03 Beacham FB106(3)

Total Page:16

File Type:pdf, Size:1020Kb

03 Beacham FB106(3) Determination of population structure and stock composition of chum salmon (Oncorhynchus keta) in Russia determined with microsatellites Item Type article Authors Beacham, Terry D.; Varnavskaya, Nataly V.; Le, Khai D.; Wetklo, Michael H. Download date 30/09/2021 13:11:58 Link to Item http://hdl.handle.net/1834/25479 245 Abstract—Variation at 14 microsat- Determination of population structure and stock ellite loci was examined in 34 chum salmon (Oncorhynchus keta) popula- composition of chum salmon (Oncorhynchus keta) tions from Russia and evaluated for its use in the determination of popu- in Russia determined with microsatellites lation structure and stock composi- tion in simulated mixed-stock fishery Terry D. Beacham (contact author) samples. The genetic differentiation Email address: [email protected] index (Fst) over all populations and loci was 0.017, and individual locus Department of Fisheries and Oceans values ranged from 0.003 to 0.054. Pacific Biological Station Regional population structure was Nanaimo, British Columbia, Canada V9T 6N7 observed, and populations from Pri- morye, Sakhalin Island, and north- east Russia were the most distinct. Nataly V. Varnavskaya Microsatellite variation provided Kamchatka Fishery and Oceanography Research Institute evidence of a more fine-scale popu- 18 Naberezhnaya Street lation structure than those that had Petropavlovsk-Kamchatsky 683000, Russia previously been demonstrated with other genetic-based markers. Analy- sis of simulated mixed-stock samples Khai D. Le indicated that accurate and precise Michael H. Wetklo regional estimates of stock composi- tion were produced when the micro- Department of Fisheries and Oceans satellites were used to estimate stock Pacific Biological Station compositions. Microsatellites can be Nanaimo, British Columbia, Canada V9T 6N7 used to determine stock composition in geographically separate Russian coastal chum salmon fisheries and provide a greater resolution of stock composition and population structure than that previously provided with In Asia, there are two distinct types for the determination of origin of in- other techniques. of chum salmon (Oncorhynchus dividuals to large geographic areas keta Walbaum). The early-matur- (Tanaka et al., 1969; Ishida et al., ing or “summer” chum salmon gen- 1989), and in some cases reportedly to erally returns to spawn from June a specific river drainage (Nikolayeva through August in streams border- and Semenets, 1983). Trace elements ing Kamchatka, the Sea of Okhotsk, in otoliths have also been reported the east coast of Sakhalin Island, to be effective for stock identification and the Amur River. Later-matur- of Korean populations (Sohn et al., ing or “autumn” chum salmon gener- 2005). Stock identification techniques ally return to spawn from September based on scale pattern analysis have through November in streams in generally been replaced by applica- Japan, the southern Kuril Islands, tions based on genetic variation, ow- the west coast of Sahkalin Island, ing to the increased resolution that is and the Amur River (Sano, 1966). In possible by applying genetic variation general, summer chum salmon spawn (see example outlined by Wilmot et al. in areas where egg incubation occurs [1998]). Analyses of genetic variation in subsurface stream flow, whereas have been demonstrated to be effec- autumn chum salmon spawn in areas tive in determining salmonid popula- of groundwater upwelling (Volobuyev tion structure, as well as determin- et al., 1990). In major river drain- ing origins of salmon in mixed-stock ages, autumn chum salmon generally fisheries. For Russian chum salmon, migrate further up the drainage to analyses of allozyme variation have spawn than do summer chum salmon, indicated differentiation among popu- and are larger, younger, and more lations on the east and west coasts Manuscript submitted 18 December 2007. Manuscript accepted 25 February 2008. fecund than the summer-run fish of Kamchatka (Winans et al., 1994), Fish. Bull. 106:233–256 (2008). (Sano, 1966). and either marignal (Salmenkova et Determination of the origin of al., 2007) or some level of differentia- The views and opinions expressed or salmon in mixed-stock fisheries is im- tion between populations on Sakhalin implied in this article are those of the portant for effective management. For Island and populations on the main- author and do not necessarily reflect the position of the National Marine chum salmon in Asia, scale pattern land Russian coast (Efremov, 2001). Fisheries Service, NOAA. variation has provided a technique Populations in the far northeastern 246 Fishery Bulletin 106(3) portions of mainland Russia were distinct from popula- satellite variation in chum salmon provides the means tions in western Alaska (Wilmot et al., 1994). Surveys to examine fine-scale population structure (Chen et al., of allozyme variation have generally indicated regional 2005), as well as the means for fine-scale estimation of population differentiation among Russian populations. stock composition in mixed-stock fisheries (Beacham DNA-level markers have substantially increased the et al., in press). Analyses of microsatellite variation in number of polymorphic loci that are available to be Russian chum populations would likely be of value by included in analyses of genetic variation. Initial sur- providing increased resolution of population structure veys of mitochondrial (mt) DNA variation indicated compared with that provided by previous techniques, regional differentiation between Sakhalin Island and and would likely aid in increasing accuracy and preci- mainland populations (Ginatulina, 1992). Later analy- sion of estimates of stock composition in mixed-stock ses of additional mtDNA variation indicated marked fishery samples. differentiation between Japanese and Russian popula- Our objectives were to analyze the variation at 14 tions (Sato et al., 2004), and some differentiation among microsatellite loci to evaluate population structure of Russian populations (Brykov et al., 2003; Polyakova et Russian chum salmon populations from the far north al., 2006). Limited examinations of minisatellite varia- eastern coast of Russia to the more southern areas of tion have indicated some level of differentiation between Primorye and Sakhalin Island, and then to evaluate the Japanese and Russian populations, but have yielded use of these loci for the practical purpose of providing little evidence of regional structure for Russian popula- accurate and precise estimates of stock composition in tions (Taylor et al., 1994; Beacham, 1996). mixed-stock fishery samples. Stock composition evalu- Analyses of microsatellite variation have been ef- ation was accomplished by the analysis of simulated fective for determining salmonid population structure mixed-stock fishery samples. in local areas (Small et al., 1998; Banks et al., 2000; Beacham et al., 2004), as well as broad-scale differences across the Pacific Rim (Beacham et al., 2005, 2006). Materials and methods Microsatellites have also been of considerable value in estimating stock composition in mixed-stock salmon Tissue samples were collected from mature chum fisheries, on both a population-specific (Beacham et al., salmon at a number of rivers during previous analyses 2003) and regional basis (Beacham et al., 2006). Micro- of genetic variation (Winans et al., 1994). Additional tissue samples were sent to the Molecular Genetics Laboratory at the Pacific Biologi- cal Station. The geographic area of the 34 populations sampled ranged from Primorye in the south to northeastern Russia (Fig. 1) and encompassed eight geographic regions (Table 1). DNA was extracted from the tissue samples by a variety of methods, including that with chelex resin outlined by Small et al. (1998), a Qiagen 96-well Dneasy® procedure (Qiagen, Mississauga, Ontario, Canada), or a Promega Wizard SV96 Genomic DNA Puri- fication system (Promega, Madison, WI). Once extracted DNA was available, anal- yses of variation at 14 microsatellite loci were conducted: Ots3 (Banks et al., 1999), Oke3 (Buchholz et al., 2001), Oki2 (Smith et al., 1998), Oki100 (primer sequence 5ʹ to 3ʹ F: GGTGTTTTAATGTTGTTTCCT, R: GTTTCCAGAGTAGTCATCTCTG), Omm1070 (Rexroad et al., 2001), Omy 1011 (Spies et al., 2005), One101, One102, One104, One111, and One114 (Olsen et al., 2000), Ots103 (Nelson � and Beacham, 1999), Ssa419 (Cairney et al., 2000), and OtsG68 (Williamson et al., N 2002). In general, PCR DNA amplifications were conducted by using DNA Engine Cycler Tet- Figure 1 rad2 (BioRad, Hercules, CA) in 6-μL volumes Map indicating the locations in Russia where chum salmon (Oncorhyn- consisting of 0.15 units of Taq polymerase, chus keta) from 34 populations or sampling sites were collected. 1 μL (25−50 ng) of extracted DNA, 1× PCR buf- Numbers for and locations of populations are indicated in Table 1. fer (Qiagen, Mississauga, Ontario, Canada), Beacham et al: Population structure and stock identification of Oncorhynchus keta 247 Table 1 Population, sample collection years, number of fish sampled per year, and total number of fish sampled for 34 populations of chum salmon (Oncorhynchus keta) in eight geographic regions from Russia. Eight regions have been defined, and populations (numbered in brackets) were sampled in each region listed. N = population size. Region and population Years Annual sample size N 1 Primorye Narva [1] 1994 17 17 Ryazanovka [2] 1994 49 49 Avakumovka [3] 1994 35 35 2 Amur River Amur River [4] 1994, 2001, 2004 43, 97, 198 338 3 Sakhalin Island Tym [5]
Recommended publications
  • 256 P111. the Influence of Sea Ice on the Sea Coast Of
    EMECS 11 – Sea Coasts XXVI, August 22-27, 2016, St Petersburg, Russia P111. THE INFLUENCE OF SEA ICE ON THE SEA COAST OF SHANTAR ISLANDS Margarita Illarionova1 1Far Eastern Federal University (FEFU), Russia [email protected] The Shantar Islands is the group of islands satiated in the Sea of Okhotsk near the exit of Uda Bay, Tugur Bay and Ulban Bay. The islands separated from the mainland and started to exist only 6000 years ago. It happened under the influence of the sea transgression followed by flooding of some parts of the land surface and isolation of the most elevated mountain parts from the mainland. The climate of The Shantar Island is more severe than the climate in the North part of the Sea of Okhotsk due to its proximity to cold regions of Yakutia, complex system of wind and tidal currents, the duration of the ice period, loads of fog and frequent storm winds. The height of tides on the islands can reach 8 meters, and these tidal currents are considered as one of the fastest tides of the World Ocean. The ice near the islands appears in the beginning of November and doesn’t melt for 8-9 months, usually, till mid-July, but some years - till mid-August. Such severe ice conditions cannot be observed anywhere else in the Sea of Okhotsk. The variety of forms of the Shantar Islands is a consequence of severe ice conditions, unusual tidal currents and irregularity of the seashore. The most important seashores forming factor is considered to be the activity of sea ice.
    [Show full text]
  • Abstract Book.Pdf
    Executive Committee Motoyuki Suzuki, International EMECS Center, Japan Toshizo Ido, International EMECS Center, Governor of Hyogo Prefecture, Japan Leonid Zhindarev, Working Group “Sea Coasts” RAS, Russia Valery Mikheev, Russian State Hydrometeorological University, Russia Masataka Watanabe, International EMECS Center, Japan Robert Nigmatullin, P.P. Shirshov Institute of Oceanology RAS, Russia Oleg Petrov, A.P. Karpinsky Russian Geological Research Institute, Russia Scientific Programme Committee Ruben Kosyan, Southern Branch of the P.P. Shirshov Institute of Oceanology RAS, Russia – Chair Masataka Watanabe, Chuo University, International EMECS Center, Japan – Co-Chair Petr Brovko, Far Eastern Federal University, Russia Zhongyuan Chen, East China Normal University, China Jean-Paul Ducrotoy, Institute of Estuarine and Coastal Studies, University of Hull, France George Gogoberidze, Russian State Hydrometeorological University, Russia Sergey Dobrolyubov, Academic Council of the Russian Geographical Society, M.V. Lomonosov Moscow State University, Russia Evgeny Ignatov, M.V. Lomonosov Moscow State University, Russia Nikolay Kasimov, Russian Geographical Society, Technological platform “Technologies for Sustainable Ecological Development” Igor Leontyev, P.P. Shirshov Institute of Oceanology RAS, Russia Svetlana Lukyanova, M.V. Lomonosov Moscow State University, Russia Menasveta Piamsak, Royal Institute, Thailand Erdal Ozhan, MEDCOAST Foundation, Turkey Daria Ryabchuk, A.P. Karpinsky Russian Geological Research Institute, Russia Mikhail Spiridonov,
    [Show full text]
  • Russia): 2003–9 Results
    CHAPTER 6 OBSIDIAN PROVENANCE STUDIES ON KAMCHATKA PENINSULA (FAR EASTERN RUSSIA): 2003–9 RESULTS Andrei V. Grebennikov, Vladimir K. Popov, Michael D. Glascock, Robert J. Speakman, Yaroslav V. Kuzmin, and Andrei V. Ptashinsky Abstract: The results of obsidian provenance research on the Kamchatka Peninsula based on extensive study of the chemical composition of volcanic glasses from both ‘geological’ sources and archaeological sites are presented. At least 16 geochemical groups reflecting different sources of obsidian have been identified for Kamchatka using Instrumental Neutron Activation Analysis. Seven sources of archaeological obsidian have been linked to specific geologic outcrops, with the distances between sites and obsidian sources up to 550km. At least seven geochemical groups based only on artefact analysis are also described. The use of multiple obsidian sources was a common pattern during the Palaeolithic, Neolithic, and Palaeometal periods of Kamchatkan prehistory. Keywords: Obsidian, Source Identification, Palaeolithic, Neolithic, Kamchatka Peninsula, Russian Far East Introduction 6.1, A). The main geomorphic features of the Kamchatka Peninsula are two major mountain ranges, Central and Studies of the geochemistry of waterless volcanic glasses Eastern, with a sedimentary basin between them occupied (i.e., obsidians) and sources of archaeological obsidian by the Kamchatka River drainage; mountains of the in the Russian Far East have been ongoing since the southern region; and lowlands on the western coast (Suslov early 1990s,
    [Show full text]
  • Research of Natural Renewable Energy Resources of Coasts And
    ISES Solar World Congress 2017 IEA SHC International Conference on Solar Heating and Cooling for Buildings and Industry Research of Natural Renewable Energy Resources of Coast and Seas of the Far East Valeriy V. Knyazhev and Vladimir V. Loshchenkov Institute of Marine Technology Problems FEB RAS, Vladivostok (Russia) Abstract In article renewed energy sources on Far East of Russia are considered: thermal energy, energy of salinity gradients, tide, waves, currents, a wind and solar power. Estimations of power resources of these energy sources are given. Places in which they are offered can are effectively used. A system of autonomous power supply for a coastal facility for the cultivation of hydrobionts from renewable sources on the island of Popov is proposed. A device for growing hydrobionts on artificial automated plantations in the water column without diving with an autonomous power supply from renewable sources has been developed.. Keywords: source of energy, thermal, salinity, tide, wave, current, wind, solar, hydrobionts 1. Introduction The Far East of Russia is the region of Russia where the primary start of development and use of ocean energy sources is possible, this is facilitated by the fact that the Far East has a long coastline and most of the territory of the Far East is not connected to the unified energy system. And as the population density in these territories is small, it is economically justified to use autonomous energy sources, and, first of all, renewable energy sources of the ocean. The territory of the Far East stretching from the south to the north of 4500 km, more than 70% of the length of its borders falls on the shorelines of the seas of the Arctic and Pacific Oceans, covers different natural areas, and almost everywhere the potential of renewable energy sources is very high.
    [Show full text]
  • Some Features of Biology of the Siberian Taimen Hucho Taimen (Pallas, 1773) (Salmonidae) from the Tugur River Basin S
    ISSN 0032-9452, Journal of Ichthyology, 2018, Vol. 58, No. 5, pp. 765–768. © Pleiades Publishing, Ltd., 2018. Original Russian Text © S.E. Kul’bachnyi, A.V. Kul’bachnaya, 2018, published in Voprosy Ikhtiologii, 2018, Vol. 58, No. 5, pp. 629–632. SHORT COMMUNICATIONS Some Features of Biology of the Siberian Taimen Hucho taimen (Pallas, 1773) (Salmonidae) from the Tugur River Basin S. E. Kul’bachnyi* and A. V. Kul’bachnaya Pacific Research Fisheries Center, Khabarovsk Branch, Khabarovsk, 680000 Russia *e-mail: [email protected] Received January 30, 2017 Abstract—Data on the size-age and sex structure, as well as the magnitude, of Siberian taimen Hucho taimen population from the Tugur River Basin are presented. Keywords: Siberian taimen Hucho taimen, length, age, Tugur River Basin DOI: 10.1134/S0032945218050120 INTRODUCTION northwest in some rivers facing the mouth of the Amur River. It also occurs in lakes. It is a large fish reaching At present, sport fishing is of considerable interest 80 kg (Berg, 1948; Nikolskii, 1956; Zolotukhin et al., and there are great prospects for fishing tourism. This 2000). Lindbergh and Dulkate (1929) noted that tai- also applies to the northeastern region of Russia, men with a weight of up to 95 kg was captured in the where a number of attractive fish species live. This is Uda River. Taimen becomes sexually mature at the age especially the case for the Siberian taimen Hucho tai- of 4+ after reaching a length of 40–50 cm. Sex ratio is men. A sharp increase in the fishing load on the taimen close to 1 : 1.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Translation Series No. 477 •
    1. 1 ».[1:IFS OF ., ■ .: AilbREWS, N, B. FISHERIES RESEARCH BOARD OF CANADA ARCHIVES Translation Series No. 477 • Decapod crustaceans of the Sea of Okhotsk by L. G. Vinogradov Original title: Desyatinogiye Rakoobraznyye Okhotskogo Morya. From: Izvestiya Tikhookenaskogo Nauchno-Issledovatel' skogo Instituta Rybnogo KhozyayStva i Okeanografiyi, 1947, Tom XXV, pp. 67-124, Translated by G. J.Harder, Bureau for Translations Foreign Language Division, Department of the Secretary of State of Canada • • 0 T A CAIVil ■ A Fisheries Research Board of Canada Biological Station Nanaimo, B.C. • 1964 8 23 5 0 30/4/64 .\nV- 5;.!? OF CANADA 4 DEF'AReiMENT OF THE SECRETARY OF STATE 5 uvriorsl SECRÉTARIAT D'ÉTAT Il ?i BUREAU FOR TRANSLATIONS .1 , N L3 BUREAU DES TRADUCTIONS c. ,. FOREIGN LANGUAGES DIVISION DES LANGUES DIVISION CANADA ETRANGERES TRANSLATED FRoM - TRADUCTION DE INTO - X Russien English SUBJECT - SUJET • • Decepod crusteceens of the Okhotsk Cea AUTHOR - AUTEUR L.G .VINOCII:t1)07 TITLE IN ENGLISH - TITRE ANGLAIS Decepod crustaceens of th er0!chotnk-7--- fJea 1 -. ! . TITLE IN FOREIGN LANGUAGE - TITRE EN LANGUE eTRANGÉRE s• Desyetinogiye Rakoobraznyye Okhotskogo Mbrya 4 • REFERENCE - ReFÉRENCE (NAME OF BOOK OR PUBLICATION - NOM DU LIVRE OU PUBLICATION ) Izvestiya TikhookeïmskoP..o rauchno—Issledovwteltskogo Instituta nytnoo ` Zhozyeystvu 1 (Aekunografiyi. 1947. * Tom XXV PUBLISHER - ÉDITEUR Primizdat CITY - VILLE DATE PAGES Vladivostok 1947 67-1f. 4. ty. ea: 100 REQUEST RECEIVED FROM OUR NUMBER REQUIS PAR ru1 Lurc:a- NOTRE DOSSIER N 0 2122 • DEPARTMENT - TRANSLATOR MINISTRE TRADUCTEUR risfacricz ILf • tj • YOUR NUMBER • tj DATE COMPLETED VOTRE DOSSIER NO e- •-• REMPLIE LE L14.— L.4 4'1 •t..) .--; • DATE RECEIVED REÇU LE 8 2 5 3 OS-200-10-e 3 1,ib ií è' /5'4/.6 .
    [Show full text]
  • Obsidian Provenance Studies on Kamchatka Peninsula (Far Eastern Russia): 2003–9 Results
    Crossing the Straits: Prehistoric Obsidian Source Exploitation in the North Pacific Rim Edited by Yaroslav V. Kuzmin Michael D. Glascock BAR International Series 2152 2010 Published by Archaeopress Publishers of British Archaeological Reports Gordon House 276 Banbury Road Oxford OX2 7ED England [email protected] www.archaeopress.com BAR S2152 Crossing the Straits: Prehistoric Obsidian Source Exploitation in the North Pacific Rim © Archaeopress and the individual authors 2010 ISBN 978 1 4073 0694 0 Printed in England by Blenheim Colour Ltd All BAR titles are available from: Hadrian Books Ltd 122 Banbury Road Oxford OX2 7BP England [email protected] The current BAR catalogue with details of all titles in print, prices and means of payment is available free from Hadrian Books or may be downloaded from www.archaeopress.com CHAPTER 6 OBSIDIAN PROVENANCE STUDIES ON KAMCHATKA PENINSULA (FAR EASTERN RUSSIA): 2003–9 RESULTS Andrei V. Grebennikov, Vladimir K. Popov, Michael D. Glascock, Robert J. Speakman, Yaroslav V. Kuzmin, and Andrei V. Ptashinsky Abstract: The results of obsidian provenance research on the Kamchatka Peninsula based on extensive study of the chemical composition of volcanic glasses from both ‘geological’ sources and archaeological sites are presented. At least 16 geochemical groups reflecting different sources of obsidian have been identified for Kamchatka using Instrumental Neutron Activation Analysis. Seven sources of archaeological obsidian have been linked to specific geologic outcrops, with the distances between sites and obsidian sources up to 550km. At least seven geochemical groups based only on artefact analysis are also described. The use of multiple obsidian sources was a common pattern during the Palaeolithic, Neolithic, and Palaeometal periods of Kamchatkan prehistory.
    [Show full text]
  • Expedition to the Shantar Islands
    Expedition to the Shantar Islands Level of proficiency good physical training and stamina from 2 700 Euro The nearest date: 8 - 18 September 2022 11 days / 10 nights There is a spot in the world unique in its beauty. It is a spot where whales swim among icebergs, rapacious killer whales chase dolphins, bears roam the shores, waterfalls cascade from the mountains, marble and jasper rocks raise like bizarre castles, rivers swarm with fish and birds twitter in many voices. This place, half real, half fantasy, lies in the western part of the Sea of Okhotsk and is called the Shantar Archipelago. The Shantar Archipelago occupies the water area of 10,000 square km and consists of 15 major and minor islands plus many rocks and stacks. People used to live in the Shantar Islands long ago, but now their only residents are the weather station workers and the old hand hunter. Shantar archipelago is one of the most beautiful and unique places around the globe! Itinerary Arrival in Khabarovsk by air, an overnight transfer to the airfield in the Day 1 settlement of Briakan by the large 45-seat bus. Travel time is about 12-14 hours. Full distance is 700 km, where 400 km is on the asphalt road up to Komsomolsk and 300 km is on the earth road along the Baikal-Amur Mainline. Flight to Briakan, the Bay of Ongachan. Flight by helicopter to the Day 2 Ongachan Base (1,5 hours). Accommodation in the tourist camp, in cottages (beds, bed-linen). Dinner. Getting acquainted with the camp.
    [Show full text]
  • Fil Fil Clean Energy Rep. Eng 25
    V. A. Minin, G. S. Dmitriev Prospects for Development of Non-conventional and Renewable Sources of Energy on the Kola Peninsu la ▬▬▬▬▬▬▬▬▬▬ Oslo · 2007 Printed by: The Bellona Foundation www.bellona.org Norway Russia The Bellona Foundation Bellona St. Petersburg P.O. Box 2141 (Environmental Rights Centre Bellona) Grunerløkka P.O. Box 15 0505 Oslo 191015 St. Petersburg e-post: [email protected] e-post: [email protected] Belgium Bellona Murmansk Bellona Europa P.O. Box 4310 10 B, Clos du Parnasse 183038 Murmansk 1050 Brussels e-post: [email protected] e-post: [email protected] U.S.A. Bellona USA P.O. Box 42090 Washington, DC 20014 [email protected] An electronic version of this report in English is available at www.bellona.org. A Russian language version of this report has been published. Photocopying is permitted if the source is cited. Authors: Valery Andreevich Minin Grigory Sergeevich Dmitriyev Graphic designer: Advertising Centre “Raditsa-M” Sergey Burtsev Foreword Since 1989, Bellona has been concerned with finding a suitable energy alternative to nuclear power produced by the Kola Nuclear Power Plant, which poses an environmental risk for Northwest Russia, as well as its Nordic neighbours. With this goal in mind, a cooperative agreement was signed between Bellona and the Kola Science Centre of the Russian Academy of Sciences in 2006 to evaluate the possibilities for development of clean energy in the region. The current report “Prospects for Development of Non-conventional and Renewable Sources of Energy on the Kola Peninsula” is the product of independent scientific investigation conducted by the Kola Science Centre Institute for Physical and Technological Problems of Energy in Northern Areas.
    [Show full text]
  • Detailed Species Accounts from The
    Threatened Birds of Asia: The BirdLife International Red Data Book Editors N. J. COLLAR (Editor-in-chief), A. V. ANDREEV, S. CHAN, M. J. CROSBY, S. SUBRAMANYA and J. A. TOBIAS Maps by RUDYANTO and M. J. CROSBY Principal compilers and data contributors ■ BANGLADESH P. Thompson ■ BHUTAN R. Pradhan; C. Inskipp, T. Inskipp ■ CAMBODIA Sun Hean; C. M. Poole ■ CHINA ■ MAINLAND CHINA Zheng Guangmei; Ding Changqing, Gao Wei, Gao Yuren, Li Fulai, Liu Naifa, Ma Zhijun, the late Tan Yaokuang, Wang Qishan, Xu Weishu, Yang Lan, Yu Zhiwei, Zhang Zhengwang. ■ HONG KONG Hong Kong Bird Watching Society (BirdLife Affiliate); H. F. Cheung; F. N. Y. Lock, C. K. W. Ma, Y. T. Yu. ■ TAIWAN Wild Bird Federation of Taiwan (BirdLife Partner); L. Liu Severinghaus; Chang Chin-lung, Chiang Ming-liang, Fang Woei-horng, Ho Yi-hsian, Hwang Kwang-yin, Lin Wei-yuan, Lin Wen-horn, Lo Hung-ren, Sha Chian-chung, Yau Cheng-teh. ■ INDIA Bombay Natural History Society (BirdLife Partner Designate) and Sálim Ali Centre for Ornithology and Natural History; L. Vijayan and V. S. Vijayan; S. Balachandran, R. Bhargava, P. C. Bhattacharjee, S. Bhupathy, A. Chaudhury, P. Gole, S. A. Hussain, R. Kaul, U. Lachungpa, R. Naroji, S. Pandey, A. Pittie, V. Prakash, A. Rahmani, P. Saikia, R. Sankaran, P. Singh, R. Sugathan, Zafar-ul Islam ■ INDONESIA BirdLife International Indonesia Country Programme; Ria Saryanthi; D. Agista, S. van Balen, Y. Cahyadin, R. F. A. Grimmett, F. R. Lambert, M. Poulsen, Rudyanto, I. Setiawan, C. Trainor ■ JAPAN Wild Bird Society of Japan (BirdLife Partner); Y. Fujimaki; Y. Kanai, H.
    [Show full text]
  • Proteases in the Atlantic Salmon, Salmo Salar L. Physiological And
    Proteases in the Atlantic salmon,Salmo salar L. Physiological and biological aspects. Sigfus Einarsson A thesis presented for the degree of Doctor of Philosophy in the University of Glasgow, Faculty of Science, Department of Zoology. December, 1993. ©Sigfus Einarsson 1993 i ProQuest Number: 11007772 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 11007772 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 CrtloQ GLASGOW UNIVERSITY LIBRARY DECLARATION. I declare that this thesis represents, except where note is made to the contrary, work carried out by myself. The text was composed by myself. S. Einarsson December, 1993. ACKNOWLEDGEMENTS. First I want to thank my mother, Margret K. Petursdottir and my wife, Retno Henryati Susanti for their invaluable aid and support during this work. I will be forever indepted to them. The beginning of this work was carried out at the Freshwater Fisheries Laboratories, Pitlochry. The major part was carried out at the University of Glasgow, Department of Zoology, and at the Almond Bank rearing station, Perth. I thank all respective persons for providing research facilities.
    [Show full text]