DIVERSIFICATION of Stigmaphyllon A. JUSS

Total Page:16

File Type:pdf, Size:1020Kb

DIVERSIFICATION of Stigmaphyllon A. JUSS DIVERSIFICATION OF Stigmaphyllon A. JUSS. (MALPIGHIACEAE) IN THE ATLANTIC FOREST Rafael Felipe de Almeida1*, Uiara Catharina Soares e Silva2 & Cássio van den Berg1 1 Universidade Estadual de Feira de Santana, Departamento de Ciências Biológicas, Programa de Pós-Graduação em Botânica, Av. Transnordestina s/n, Novo Horizonte, 44036-900, Feira de Santana, Bahia, Brasil. [email protected] 2 Instituto Tecnológico Vale - Desenvolvimento Sustentável, Rua Boaventura da Silva, 955, Umarizal, 66055-090, Belém, Pará, Brasil. Stigmaphyllon A. Juss. is the only genus of Malpighiaceae to occupy the tropics worldwide, comprising ca. 120 species commonly found in Rain Forests. The genus is currently divided into two subgenera based on morphological and molecular evidence. In previous molecular phylogenies for the family, Stigmaphyllon was recovered as monophyletic, but its type species has never been sampled. Thus, in order to test the monophyly of Stigmaphyllon and understand its diversification in the Atlantic Forest, we present a dated molecular phylogeny for it based on two nuclear (ETS and PHYC) markers. A total of 25 species of Stigmaphyllon were sampled, including its type specimen, and seven species from outgroups Banisteriopsis (4), Bronwenia (1) Diplopterys (1), and Peixotoa (1). A matrix with a combined nuclear dataset was elaborated and analyzed using the principle of Maximum Parsimony (MP) and Bayesian Inference (BI). Stigmaphyllon was recovered as monophyletic and well supported by BI and MP analyses, and its ancestor diverged ca. 24 ma. Nine main lineages were recovered in the genus as moderately to highly supported by both analysis: clade 1 (15 ma) is represented by two species from rocky fields, Seasonally Dry Tropical Forest (SDTF), and restingas from eastern Brazil; clade 2 (12 ma) is represented by three species commonly found in SDTF and restingas in eastern Brazil; clade 3 (13 ma) is represented by two species of the paleotropic subgenus Ryssopterys and a single species from neotropical restingas of subgenus Stigmaphyllon; clade 4 (6 ma) is represented by an Amazonian and an Atlantic Forest species; clade 5 (14 ma) is represented by a single early diverging species from savannas of Central Brazil; clade 6 (7 ma) is represented by four species endemic to southern and central Atlantic Forest; clade 7 (0.5 ma) is represented by two Amazonian species; clade 8 (10 ma) is represented by a single species endemic to the SDTF; and clade 9 (9.5 ma) is represented by seven species endemic to the Atlantic Forest. We demonstrate the paraphyly of S. subg. Stigmaphyllon, and show that the genus colonized the Atlantic Forest at least three times at ca. 24 ma, 14.5 ma and 9.5 ma. Our results indicate that once additional species and genes are sampled, a new infrageneric classification in the genus will be necessary, as well as a comprehensive biogeographic study in order to understand how Stigmaphyllon conquered the tropics (Capes, CNPq, Fapesb, Smithsonian Institution). Keywords: Biogeography, Evolution, Malpighiales, Neotropical flora, Phylogenetics, Taxonomy. .
Recommended publications
  • Floristic and Ecological Characterization of Habitat Types on an Inselberg in Minas Gerais, Southeastern Brazil
    Acta Botanica Brasilica - 31(2): 199-211. April-June 2017. doi: 10.1590/0102-33062016abb0409 Floristic and ecological characterization of habitat types on an inselberg in Minas Gerais, southeastern Brazil Luiza F. A. de Paula1*, Nara F. O. Mota2, Pedro L. Viana2 and João R. Stehmann3 Received: November 21, 2016 Accepted: March 2, 2017 . ABSTRACT Inselbergs are granitic or gneissic rock outcrops, distributed mainly in tropical and subtropical regions. Th ey are considered terrestrial islands because of their strong spatial and ecological isolation, thus harboring a set of distinct plant communities that diff er from the surrounding matrix. In Brazil, inselbergs scattered in the Atlantic Forest contain unusually high levels of plant species richness and endemism. Th is study aimed to inventory species of vascular plants and to describe the main habitat types found on an inselberg located in the state of Minas Gerais, in southeastern Brazil. A total of 89 species of vascular plants were recorded (belonging to 37 families), of which six were new to science. Th e richest family was Bromeliaceae (10 spp.), followed by Cyperaceae (seven spp.), Orchidaceae and Poaceae (six spp. each). Life forms were distributed in diff erent proportions between habitats, which suggested distinct microenvironments on the inselberg. In general, habitats under similar environmental stress shared common species and life-form proportions. We argue that fl oristic inventories are still necessary for the development of conservation strategies and management of the unique vegetation on inselbergs in Brazil. Keywords: endemism, granitic and gneissic rock outcrops, life forms, terrestrial islands, vascular plants occurring on rock outcrops within the Atlantic Forest Introduction domain, 416 are endemic to these formations (Stehmann et al.
    [Show full text]
  • Stigmaphyllon Caatingicola (Malpighiaceae), a New Species from Seasonally Dry Tropical Forests in Brazil
    Phytotaxa 174 (2): 082–088 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2014 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.174.2.2 Stigmaphyllon caatingicola (Malpighiaceae), a new species from Seasonally Dry Tropical Forests in Brazil RAFAEL FELIPE DE ALMEIDA1* & ANDRÉ MÁRCIO AMORIM1,2,3 1 Programa de Pós-Graduação em Botânica, Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Av. Transnordestina s/n, 44036-900, Feira de Santana, Bahia, Brazil 2 Departamento de Ciências Biológicas. Universidade Estadual de Santa Cruz, Km 16 rod. Ilhéus-Itabuna, 45600-970, Ilhéus, Bahia, Brazil 3 Herbário Centro de Pesquisas do Cacau, CEPEC, Rodovia Ilhéus-Itabuna, Km 22, 45650-000, Ilhéus, Bahia, Brazil * Corresponding author:[email protected] Abstract Stigmaphyllon caatingicola is described and illustrated. We also provide a distribution map, and comments on species dis- tributions, conservation and taxonomy. This species is distinguished from Stigmaphyllon urenifolium by its deciduous leaves when flowering, lamina membranaceous, entire to apically trilobed, abaxially tomentose, with hairs deciduous in patches, one latero-anterior petal with reddish macula, sepals with darkish hairs, styles glabrous, stigma foliolate, and samaroid meri- carps densely sericeous, with a dorsal wing horizontally orientated. Key words: Caatinga, Malpighiales, Ryssopterys, Taxonomy Resumo Stigmaphyllon caatingicola é descrito e ilustrado. Em adição,
    [Show full text]
  • Malpighiaceae De Colombia: Patrones De Distribución, Riqueza, Endemismo Y Diversidad Filogenética
    DARWINIANA, nueva serie 9(1): 39-54. 2021 Versión de registro, efectivamente publicada el 16 de marzo de 2021 DOI: 10.14522/darwiniana.2021.91.923 ISSN 0011-6793 impresa - ISSN 1850-1699 en línea MALPIGHIACEAE DE COLOMBIA: PATRONES DE DISTRIBUCIÓN, RIQUEZA, ENDEMISMO Y DIVERSIDAD FILOGENÉTICA Diego Giraldo-Cañas ID Herbario Nacional Colombiano (COL), Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá D. C., Colombia; [email protected] (autor corresponsal). Abstract. Giraldo-Cañas, D. 2021. Malpighiaceae from Colombia: Patterns of distribution, richness, endemism, and phylogenetic diversity. Darwiniana, nueva serie 9(1): 39-54. Malpighiaceae constitutes a family of 77 genera and ca. 1300 species, distributed in tropical and subtropical regions of both hemispheres. They are mainly diversified in the American continent and distributed in a wide range of habitats and altitudinal gradients. For this reason, this family can be a model plant group to ecological and biogeographical analyses, as well as evolutive studies. In this context, an analysis of distribution, richness, endemism and phylogenetic diversity of Malpighiaceae in natural regions and their altitudinal gradients was undertaken. Malpighiaceae are represented in Colombia by 34 genera and 246 species (19.1% of endemism). Thus, Colombia and Brazil (44 genera, 584 species, 61% of endemism) are the two richest countries on species of this family. The highest species richness and endemism in Colombia is found in the lowlands (0-500 m a.s.l.: 212 species, 28 endemics); only ten species are distributed on highlands (2500-3200 m a.s.l.). Of the Malpighiaceae species in Colombia, Heteropterys leona and Stigmaphyllon bannisterioides have a disjunct amphi-Atlantic distribution, and six other species show intra-American disjunctions.
    [Show full text]
  • PROCEEDINGS of the HAWAIIAN ENTOMOLOGICAL SOCIETY for 1978
    PROCEEDINGS of the HAWAIIAN ENTOMOLOGICAL SOCIETY for 1978 VOL XXIII No. 3 February 1981 Information for Contributors Manuscripts for publication, proof, and other editorial matters should be addressed to: Editor: Hawaiian Entomological Society c/o Department of Entomology University of Hawaii 3050 Maile Way, Honolulu, Hawaii 96822 Manuscripts should not exceed 40 typewritten pages, including illustrations (approximately 20 printed pages). Longer manuscripts may be rejected on the basis of length, or be subject to additional page charges. Typing — Manuscripts must be typewritten on one side of white bond paper, &Vi x 11 inches. Double space all text, including tables, footnotes, and reference lists. Margins should be a minimum of one inch. Underscore only where italics are intended in body of text, not in headings. Geographical names, authors names, and names of plants and animals should be spelled out in full. Except for the first time they are used, scientific names of organisms may be abbreviated by using the first letter of the generic name plus the full specific name. Submit original typescript and one copy. Pages should be numbered consecutively. Place footnotes at the bottom of the manuscript page on which they appear, with a dividing line. Place tables separately, not more than one table per manuscript page, at end of manuscript. Make a circled notation in margin of manuscript at approximate location where placement of a table is desired. Use only horizontal lines in tables. Illustrations — Illustrations should be planned to fit the type page of 4'/2 x 7 inches, with appropriate space allowed for captions. Number all figures consecutively with Arabic numerals.
    [Show full text]
  • Phylogeny of Malpighiaceae: Evidence from Chloroplast NDHF and TRNL-F Nucleotide Sequences
    Phylogeny of Malpighiaceae: Evidence from Chloroplast NDHF and TRNL-F Nucleotide Sequences The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Davis, Charles C., William R. Anderson, and Michael J. Donoghue. 2001. Phylogeny of Malpighiaceae: Evidence from chloroplast NDHF and TRNL-F nucleotide sequences. American Journal of Botany 88(10): 1830-1846. Published Version http://dx.doi.org/10.2307/3558360 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:2674790 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA American Journal of Botany 88(10): 1830±1846. 2001. PHYLOGENY OF MALPIGHIACEAE: EVIDENCE FROM CHLOROPLAST NDHF AND TRNL-F NUCLEOTIDE SEQUENCES1 CHARLES C. DAVIS,2,5 WILLIAM R. ANDERSON,3 AND MICHAEL J. DONOGHUE4 2Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, Massachusetts 02138 USA; 3University of Michigan Herbarium, North University Building, Ann Arbor, Michigan 48109-1057 USA; and 4Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, Connecticut 06520 USA The Malpighiaceae are a family of ;1250 species of predominantly New World tropical ¯owering plants. Infrafamilial classi®cation has long been based on fruit characters. Phylogenetic analyses of chloroplast DNA nucleotide sequences were analyzed to help resolve the phylogeny of Malpighiaceae. A total of 79 species, representing 58 of the 65 currently recognized genera, were studied.
    [Show full text]
  • Breeding System and Pollination by Mimicry of the Orchid Tolumnia Guibertiana in Western Cubapsbi 322 163..173
    Plant Species Biology (2011) 26, 163–173 doi: 10.1111/j.1442-1984.2011.00322.x Breeding system and pollination by mimicry of the orchid Tolumnia guibertiana in Western Cubapsbi_322 163..173 ÁNGEL VALE,* LUIS NAVARRO,* DANNY ROJAS* and JULIO C. ÁLVAREZ† *Department of Vegetal Biology, University of Vigo, Campus As Lagoas-Marcosende, Vigo, Spain and †Faculty of Biology, University of Havana, Vedado, Cuba Abstract The mimicry of malpighiaceous oil-flowers appears to be a recurrent pollination strategy among many orchids of the subtribe Oncidiinae. These two plant groups are mainly pollinated by oil-gathering bees, which also specialize in pollen collection by buzzing. In the present study, the floral ecology of the rewardless orchid Tolumnia guibertiana (Onci- diinae) was studied for the first time. The orchid was self-incompatible and completely dependent on oil-gathering female bees (Centris poecila) for fruit production. This bee species was also the pollinator of two other yellow-flowered plants in the area: the pollen and oil producing Stigmaphyllon diversifolium (Malpighiaceae) and the polliniferous and buzzing-pollinated Ouratea agrophylla (Ochnaceae). To evaluate whether this system is a case of mimetism, we observed pollinator visits to flowers of the three plant species and compared the floral morphometrics of these flowers. The behavior, preferences and move- ment patterns of Centris bees among these plants, as well as the morphological data, suggest that, as previously thought, flowers of T. guibertiana mimic the Malpighiaceae S. diversifolium. However, orchid pollination in one of the studied populations appears to depend also on the presence of O. agrophylla. Moreover, at the two studied populations, male and female pollination successes of T.
    [Show full text]
  • Leaf Anatomy As an Additional Taxonomy Tool for 16 Species of Malpighiaceae Found in the Cerrado Area (Brazil)
    Plant Syst Evol (2010) 286:117–131 DOI 10.1007/s00606-010-0268-3 ORIGINAL ARTICLE Leaf anatomy as an additional taxonomy tool for 16 species of Malpighiaceae found in the Cerrado area (Brazil) Josiane Silva Arau´jo • Ariste´a Alves Azevedo • Luzimar Campos Silva • Renata Maria Strozi Alves Meira Received: 17 October 2008 / Accepted: 24 January 2010 / Published online: 14 April 2010 Ó Springer-Verlag 2010 Abstract This work describes the leaf anatomy of 16 classification based on winged or unwinged fruit is artifi- species belonging to three genera of the Malpighiaceae cial (Anderson 1978). It is difficult to study this family family found in the Cerrado (Minas Gerais State, Brazil). primarily because of its large number of species, nomen- The scope of this study was to support the generic delim- clatural problems, and difficulties in identification by tax- itation by contributing to the identification of the species onomists. For example, glandular calyces are common and constructing a dichotomous identification key that among the neotropical Malpighiaceae, but it is possible includes anatomical characters. The taxonomic characters to find eglandular calyces in species within the genera that were considered to be the most important and used in Banisteriopsis, Byrsonima, Galphimia, and Pterandra the identification key for the studied Malpighiaceae species (Anderson 1990), making it difficult to distinguish these were as follows: the presence and location of glands; genera by using this morphological character. Such issues presence of phloem in the medullary region of the midrib; arise, in particular, because of the morphological vari- mesophyll type; presence and type of trichomes; and ability and species synonymies (Gates 1982; Makino- presence, quantity, and disposition of accessory bundles in Watanabe et al.
    [Show full text]
  • A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname
    Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed (Grensgebergte and Kasikasima) of Southeastern Suriname Editors: Leeanne E. Alonso and Trond H. Larsen 67 CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION Rapid Assessment Program A Rapid Biological Assessment of the Upper Palumeu River Watershed RAP (Grensgebergte and Kasikasima) of Southeastern Suriname Bulletin of Biological Assessment 67 Editors: Leeanne E. Alonso and Trond H. Larsen CONSERVATION INTERNATIONAL - SURINAME CONSERVATION INTERNATIONAL GLOBAL WILDLIFE CONSERVATION ANTON DE KOM UNIVERSITY OF SURINAME THE SURINAME FOREST SERVICE (LBB) NATURE CONSERVATION DIVISION (NB) FOUNDATION FOR FOREST MANAGEMENT AND PRODUCTION CONTROL (SBB) SURINAME CONSERVATION FOUNDATION THE HARBERS FAMILY FOUNDATION The RAP Bulletin of Biological Assessment is published by: Conservation International 2011 Crystal Drive, Suite 500 Arlington, VA USA 22202 Tel : +1 703-341-2400 www.conservation.org Cover photos: The RAP team surveyed the Grensgebergte Mountains and Upper Palumeu Watershed, as well as the Middle Palumeu River and Kasikasima Mountains visible here. Freshwater resources originating here are vital for all of Suriname. (T. Larsen) Glass frogs (Hyalinobatrachium cf. taylori) lay their
    [Show full text]
  • Flora Digital De La Selva Explicación Etimológica De Las Plantas De La
    Flora Digital De la Selva Organización para Estudios Tropicales Explicación Etimológica de las Plantas de La Selva J. González A Abarema: El nombre del género tiene su origen probablemente en el nombre vernáculo de Abarema filamentosa (Benth) Pittier, en América del Sur. Fam. Fabaceae. Abbreviata: Pequeña (Stemmadenia abbreviata/Apocynaceae). Abelmoschus: El nombre del género tiene su origen en la palabra árabe “abu-l-mosk”, que significa “padre del almizcle”, debido al olor característico de sus semillas. Fam. Malvaceae. Abruptum: Abrupto, que termina de manera brusca (Hymenophyllum abruptum/Hymenophyllaceae). Abscissum: Cortado o aserrado abruptamente, aludiendo en éste caso a los márgenes de las frondes (Asplenium abscissum/Aspleniaceae). Abuta: El nombre del género tiene su origen en el nombre vernáculo de Abuta rufescens Aubl., en La Guayana Francesa. Fam. Menispermaceae. Acacia: El nombre del género se deriva de la palabra griega acacie, de ace o acis, que significa “punta aguda”, aludiendo a las espinas que son típicas en las plantas del género. Fam. Fabaceae. Acalypha: El nombre del género se deriva de la palabra griega akalephes, un nombre antiguo usado para un tipo de ortiga, y que Carlos Linneo utilizó por la semejanza que poseen el follaje de ambas plantas. Fam. Euphorbiaceae. Acanthaceae: El nombre de la familia tiene su origen en el género Acanthus L., que en griego (acantho) significa espina. Acapulcensis: El nombre del epíteto alude a que la planta es originaria, o se publicó con material procedente de Acapulco, México (Eugenia acapulcensis/Myrtaceae). Achariaceae: El nombre de la familia tiene su origen en el género Acharia Thunb., que a su vez se deriva de las palabras griegas a- (negación), charis (gracia); “que no tiene gracia, desagradable”.
    [Show full text]
  • UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto De Biologia
    UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Biologia TIAGO PEREIRA RIBEIRO DA GLORIA COMO A VARIAÇÃO NO NÚMERO CROMOSSÔMICO PODE INDICAR RELAÇÕES EVOLUTIVAS ENTRE A CAATINGA, O CERRADO E A MATA ATLÂNTICA? CAMPINAS 2020 TIAGO PEREIRA RIBEIRO DA GLORIA COMO A VARIAÇÃO NO NÚMERO CROMOSSÔMICO PODE INDICAR RELAÇÕES EVOLUTIVAS ENTRE A CAATINGA, O CERRADO E A MATA ATLÂNTICA? Dissertação apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título de Mestre em Biologia Vegetal. Orientador: Prof. Dr. Fernando Roberto Martins ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA DISSERTAÇÃO/TESE DEFENDIDA PELO ALUNO TIAGO PEREIRA RIBEIRO DA GLORIA E ORIENTADA PELO PROF. DR. FERNANDO ROBERTO MARTINS. CAMPINAS 2020 Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Biologia Mara Janaina de Oliveira - CRB 8/6972 Gloria, Tiago Pereira Ribeiro da, 1988- G514c GloComo a variação no número cromossômico pode indicar relações evolutivas entre a Caatinga, o Cerrado e a Mata Atlântica? / Tiago Pereira Ribeiro da Gloria. – Campinas, SP : [s.n.], 2020. GloOrientador: Fernando Roberto Martins. GloDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de Biologia. Glo1. Evolução. 2. Florestas secas. 3. Florestas tropicais. 4. Poliploide. 5. Ploidia. I. Martins, Fernando Roberto, 1949-. II. Universidade Estadual de Campinas. Instituto de Biologia. III. Título. Informações para Biblioteca Digital Título em outro idioma: How can chromosome number
    [Show full text]
  • A Preliminary Fioristie and Phytogeographie Analysis of the Woody Fiora of Seasonally Dry Forests in Northern Pern
    A preliminary fioristie and phytogeographie analysis of the woody fiora of seasonally dry forests in northern Pern SAMUEL BRIDGEWATER, R. TOBY PENNINGTON CARLOS A. REYNEL, ANICETO DAZA & TERRENCE D. PENNINGTON ABSTRACT BRlDGEWATER, S., R. T. PENNINGTON, C. A. REYNEL, A. DAZA & T. D. PENNINGTON (2003). A preliminary fioristic and phytogeographic analysis of the woody fiora ofseasonally dry forests in northern Peru. Candollea 58: 129-148. In English, English and French abstracts. Inventory data and general woody fioristic lists are presented for northern Peruvian seasonally dry tropical forests (SDTFs). These preliminary data record ca. 250 woody species for the SDTFs around Tumbes, the inter-andean valleys and around Tarapoto. High levels of endemism are shown in these SDTFs, with between 13-20% of their tree species recognised as narrow regional endemics. A comparison of disjunct SDTF patches on the Pacific coast, in the Maraiion drainage and around Tarapoto reveals only low fioristic similarity (ca. 2-10%) between them, suggesting considerable barriers to species movement. Present day barriers are represented by the Eastern and Western Andean Massifs. However, an examination of the disjunct species distribution patterns suggest that either species migration between the Maraiion drainage and the Pacific region over the Andes has recently occurred via the Porculla Gap, or these areas were once continuous before the uplift of the Andes. A comparison ofPeruvian dry forest plot data with inventories from sou­ thern Ecuador and Bolivia indicates that the northem Peruvian Tumbes and Maraiion dry forests, and those of southern Ecuador may constitute a distinct phytogeographical unit. RÉSUMÉ BRIDGEWATER, S., R. T.
    [Show full text]
  • The Vegetation and Flora of Nauru – 2007
    THE VEGETATION AND FLORA OF NAURU – 2007 Current Status, Cultural Importance and Suggestions for Conservation, Restoration, Rehabilitation, Agroforestry and Food, Health and Economic Security Report prepared for the Ministry of Commerce, Industry and Resources and the Nauru Rehabilitation Corporation, Republic of Nauru R. R. Thaman1, D. C. Hassall2 and Shingo Takeda3 Secretariat of the Pacific Community Land Resources Division Suva, Fiji Islands January 2009 1 Professor of Pacific Islands Biogeography, Faculty of Islands and Oceans, The University of the South Pacific, Suva, Fiji Islands. 2 Director, Yurrah Integrated Landscape Solutions, Windsor, Queensland, Australia. 3 GIS Consultant, School of Geography, Faculty of Islands and Oceans, The University of the South Pacific, Suva, Fiji Islands. © Secretariat of the Pacific Community (SPC) 2009 Original text: English Secretariat of the Pacific Community Cataloguing-in-publication data Thaman, R. R. The vegetation and flora of Nauru – 2007: current status, cultural importance and suggestions for conservation, restoration, rehabilitation, agroforestry and food, health and economic security / R. R. Thaman, D. C. Hassall and Shingo Takeda 1. Plant ecology – Nauru. 2. Botany – Nauru. I. Hassal, D. C. II. Takeda, Shingo. III. Secretariat of the Pacific Community. 581.509685 AACR2 ISBN 978-982-00-0314-9 Secretariat of the Pacific Community Suva Sub-regional Office Private Mail Bag Suva FIJI ISLANDS Tel: +679 337 0733 Fax: +679 337 0021 Email: [email protected] Printed by Quality Print Limited, Suva, Fiji Islands DEDICATION We dedicate this report to the late Joseph Detsimea Audoa, former Minister of Health and Education and Minister of Justice in the Government of Nauru, who, because of his vision and commitment to the culture and environment of Nauru, initiated and provided the financial support for the 1980s study of the flora of Nauru, and to the people of the Republic of Nauru who have had their precious island and its vegetation and flora destroyed and degraded as a result of wars and exploitation beyond their control.
    [Show full text]