The fossil record of Australian pterosaurs is sparse, consisting of only a small number of isolated and fragmentary remains from the Cretaceous of Queensland, Western Australia and Victoria. Here, we describe two isolated pterosaur teeth from the Lower Cretaceous (middle Albian) Griman Creek Formation at Lightning Ridge (New South Wales) and identify them as indeterminate members of the pterodactyloid clade Anhangueria. This represents the first formal description of pterosaur material from New South Wales. The presence of one or more anhanguerian pterosaurs at Lightning Ridge correlates with the presence of `ornithocheirid' and Anhanguera-like pterosaurs from the contemporaneous Toolebuc Formation of central Queensland and the global distribution attained by ornithocheiroids during the Early Cretaceous. The morphology of the teeth and their presence in the estuarine- and lacustrine-influenced Griman Creek Formation is likely indicative of similar life habits of the tooth bearer to other members of Anhangueria. Subjects Paleontology, Taxonomy Keywords Pterosauria, Cretaceous, Australia, Teeth Submitted 11 January 2017 Accepted 31 March 2017 Published 3 May 2017 INTRODUCTION Corresponding author Tom Brougham, Pterosaurs first appeared in the Late Triassic and diversified rapidly into the Jurassic. [email protected] At the peak of their diversity in the Cretaceous, pterosaurs where present on all Academic editor Andrew Farke continents, including Antarctica (Barrett et al., 2008; Upchurch et al., 2015).
    [Show full text]
  • CROCODYLIFORMES, MESOEUCROCODYLIA) from the EARLY CRETACEOUS of NORTH-EAST BRAZIL by DANIEL C
    [Palaeontology, Vol. 52, Part 5, 2009, pp. 991–1007] A NEW NEOSUCHIAN CROCODYLOMORPH (CROCODYLIFORMES, MESOEUCROCODYLIA) FROM THE EARLY CRETACEOUS OF NORTH-EAST BRAZIL by DANIEL C. FORTIER and CESAR L. SCHULTZ Departamento de Paleontologia e Estratigrafia, UFRGS, Avenida Bento Gonc¸alves 9500, 91501-970 Porto Alegre, C.P. 15001 RS, Brazil; e-mails: [email protected]; [email protected] Typescript received 27 March 2008; accepted in revised form 3 November 2008 Abstract: A new neosuchian crocodylomorph, Susisuchus we recovered the family name Susisuchidae, but with a new jaguaribensis sp. nov., is described based on fragmentary but definition, being node-based group including the last com- diagnostic material. It was found in fluvial-braided sedi- mon ancestor of Susisuchus anatoceps and Susisuchus jagua- ments of the Lima Campos Basin, north-eastern Brazil, ribensis and all of its descendents. This new species 115 km from where Susisuchus anatoceps was found, in corroborates the idea that the origin of eusuchians was a rocks of the Crato Formation, Araripe Basin. S. jaguaribensis complex evolutionary event and that the fossil record is still and S. anatoceps share a squamosal–parietal contact in the very incomplete. posterior wall of the supratemporal fenestra. A phylogenetic analysis places the genus Susisuchus as the sister group to Key words: Crocodyliformes, Mesoeucrocodylia, Neosuchia, Eusuchia, confirming earlier studies. Because of its position, Susisuchus, new species, Early Cretaceous, north-east Brazil. B razilian crocodylomorphs form a very expressive Turonian–Maastrichtian of Bauru basin: Adamantinasu- record of Mesozoic vertebrates, with more than twenty chus navae (Nobre and Carvalho, 2006), Baurusuchus species described up to now.
    [Show full text]
  • O Regist Regi Tro Fós Esta Istro De Sil De C Ado Da a E
    UNIVERSIDADE FEDERAL DO RIO GRANDE DOO SUL INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOCIÊNCIAS O REGISTRO FÓSSIL DE CROCODILIANOS NA AMÉRICA DO SUL: ESTADO DA ARTE, ANÁLISE CRÍTICAA E REGISTRO DE NOVOS MATERIAIS PARA O CENOZOICO DANIEL COSTA FORTIER Porto Alegre – 2011 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOCIÊNCIAS O REGISTRO FÓSSIL DE CROCODILIANOS NA AMÉRICA DO SUL: ESTADO DA ARTE, ANÁLISE CRÍTICA E REGISTRO DE NOVOS MATERIAIS PARA O CENOZOICO DANIEL COSTA FORTIER Orientador: Dr. Cesar Leandro Schultz BANCA EXAMINADORA Profa. Dra. Annie Schmalz Hsiou – Departamento de Biologia, FFCLRP, USP Prof. Dr. Douglas Riff Gonçalves – Instituto de Biologia, UFU Profa. Dra. Marina Benton Soares – Depto. de Paleontologia e Estratigrafia, UFRGS Tese de Doutorado apresentada ao Programa de Pós-Graduação em Geociências como requisito parcial para a obtenção do Título de Doutor em Ciências. Porto Alegre – 2011 Fortier, Daniel Costa O Registro Fóssil de Crocodilianos na América Do Sul: Estado da Arte, Análise Crítica e Registro de Novos Materiais para o Cenozoico. / Daniel Costa Fortier. - Porto Alegre: IGEO/UFRGS, 2011. [360 f.] il. Tese (doutorado). - Universidade Federal do Rio Grande do Sul. Instituto de Geociências. Programa de Pós-Graduação em Geociências. Porto Alegre, RS - BR, 2011. 1. Crocodilianos. 2. Fósseis. 3. Cenozoico. 4. América do Sul. 5. Brasil. 6. Venezuela. I. Título. _____________________________ Catalogação na Publicação Biblioteca Geociências - UFRGS Luciane Scoto da Silva CRB 10/1833 ii Dedico este trabalho aos meus pais, André e Susana, aos meus irmãos, Cláudio, Diana e Sérgio, aos meus sobrinhos, Caio, Júlia, Letícia e e Luíza, à minha esposa Ana Emília, e aos crocodilianos, fósseis ou viventes, que tanto me fascinam.
    [Show full text]
  • Phylogenetic Analysis of a New Morphological Dataset Elucidates the Evolutionary History of Crocodylia and Resolves the Long-Standing Gharial Problem
    Phylogenetic analysis of a new morphological dataset elucidates the evolutionary history of Crocodylia and resolves the long-standing gharial problem Jonathan P. Rio1 and Philip D. Mannion2* 1Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK 2Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK *Corresponding author (email address: [email protected]) ABSTRACT First appearing in the latest Cretaceous, Crocodylia is a clade of mostly semi-aquatic, predatory reptiles, defined by the last common ancestor of extant alligators, caimans, crocodiles, and gharials. Despite large strides in resolving extant and fossil crocodylian interrelationships over the last three decades, several outstanding problems persist in crocodylian systematics. Most notably, there has been persistent discordance between morphological and molecular datasets surrounding the affinities of the extant gharials, Gavialis gangeticus and Tomistoma schlegelii. Whereas molecular data consistently support a sister relationship between the extant gharials, which appear to be more closely related to crocodylids than to alligatorids, morphological data indicate that Gavialis is the sister taxon to all other extant crocodylians. Here we present a new morphological dataset for Crocodylia, based on a critical reappraisal of published crocodylian character data matrices and extensive first-hand observations of a global sample of crocodylians. This comprises the most taxonomically comprehensive crocodylian dataset to date (144 OTUs scored for 330 characters) and includes a new, illustrated character list with modifications to the construction and scoring of characters, and 46 novel characters. Under a maximum parsimony framework, our analyses robustly recover Gavialis as more closely related to Tomistoma than to other extant crocodylians for the first time based on morphology alone.
    [Show full text]
  • Environmental Drivers of Body Size Evolution in Crocodile-Line Archosaurs ✉ Maximilian T
    ARTICLE https://doi.org/10.1038/s42003-020-01561-5 OPEN Environmental drivers of body size evolution in crocodile-line archosaurs ✉ Maximilian T. Stockdale1 & Michael J. Benton 2 1234567890():,; Ever since Darwin, biologists have debated the relative roles of external and internal drivers of large-scale evolution. The distributions and ecology of living crocodilians are controlled by environmental factors such as temperature. Crocodilians have a rich history, including amphibious, marine and terrestrial forms spanning the past 247 Myr. It is uncertain whether their evolution has been driven by extrinsic factors, such as climate change and mass extinctions, or intrinsic factors like sexual selection and competition. Using a new phylogeny of crocodilians and their relatives, we model evolutionary rates using phylogenetic com- parative methods. We find that body size evolution follows a punctuated, variable rate model of evolution, consistent with environmental drivers of evolution, with periods of stability interrupted by periods of change. Regression analyses show warmer environmental tem- peratures are associated with high evolutionary rates and large body sizes. We confirm that environmental factors played a significant role in the evolution of crocodiles. 1 School of Geographical Sciences, University Road, Bristol BS8 1RL, United Kingdom. 2 School of Earth Sciences, Life Sciences Building, 24 Tyndall Avenue, ✉ Bristol BS8 1TQ, United Kingdom. email: [email protected] COMMUNICATIONS BIOLOGY | (2021) 4:38 | https://doi.org/10.1038/s42003-020-01561-5 | www.nature.com/commsbio 1 ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-01561-5 rocodiles might be interpreted as something of an ana- cooling throughout the later Cenozoic.
    [Show full text]
  • Revisão Filogenética De Mesoeucrocodylia: Irradiação Basal E
    UNIVERSIDADE DE SÃO PAULO FFCLRP - DEPARTAMENTO DE BIOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA COMPARADA Revisão filogenética de Mesoeucrocodylia: irradiação basal e principais controvérsias Felipe Chinaglia Montefeltro Tese apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da USP, como parte das exigências para a obtenção do título de Doutor em Ciências, Área: Biologia Comparada. RIBEIRÃO PRETO - SP 2013 UNIVERSIDADE DE SÃO PAULO FFCLRP - DEPARTAMENTO DE BIOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA COMPARADA Revisão filogenética de Mesoeucrocodylia: irradiação basal e principais controvérsias Felipe Chinaglia Montefeltro Orientador: Max Cardoso Langer Tese apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da USP, como parte das exigências para a obtenção do título de Doutor em Ciências, Área: Biologia Comparada. RIBEIRÃO PRETO - SP 2013 FICHA CATALOGRÁFICA Montefeltro, Felipe Chinaglia Revisão filogenética de Mesoeucrocodylia: irradiação basal e principais controvérsias. Ribeirão Preto, 2013. 285 p. : il. ; 30 cm Tese de Doutorado, apresentada à Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto/USP. Área de concentração: Biologia Comparada. Orientador: Langer, Max Cardoso. 1. Crocodyliformes. 2. Mesoeucrocodylia 3. Metasuchia. 4. Notosuchia. 5. Pissarrachampsa . 6. Filogenia AGRADECIMENTOS Agradeço ao orientador Max Cardoso Langer pelo auxilio e oportunidade de desenvolver o projeto de doutorado sob sua tutela no Laboratório de Paleontologia da FFCLRP. Agradeço também ao orientador Hans C. E. Larsson pela oportunidade e auxilio durante o tempo desenvolvido no Redpath Museum da McGill University. Agradeço o suporte financeiro deste projeto às instituições: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Programa de Pós- Graduação em Biologia Comparada da FFCLRP e Laboratório de Paleontologia da FFCLRP.
    [Show full text]
  • The Jurassic/Cretaceous Boundary: a Hidden Mass Extinction in Tetrapods?
    The Jurassic/Cretaceous boundary: a hidden mass extinction in tetrapods? Jonathan P. Tennant CID: 00661116 Imperial College London Department of Earth Science and Engineering Thesis submitted to fulfil the requirements for the degree of Doctor of Philosophy and Diploma of Imperial College Image credit: Robert Nicholls (CC BY 4.0). Depicts Sarcosuchus imperator, a giant predatory crocodyliform from the Cretaceous of North Africa. 1 Declaration of originality I declare that the works presented within this thesis are my own, and that all other work is appropriately acknowledged and referenced within. Copyright declaration The copyright of this thesis rests with the author, and it is made available under a Creative Commons Attribution (CC BY 4.0) license. Researchers are free to copy, distribute and transmit this thesis on the condition that it is appropriately attributed. Jonathan Peter Tennant Supervisors: Dr. Philip Mannion (Imperial College London); Prof. Paul Upchurch (University College London); Dr. Mark Sutton (Imperial College London). 2 Acknowledgements First and definitely foremost, I want to extend my greatest thanks to Phil Mannion. As his first PhD student, I am sure he regretted his decision after day one, but stuck with it until the end, and has been a stoic mentor throughout. This project would have been a shadow of what it came to be without his guidance. I am still yet to get him on Twitter though. I am also hugely grateful to Paul Upchurch and Mark Sutton for their input and experience throughout this project. I also could not have completed this project without the encouragement and support from my girlfriend, friends, and family, and am hugely grateful to them.
    [Show full text]
  • (Crocodylomorpha: Neosuchia): Implications for the Rise of Eusuchia
    Zoological Journal of the Linnean Society, 2016, 177, 854–936. With 11 figures Evolutionary relationships and systematics of Atoposauridae (Crocodylomorpha: Neosuchia): implications for the rise of Eusuchia JONATHAN P. TENNANT1*, PHILIP D. MANNION1 and PAUL UPCHURCH2 1Department of Earth Science and Engineering, Imperial College London, South Kensington, London SW7 2AZ, UK 2Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK Received 18 August 2015; revised 5 January 2016; accepted for publication 19 January 2016 Atoposaurids are a group of small-bodied, extinct crocodyliforms, regarded as an important component of Jurassic and Cretaceous Laurasian semi-aquatic ecosystems. Despite the group being known for over 150 years, the taxonomic composition of Atoposauridae and its position within Crocodyliformes are unresolved. Uncertainty revolves around their placement within Neosuchia, in which they have been found to occupy a range of positions from the most basal neosuchian clade to more crownward eusuchians. This problem stems from a lack of adequate taxonomic treatment of specimens assigned to Atoposauridae, and key taxa such as Theriosuchus have become taxonomic ‘waste baskets’. Here, we incorporate all putative atoposaurid species into a new phylogenetic data matrix comprising 24 taxa scored for 329 characters. Many of our characters are heavily revised or novel to this study, and several ingroup taxa have never previously been included in a phylogenetic analysis. Parsimony and Bayesian approaches both recover Atoposauridae as a basal clade within Neosuchia, more stemward than coelognathosuchians, bernissartiids, and paralligatorids. Atoposauridae is a much more exclusive clade than previously recognized, comprising just three genera (Alligatorellus, Alligatorium, and Atoposaurus) that were restricted to the Late Jurassic of western Europe, and went extinct at the Jurassic/Cretaceous boundary.
    [Show full text]
  • Publications.Html”
    CROCODILE SPECIALIST GROUP NEWSLETTER VOLUME 34 No. 1 • JANUARY 2015 - MARCH 2015 IUCN • Species Survival Commission CSG Newsletter Subscription The CSG Newsletter is produced and distributed by the Crocodile CROCODILE Specialist Group of the Species Survival Commission (SSC) of the IUCN (International Union for Conservation of Nature). The CSG Newsletter provides information on the conservation, status, news and current events concerning crocodilians, and on the SPECIALIST activities of the CSG. The Newsletter is distributed to CSG members and to other interested individuals and organizations. All Newsletter recipients are asked to contribute news and other materials. The CSG Newsletter is available as: • Hard copy (by subscription - see below); and/or, • Free electronic, downloadable copy from “http://www.iucncsg. GROUP org/pages/Publications.html”. Annual subscriptions for hard copies of the CSG Newsletter may be made by cash ($US55), credit card ($AUD55) or bank transfer ($AUD55). Cheques ($USD) will be accepted, however due to increased bank charges associated with this method of payment, cheques are no longer recommended. A Subscription Form can be NEWSLETTER downloaded from “http://www.iucncsg.org/pages/Publications. html”. All CSG communications should be addressed to: CSG Executive Office, P.O. Box 530, Karama, NT 0813, Australia. VOLUME 34 Number 1 Fax: +61.8.89470678. E-mail: [email protected]. JANUARY 2015 - MARCH 2015 PATRONS IUCN - Species Survival Commission We thank all patrons who have donated to the CSG and its conservation program over many years, and especially to CHAIRMAN: donors in 2014-2015 (listed below). Professor Grahame Webb PO Box 530, Karama, NT 0813, Australia Big Bull Crocs! ($15,000 or more annually or in aggregate donations) Japan, JLIA - Japan Leather & Leather Goods Industries EDITORIAL AND EXECUTIVE OFFICE: Association, CITES Promotion Committee & Japan Reptile PO Box 530, Karama, NT 0813, Australia Leather Industries Association, Tokyo, Japan.
    [Show full text]
  • (Crocodyliformes, Eusuchia): Phylogenetic Implications
    The palate and choanae structure of the Susisuchus anatoceps (Crocodyliformes, Eusuchia): phylogenetic implications Karla J. Leite1,* and Daniel C. Fortier2,* 1 Departamento de Geologia, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil 2 Departamento de Ciências Biológicas, Universidade Federal do Piauí, Floriano, Piauí, Brazil * These authors contributed equally to this work. ABSTRACT Crocodyliformes is a group with a broad fossil record, in which several morphological changes have been documented. Among known transformations the most iconic is perhaps the series of changes seen in the structural evolution of the choanae. The change in the position of the choanae was important during the evolutionary history of the Crocodyliformes. This structure is relevant in the phylogenetic position of many crocodyliforms. The new skull of Susisuchus anatoceps from the Crato Formation of the Santana Group (Lower Cretaceous) is described and the preservation in the ventral view allows character encoding not yet observed for the species. The new specimen shows a typical eusuchian palate for Susisuchus anatoceps, in which the choana is fully enclosed by the pterygoid. The Susisuchidae clade has been placed in different phylogenetic positions: as a sister group of Eusuchia, advanced Neosuchia and in Eusuchia. In Isisfordia there are reports that the choana of this taxon is or is not fully enclosed by the pterygoid. The encoding of the ventral characters of S. anatoceps places Susisuchidae in Eusuchia. However, this position must be further studied, since the matrices showed fragility in the reconstitution of the Neosuchia–Eusuchia transition. Subjects Paleontology Submitted 22 February 2018 Keywords Crocodyliformes, Eusuchia, Lower Cretaceous, Araripe Basin Accepted 12 July 2018 Published 10 August 2018 Corresponding author INTRODUCTION Karla J.
    [Show full text]
  • The Phylogenetic Relationships of Neosuchian Crocodiles and Their
    applyparastyle “fig//caption/p[1]” parastyle “FigCapt” Zoological Journal of the Linnean Society, 2019, XX, 1–34. With 11 figures. The phylogenetic relationships of neosuchian crocodiles Downloaded from https://academic.oup.com/zoolinnean/advance-article-abstract/doi/10.1093/zoolinnean/zlz117/5601086 by guest on 27 January 2020 and their implications for the convergent evolution of the longirostrine condition SEBASTIAN S. GROH1,2,*, , PAUL UPCHURCH1, , PAUL M. BARRETT2, and JULIA J. DAY3, 1Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, UK 2Department of Earth Sciences, Natural History Museum, Cromwell Road, London, SW7 5BD, UK 3Department of Genetics, Environment and Evolution, University College London, Gower Street, London, WC1E 6BT, UK Received 19 April 2019; revised 28 August 2019; accepted for publication 7 September 2019 Since their origin in the Late Triassic, crocodylomorphs have had a long history of evolutionary change. Numerous studies examined their phylogeny, but none have attempted to unify their morphological characters into a single, combined dataset. Following a comprehensive review of published character sets, we present a new dataset for the crocodylomorph clade Neosuchia consisting of 569 morphological characters for 112 taxa. For the first time in crocodylian phylogenetic studies, quantitative variation was treated as continuous data (82 characters). To provide the best estimate of neosuchian relationships, and to investigate the origins of longirostry, these data were analysed using a variety of approaches. Our results show that equally weighted parsimony and Bayesian methods cluster unrelated longirostrine forms together, producing a topology that conflicts strongly with their stratigraphic distributions. By contrast, applying extended implied weighting improves stratigraphic congruence and removes longirostrine clustering.
    [Show full text]