A Unified Framework of Overlapping Genes

Total Page:16

File Type:pdf, Size:1020Kb

A Unified Framework of Overlapping Genes View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Genomics 100 (2012) 231–239 Contents lists available at SciVerse ScienceDirect Genomics journal homepage: www.elsevier.com/locate/ygeno A unified framework of overlapping genes: Towards the origination and endogenic regulation Meng-Ru Ho a, Kuo-Wang Tsai b, Wen-chang Lin c,⁎ a Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan b Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan c Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan article info abstract Article history: Overlapping genes are pairs of adjacent genes whose genomic regions partially overlap. They are notable by Received 27 January 2012 their potential intricate regulation, such as cis-regulation of nested gene-promoter configurations, and Accepted 25 June 2012 post-transcriptional regulation of natural antisense transcripts. The originations and consequent detailed reg- Available online 2 July 2012 ulation remain obscure. Herein, we propose a unified framework comprising biological classification rules followed by extensive analyses, namely, exon-sharing analysis, a human–mouse conservation study, and Keywords: transcriptome analysis of hundreds of microarrays and transcriptome sequencing data (mRNA-Seq). We Overlapping gene Natural antisense transcript (NAT) demonstrate that the tail-to-tail architecture would result from sharing functional elements in Gene regulation 3′-untranslated regions (3′-UTRs) of pre-existing genes. Dissimilarly, we illustrate that the other gene over- Cis-regulatory element laps would originate from a new gene arising in a pre-existing gene locus. Interestingly, these types of Promoter coupled overlapping genes may influence each other synergistically or competitively during transcription, Local chromatin status depending on the promoter configurations. This framework discloses distinctive characteristics of over- lapping genes to be a foundation for a further comprehensive understanding of them. © 2012 Elsevier Inc. Open access under CC BY-NC-ND license. 1. Introduction gene overlapping in the same genomic locus. Keese and Gibbs demon- strated overprinting using the overlap of THRA and NR1D1 [15].The Overlapping genes are pairs of adjacent genes with a certain ex- overprinting hypothesis seems to have been developed from published tent of overlap in genomic locations. They are known to be common results where one of the coupled overlapping genes appears to be rela- in viruses, mitochondria, and bacteria, and may compose a compact tively new, or lineage-specific to its partner gene. However, the occur- genome organization to facilitate gene regulation efficiency [1], rence of overlapping events between ancient genes simply contradicts like operons. Overlapping genes have recently been found in the the overprinting hypothesis. For example, the overlap of two ancient human genome as well [2–6]. Human overlapping genes have been genes, FGF2 and NUDT6, is observed in human [16,17],rat[18],chicken identified and systemically analyzed according to the genome-wide [19], and Xenopus [20], but not dog. On the other hand, Shintani et al. annotations of genes and mRNA features [7,8]. Over 10% of human suggested that the scenario of gene-overlap origination is that a 3′- genes are involved in gene-overlap events. Most overlapping genes injured gene borrows its neighbor's polyadenylation signals on are new or lineage-specific and their overlap structures are not con- the opposite strand after genome rearrangement [21]. This hypothe- served through the vertebrates [9–11]. In theory, overlapping genes sis can be supported by significant 3′-untranslated region (3′-UTR) in a pair will be intricately involved in mutual regulatory events, sharing phenomena in some gene-overlap events. Sharing genomic se- such as transcriptional interference [12], and natural antisense tran- quences in 3′-UTRs may be a crucial transition mechanism from non- scripts (NATs) [13,14]. Thus far, the biological consequences of this overlapping genes to overlapping genes [9]. Furthermore, utilizing notable genome organization, namely gene-overlaps, have not been distinct polyadenylation signals can alter gene-overlap structures as elucidated. well [22].Forinstance,humanKMO appears with two functional The genesis of overlapping genes continues to be debated, and none polyadenylation (polyA) signals, and results in overlapping or non- of the currently proposed hypotheses fully explain these existing geno- overlapping transcripts [23]. These discrepant explanations manifest mic architectures. One well-known hypothesis is “overprinting”―a that the origination and biological meanings of existing overlapping novel gene originates through accumulated mutations inside a genes, though previously discussed, remains an open problem to be pre-existing gene [15]. This process results in a new gene and an ancient resolved. Genome organization is believed to have an impact on gene regula- ⁎ Corresponding author. Fax: +886 2 27827654. tion, such as co-regulated genomic neighborhoods [24–26]. The gene- E-mail address: [email protected] (W. Lin). overlap structure in a genome is expected to introduce regulatory 0888-7543 © 2012 Elsevier Inc. Open access under CC BY-NC-ND license. doi:10.1016/j.ygeno.2012.06.011 232 M.-R. Ho et al. / Genomics 100 (2012) 231–239 impacts as well. Some bioinformatics analyses have reported that paired overlapping genes are associated with locus-specific synergistic expres- sion profiles [27,28], as well as other meticulous analyses of a single gene pair. For instance, the expression of human MYCN (N-myc) transcript and its antisense partner MYCNOS is co-regulated [29].The human overlapping genes, VLCAD (ACADVL) and DLG4 are co-expressed inthesametissues[3]. Theoretically, however, it may be unlikely that two overlapping transcriptional units are active at the same time, where- as transcription by RNA polymerase II involves large protein complexes. This is proposed as transcriptional interference resulting in exclusive reg- ulation [12]. For example, Noguchi et al. demonstrated that human eIF-2 alpha (EIF2S1) is inversely correlated to its antisense RNA [30].Human ABHD1 is shown to express 1.4% of its overlapping partner Sec12 (PREB), on average [2]. Additionally, the expression patterns of some nested gene pairs, in which one gene contains the other, show negative correla- tion [31]. These results are contrary to previous general co-expression ob- servations. It can be seen from these debates that regulatory mechanisms remain mysterious. Thus, it is essential to address this controversial issue with a comprehensive analysis framework. In this study herein, we utilize the configuration of paired over- lapping genes, which directly affects what and how nearby promoters are used by one or multiple overlapping genes, to be the deciding fea- ture for function-oriented classification of overlapping genes. We propose a strategy to subgroup overlapping genes, and reveal their evolutionary features and specialized gene regulation. For example, the majority of overlapping genes, the tail-to-tail (TT) group, is very distinct from other types in three ways. First, significantly 3′-UTR overlaps of paired TT genes expose their particular functional de- mand. In addition, the human–mouse conservation levels of TT genes and non-overlapping genes are similar, although that of other overlapping genes are much lower. Furthermore, the promoter archi- tecture of paired TT genes just resembles adjacent genes' while other gene-overlap architectures may induce an inverse regulation from promoter competition or co-regulation from common promoters. In summary, we demonstrate that each subgroup of overlapping genes is distinct so that they have potential to behave completely different- ly; and hence, we propose that this is the reason why independent observations on overlapping genes in earlier work appear conflicting. We demonstrate that our analysis framework can provide a more uni- fied approach, and facilitate a comprehensive systematic understand- ing of overlapping genes. Fig. 1. Types of gene-overlap events. There are five types of gene-overlap events and 2. Results paired genes with overlapping promoters described in Fig. 1. Arrows indicate the ori- entations of genes, and blue regions present core promoter regions of genes. 2.1. Five subgroups of overlapping genes Based on the published reference genome and annotated gene transcript information, we identify 2541 human overlapping gene pairs in total (Supplementary Table S1). We observe that the config- uration of overlapping genes directly affects what and how nearby promoters are used by one or multiple overlapping genes. From the function-oriented point of view, we consider the configuration of reflect the published co-regulation of paired overlapping genes overlapping genes and their associated promoters as our classification [27,28]. Meanwhile, the promoter competition of different-strand rules. Accordingly, we classified gene-overlaps into five subgroups nested genes (DN in Fig. 1) may result in a negative correlation of ex- (Fig. 1): head-to-head (HH: 473 pairs); tail-to-tail (TT: 705 pairs); pression patterns, which has been observed in some paired overlapping different-strand nested (DN: 493 pairs); same-strand overlap (SO: genes [31]. Moreover, the genes in the SO group are conjectured to be 116 pairs); and, same-strand nested (SN:
Recommended publications
  • Evidence for Differential Alternative Splicing in Blood of Young Boys With
    Stamova et al. Molecular Autism 2013, 4:30 http://www.molecularautism.com/content/4/1/30 RESEARCH Open Access Evidence for differential alternative splicing in blood of young boys with autism spectrum disorders Boryana S Stamova1,2,5*, Yingfang Tian1,2,4, Christine W Nordahl1,3, Mark D Shen1,3, Sally Rogers1,3, David G Amaral1,3 and Frank R Sharp1,2 Abstract Background: Since RNA expression differences have been reported in autism spectrum disorder (ASD) for blood and brain, and differential alternative splicing (DAS) has been reported in ASD brains, we determined if there was DAS in blood mRNA of ASD subjects compared to typically developing (TD) controls, as well as in ASD subgroups related to cerebral volume. Methods: RNA from blood was processed on whole genome exon arrays for 2-4–year-old ASD and TD boys. An ANCOVA with age and batch as covariates was used to predict DAS for ALL ASD (n=30), ASD with normal total cerebral volumes (NTCV), and ASD with large total cerebral volumes (LTCV) compared to TD controls (n=20). Results: A total of 53 genes were predicted to have DAS for ALL ASD versus TD, 169 genes for ASD_NTCV versus TD, 1 gene for ASD_LTCV versus TD, and 27 genes for ASD_LTCV versus ASD_NTCV. These differences were significant at P <0.05 after false discovery rate corrections for multiple comparisons (FDR <5% false positives). A number of the genes predicted to have DAS in ASD are known to regulate DAS (SFPQ, SRPK1, SRSF11, SRSF2IP, FUS, LSM14A). In addition, a number of genes with predicted DAS are involved in pathways implicated in previous ASD studies, such as ROS monocyte/macrophage, Natural Killer Cell, mTOR, and NGF signaling.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Regulation of Fibroblast Growth Factor-2 Expression and Cell Cycle Progression by an Endogenous Antisense RNA
    Genes 2012, 3, 505-520; doi:10.3390/genes3030505 OPEN ACCESS genes ISSN 2073-4425 www.mdpi.com/journal/genes Article Regulation of Fibroblast Growth Factor-2 Expression and Cell Cycle Progression by an Endogenous Antisense RNA Mark Baguma-Nibasheka, Leigh Ann MacFarlane and Paul R. Murphy * Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada; E-Mails: [email protected] (M.B.-N.); [email protected] (L.A.M.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-902-494-1579; Fax: +1-902-494-2050. Received: 27 June 2012; in revised form: 31 July 2012 / Accepted: 15 August 2012 / Published: 16 August 2012 Abstract: Basic fibroblast growth factor (FGF2) is a potent wide-spectrum mitogen whose overexpression is associated with immortalization and unregulated cell proliferation in many tumors. The FGF2 gene locus is bi-directionally transcribed to produce FGF2 P51$IURPWKH³VHQVH´VWUDQGDQGDcis-antisense RNA (NUDT6) from the NUDT6 gene RQWKH³DQWLVHQVH´VWUDQG7KH18'7JHQHHQFRGHVDQXGL[PRWLISURWHLQRIXQNQRZQ function, while its mRNA has been implicated in the post-transcriptional regulation of FGF2 expression. FGF2 and NUDT6 are co-expressed in rat C6 glioma cells, and ectopic overexpression of NUDT6 suppresses cellular FGF2 accumulation and cell cycle progression. However, the role of the endogenous antisense RNA in regulation of FGF2 is unclear. In the present study, we employed siRNA-mediated gene knockdown to examine the role of the endogenous NUDT6 RNA in regulation of FGF2 expression and cell cycle progression. Knockdown of either FGF2 or NUDT6 mRNA was accompanied by a significant (>3 fold) increase in the complementary partner RNA.
    [Show full text]
  • Tgfβ Superfamily Signalling in Pluripotency and Differentiation Of
    TGFβ SUPERFAMILY SIGNALLING IN PLURIPOTENCY AND DIFFERENTIATION OF HUMAN EMBRYONIC STEM CELLS by VARVARA CHALMANTZI A thesis submitted to The University of Birmingham For the degree of DOCTOR OF PHILOSOPHY School of Biosciences College of Life and Environmental Sciences University of Birmingham January 2019 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. To my daughter Iouliani for teaching me that human beings can learn, evolve and thrive in every breath they take. Summary The discovery of human embryonic stem cells (hESCs) 20 years ago (Thomson et al., 1998), has significantly benefited the field of stem cell biology (Ilic & Ogilvie, 2017). Despite ethical (and legal in some cases) obstacles, therapies utilising hESCs and their derivatives are attempting to tackle several diseases (Ilic & Ogilvie, 2017). The TGFβ superfamily is known to be implicated in crucial decisions from early development of the embryo to the adult life (Mullen & Wrana, 2017). ACTIVIN A and BMP4 are two members of this superfamily and their activation status has an important impact on hESCs (James et al., 2005). On the one hand, ACTIVIN A is associated with the maintenance of the undifferentiated state (James et al., 2005), (Beattie et al., 2005), while on the other BMP4 is considered a differentiation stimulus (R.
    [Show full text]
  • The Landscape of Human Mutually Exclusive Splicing
    bioRxiv preprint doi: https://doi.org/10.1101/133215; this version posted May 2, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. The landscape of human mutually exclusive splicing Klas Hatje1,2,#,*, Ramon O. Vidal2,*, Raza-Ur Rahman2, Dominic Simm1,3, Björn Hammesfahr1,$, Orr Shomroni2, Stefan Bonn2§ & Martin Kollmar1§ 1 Group of Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany 2 Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany 3 Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science, Georg-August-University Göttingen, Germany § Corresponding authors # Current address: Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland $ Current address: Research and Development - Data Management (RD-DM), KWS SAAT SE, Einbeck, Germany * These authors contributed equally E-mail addresses: KH: [email protected], RV: [email protected], RR: [email protected], DS: [email protected], BH: [email protected], OS: [email protected], SB: [email protected], MK: [email protected] - 1 - bioRxiv preprint doi: https://doi.org/10.1101/133215; this version posted May 2, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Towards Personalized Medicine in Psychiatry: Focus on Suicide
    TOWARDS PERSONALIZED MEDICINE IN PSYCHIATRY: FOCUS ON SUICIDE Daniel F. Levey Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Program of Medical Neuroscience, Indiana University April 2017 ii Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Andrew J. Saykin, Psy. D. - Chair ___________________________ Alan F. Breier, M.D. Doctoral Committee Gerry S. Oxford, Ph.D. December 13, 2016 Anantha Shekhar, M.D., Ph.D. Alexander B. Niculescu III, M.D., Ph.D. iii Dedication This work is dedicated to all those who suffer, whether their pain is physical or psychological. iv Acknowledgements The work I have done over the last several years would not have been possible without the contributions of many people. I first need to thank my terrific mentor and PI, Dr. Alexander Niculescu. He has continuously given me advice and opportunities over the years even as he has suffered through my many mistakes, and I greatly appreciate his patience. The incredible passion he brings to his work every single day has been inspirational. It has been an at times painful but often exhilarating 5 years. I need to thank Helen Le-Niculescu for being a wonderful colleague and mentor. I learned a lot about organization and presentation working alongside her, and her tireless work ethic was an excellent example for a new graduate student. I had the pleasure of working with a number of great people over the years. Mikias Ayalew showed me the ropes of the lab and began my understanding of the power of algorithms.
    [Show full text]
  • Development of Novel Analysis and Data Integration Systems to Understand Human Gene Regulation
    Development of novel analysis and data integration systems to understand human gene regulation Dissertation zur Erlangung des Doktorgrades Dr. rer. nat. der Fakult¨atf¨urMathematik und Informatik der Georg-August-Universit¨atG¨ottingen im PhD Programme in Computer Science (PCS) der Georg-August University School of Science (GAUSS) vorgelegt von Raza-Ur Rahman aus Pakistan G¨ottingen,April 2018 Prof. Dr. Stefan Bonn, Zentrum f¨urMolekulare Neurobiologie (ZMNH), Betreuungsausschuss: Institut f¨urMedizinische Systembiologie, Hamburg Prof. Dr. Tim Beißbarth, Institut f¨urMedizinische Statistik, Universit¨atsmedizin, Georg-August Universit¨at,G¨ottingen Prof. Dr. Burkhard Morgenstern, Institut f¨urMikrobiologie und Genetik Abtl. Bioinformatik, Georg-August Universit¨at,G¨ottingen Pr¨ufungskommission: Prof. Dr. Stefan Bonn, Zentrum f¨urMolekulare Neurobiologie (ZMNH), Referent: Institut f¨urMedizinische Systembiologie, Hamburg Prof. Dr. Tim Beißbarth, Institut f¨urMedizinische Statistik, Universit¨atsmedizin, Korreferent: Georg-August Universit¨at,G¨ottingen Prof. Dr. Burkhard Morgenstern, Weitere Mitglieder Institut f¨urMikrobiologie und Genetik Abtl. Bioinformatik, der Pr¨ufungskommission: Georg-August Universit¨at,G¨ottingen Prof. Dr. Carsten Damm, Institut f¨urInformatik, Georg-August Universit¨at,G¨ottingen Prof. Dr. Florentin W¨org¨otter, Physikalisches Institut Biophysik, Georg-August-Universit¨at,G¨ottingen Prof. Dr. Stephan Waack, Institut f¨urInformatik, Georg-August Universit¨at,G¨ottingen Tag der m¨undlichen Pr¨ufung: der 30. M¨arz2018
    [Show full text]
  • Replication Timing Alterations in Leukemia Affect Clinically Relevant Chromosome Domains
    REGULAR ARTICLE Replication timing alterations in leukemia affect clinically relevant chromosome domains Juan Carlos Rivera-Mulia,1 Takayo Sasaki,2 Claudia Trevilla-Garcia,1 Naoto Nakamichi,3 David J. H. F. Knapp,3 Colin A. Hammond,3 Bill H. Chang,4 Jeffrey W. Tyner,5,6 Meenakshi Devidas,7 Jared Zimmerman,2 Kyle N. Klein,2 Vivek Somasundaram,2 Brian J. Druker,4 Tanja A. Gruber,8 Amnon Koren,9 Connie J. Eaves,3 and David M. Gilbert2,10 1Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN; 2Department of Biological Science, Florida State University, Tallahassee, FL; 3Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada; 4Division of Pediatric Hematology and Oncology, Department of Pediatrics, 5Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University Knight Cancer Institute, and 6Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR; 7Department of Biostatistics, College of Medicine, College of Public Health and Health Professions, University of Florida, Gainesville, FL; 8Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN; 9Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY; and 10Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, FL Human B-cell precursor acute lymphoid leukemias (BCP-ALLs) comprise a group of Key Points genetically and clinically distinct disease entities with features of differentiation arrest at • DNA replication timing known stages of normal B-lineage differentiation. We previously showed that BCP-ALL cells . of 100 pediatric display unique and clonally heritable, stable DNA replication timing (RT) programs (ie, leukemic samples iden- programs describing the variable order of replication and subnuclear 3D architecture of tified BCP-ALL megabase-scale chromosomal units of DNA in different cell types).
    [Show full text]
  • Investigation of Genetic Factors Underlying Typical Orofacial Clefts: Mutational Screening and Copy Number Variation
    Journal of Human Genetics (2015) 60, 17–25 & 2015 The Japan Society of Human Genetics All rights reserved 1434-5161/15 www.nature.com/jhg ORIGINAL ARTICLE Investigation of genetic factors underlying typical orofacial clefts: mutational screening and copy number variation Milena Simioni1, Tânia Kawasaki Araujo1, Isabella Lopes Monlleo2, Cláudia Vianna Maurer-Morelli1 and Vera Lúcia Gil-da-Silva-Lopes1 Typical orofacial clefts (OFCs) comprise cleft lip, cleft palate and cleft lip and palate. The complex etiology has been postulated to involve chromosome rearrangements, gene mutations and environmental factors. A group of genes including IRF6, FOXE1, GLI2, MSX2, SKI, SATB2, MSX1 and FGF has been implicated in the etiology of OFCs. Recently, the role of the copy number variations (CNVs) has been studied in genetic defects and diseases. CNVs act by modifying gene expression, disrupting gene sequence or altering gene dosage. The aims of this study were to screen the above-mentioned genes and to investigate CNVs in patients with OFCs. The sample was composed of 23 unrelated individuals who were grouped according to phenotype (associated with other anomalies or isolated) and familial recurrence. New sequence variants in GLI2, MSX1 and FGF8 were detected in patients, but not in their parents, as well as in 200 control chromosomes, indicating that these were rare variants. CNV screening identified new genes that can influence OFC pathogenesis, particularly highlighting TCEB3 and KIF7, that could be further analyzed. The findings of the present study suggest that the mechanism underlying CNV associated with sequence variants may play a role in the etiology of OFC. Journal of Human Genetics (2015) 60, 17–25; doi:10.1038/jhg.2014.96; published online 13 November 2014 INTRODUCTION understand OFC etiology, the molecular mechanisms underlying cleft Orofacial clefts (OFCs) comprise any cleft (that is, a break or gap) in development have not been fully characterized.
    [Show full text]
  • Enriched Alternative Splicing in Islets of Diabetes-Susceptible Mice
    International Journal of Molecular Sciences Article Enriched Alternative Splicing in Islets of Diabetes-Susceptible Mice Ilka Wilhelmi 1,2, Alexander Neumann 3 , Markus Jähnert 1,2 , Meriem Ouni 1,2,† and Annette Schürmann 1,2,4,5,*,† 1 Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), 14558 Potsdam, Germany; [email protected] (I.W.); [email protected] (M.J.); [email protected] (M.O.) 2 German Center for Diabetes Research (DZD), 85764 Munich, Germany 3 Omiqa Bioinformatics, 14195 Berlin, Germany; [email protected] 4 Institute of Nutritional Sciences, University of Potsdam, 14558 Nuthetal, Germany 5 Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and The University of Potsdam, 14469 Potsdam, Germany * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Dysfunctional islets of Langerhans are a hallmark of type 2 diabetes (T2D). We hypoth- esize that differences in islet gene expression alternative splicing which can contribute to altered protein function also participate in islet dysfunction. RNA sequencing (RNAseq) data from islets of obese diabetes-resistant and diabetes-susceptible mice were analyzed for alternative splicing and its putative genetic and epigenetic modulators. We focused on the expression levels of chromatin modifiers and SNPs in regulatory sequences. We identified alternative splicing events in islets of diabetes-susceptible mice amongst others in genes linked to insulin secretion, endocytosis or Citation: Wilhelmi, I.; Neumann, A.; ubiquitin-mediated proteolysis pathways. The expression pattern of 54 histones and chromatin Jähnert, M.; Ouni, M.; Schürmann, A.
    [Show full text]
  • Identification of Endogenous Adenomatous Polyposis Coli Interaction Partners and Β-Catenin−Independent Targets by Proteomics
    Published OnlineFirst June 3, 2019; DOI: 10.1158/1541-7786.MCR-18-1154 Cancer Genes and Networks Molecular Cancer Research Identification of Endogenous Adenomatous Polyposis Coli Interaction Partners and b-Catenin– Independent Targets by Proteomics Olesja Popow1,2,3,Joao~ A. Paulo2, Michael H. Tatham4, Melanie S. Volk3, Alejandro Rojas-Fernandez5, Nicolas Loyer3, Ian P. Newton3, Jens Januschke3, Kevin M. Haigis1,6, and Inke Nathke€ 3 Abstract Adenomatous Polyposis Coli (APC) is the most frequently tion between endogenous MINK1 and APC and further mutated gene in colorectal cancer. APC negatively regulates confirmed the negative, and b-catenin–independent, regu- the Wnt signaling pathway by promoting the degradation of lation of MINK1 by APC. Increased Mink1/Msn levels were b-catenin, but the extent to which APC exerts Wnt/b-cate- also observed in mouse intestinal tissue and Drosophila nin–independent tumor-suppressive activity is unclear. To follicular cells expressing mutant Apc/APC when compared identify interaction partners and b-catenin–independent with wild-type tissue/cells. Collectively, our results highlight targets of endogenous, full-length APC, we applied label- the extent and importance of Wnt-independent APC func- free and multiplexed tandem mass tag-based mass spec- tions in epithelial biology and disease. trometry. Affinity enrichment-mass spectrometry identified more than 150 previously unidentified APC interaction Implications: The tumor-suppressive function of APC, the partners. Moreover, our global proteomic analysis revealed most frequently mutated gene in colorectal cancer, is mainly that roughly half of the protein expression changes that attributed to its role in b-catenin/Wnt signaling. Our study occur in response to APC loss are independent of b-catenin.
    [Show full text]
  • UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Cardiac Stretch-Induced Transcriptomic Changes are Axis-Dependent Permalink https://escholarship.org/uc/item/7m04f0b0 Author Buchholz, Kyle Stephen Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Cardiac Stretch-Induced Transcriptomic Changes are Axis-Dependent A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Bioengineering by Kyle Stephen Buchholz Committee in Charge: Professor Jeffrey Omens, Chair Professor Andrew McCulloch, Co-Chair Professor Ju Chen Professor Karen Christman Professor Robert Ross Professor Alexander Zambon 2016 Copyright Kyle Stephen Buchholz, 2016 All rights reserved Signature Page The Dissertation of Kyle Stephen Buchholz is approved and it is acceptable in quality and form for publication on microfilm and electronically: Co-Chair Chair University of California, San Diego 2016 iii Dedication To my beautiful wife, Rhia. iv Table of Contents Signature Page ................................................................................................................... iii Dedication .......................................................................................................................... iv Table of Contents ................................................................................................................ v List of Figures ...................................................................................................................
    [Show full text]