A Unified Framework of Overlapping Genes
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Computational and Experimental Approaches for Evaluating the Genetic Basis of Mitochondrial Disorders
Computational and Experimental Approaches For Evaluating the Genetic Basis of Mitochondrial Disorders The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Lieber, Daniel Solomon. 2013. Computational and Experimental Approaches For Evaluating the Genetic Basis of Mitochondrial Disorders. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11158264 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Computational and Experimental Approaches For Evaluating the Genetic Basis of Mitochondrial Disorders A dissertation presented by Daniel Solomon Lieber to The Committee on Higher Degrees in Systems Biology in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Systems Biology Harvard University Cambridge, Massachusetts April 2013 © 2013 - Daniel Solomon Lieber All rights reserved. Dissertation Adviser: Professor Vamsi K. Mootha Daniel Solomon Lieber Computational and Experimental Approaches For Evaluating the Genetic Basis of Mitochondrial Disorders Abstract Mitochondria are responsible for some of the cell’s most fundamental biological pathways and metabolic processes, including aerobic ATP production by the mitochondrial respiratory chain. In humans, mitochondrial dysfunction can lead to severe disorders of energy metabolism, which are collectively referred to as mitochondrial disorders and affect approximately 1:5,000 individuals. These disorders are clinically heterogeneous and can affect multiple organ systems, often within a single individual. Symptoms can include myopathy, exercise intolerance, hearing loss, blindness, stroke, seizures, diabetes, and GI dysmotility. -
Plos Biology
PLOS BIOLOGY RESEARCH ARTICLE A network medicine approach to investigation and population-based validation of disease manifestations and drug repurposing for COVID-19 Yadi Zhou1☯, Yuan Hou1☯, Jiayu Shen1, Reena Mehra2,3, Asha Kallianpur1,2, Daniel A. Culver4,5, Michaela U. Gack6, Samar Farha4,5, Joe Zein2,4, Suzy Comhair2,4, 2,4 2,4 2,4 1,2,4,7,8 Claudio Fiocchi , Thaddeus StappenbeckID , Timothy Chan , Charis EngID , Jae 2,4 2,3 2,4 1,2,8 a1111111111 U. Jung , Lara JehiID , Serpil Erzurum , Feixiong ChengID * a1111111111 a1111111111 1 Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America, 2 Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western a1111111111 Reserve University, Cleveland, Ohio, United States of America, 3 Neurological Institute, Cleveland Clinic, a1111111111 Cleveland, Ohio, United States of America, 4 Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America, 5 Department of Pulmonary Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, Ohio, United States of America, 6 Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America, 7 Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America, 8 Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, OPEN ACCESS United States of America Citation: Zhou Y, Hou Y, Shen J, Mehra R, Kallianpur A, Culver DA, et al. (2020) A network ☯ These authors contributed equally to this work. * [email protected] medicine approach to investigation and population- based validation of disease manifestations and drug repurposing for COVID-19. -
Regulation of Fibroblast Growth Factor-2 Expression and Cell Cycle Progression by an Endogenous Antisense RNA
Genes 2012, 3, 505-520; doi:10.3390/genes3030505 OPEN ACCESS genes ISSN 2073-4425 www.mdpi.com/journal/genes Article Regulation of Fibroblast Growth Factor-2 Expression and Cell Cycle Progression by an Endogenous Antisense RNA Mark Baguma-Nibasheka, Leigh Ann MacFarlane and Paul R. Murphy * Department of Physiology and Biophysics, Faculty of Medicine, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada; E-Mails: [email protected] (M.B.-N.); [email protected] (L.A.M.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-902-494-1579; Fax: +1-902-494-2050. Received: 27 June 2012; in revised form: 31 July 2012 / Accepted: 15 August 2012 / Published: 16 August 2012 Abstract: Basic fibroblast growth factor (FGF2) is a potent wide-spectrum mitogen whose overexpression is associated with immortalization and unregulated cell proliferation in many tumors. The FGF2 gene locus is bi-directionally transcribed to produce FGF2 P51$IURPWKH³VHQVH´VWUDQGDQGDcis-antisense RNA (NUDT6) from the NUDT6 gene RQWKH³DQWLVHQVH´VWUDQG7KH18'7JHQHHQFRGHVDQXGL[PRWLISURWHLQRIXQNQRZQ function, while its mRNA has been implicated in the post-transcriptional regulation of FGF2 expression. FGF2 and NUDT6 are co-expressed in rat C6 glioma cells, and ectopic overexpression of NUDT6 suppresses cellular FGF2 accumulation and cell cycle progression. However, the role of the endogenous antisense RNA in regulation of FGF2 is unclear. In the present study, we employed siRNA-mediated gene knockdown to examine the role of the endogenous NUDT6 RNA in regulation of FGF2 expression and cell cycle progression. Knockdown of either FGF2 or NUDT6 mRNA was accompanied by a significant (>3 fold) increase in the complementary partner RNA. -
The Landscape of Human Mutually Exclusive Splicing
bioRxiv preprint doi: https://doi.org/10.1101/133215; this version posted May 2, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. The landscape of human mutually exclusive splicing Klas Hatje1,2,#,*, Ramon O. Vidal2,*, Raza-Ur Rahman2, Dominic Simm1,3, Björn Hammesfahr1,$, Orr Shomroni2, Stefan Bonn2§ & Martin Kollmar1§ 1 Group of Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany 2 Group of Computational Systems Biology, German Center for Neurodegenerative Diseases, Göttingen, Germany 3 Theoretical Computer Science and Algorithmic Methods, Institute of Computer Science, Georg-August-University Göttingen, Germany § Corresponding authors # Current address: Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland $ Current address: Research and Development - Data Management (RD-DM), KWS SAAT SE, Einbeck, Germany * These authors contributed equally E-mail addresses: KH: [email protected], RV: [email protected], RR: [email protected], DS: [email protected], BH: [email protected], OS: [email protected], SB: [email protected], MK: [email protected] - 1 - bioRxiv preprint doi: https://doi.org/10.1101/133215; this version posted May 2, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Towards Personalized Medicine in Psychiatry: Focus on Suicide
TOWARDS PERSONALIZED MEDICINE IN PSYCHIATRY: FOCUS ON SUICIDE Daniel F. Levey Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Program of Medical Neuroscience, Indiana University April 2017 ii Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Andrew J. Saykin, Psy. D. - Chair ___________________________ Alan F. Breier, M.D. Doctoral Committee Gerry S. Oxford, Ph.D. December 13, 2016 Anantha Shekhar, M.D., Ph.D. Alexander B. Niculescu III, M.D., Ph.D. iii Dedication This work is dedicated to all those who suffer, whether their pain is physical or psychological. iv Acknowledgements The work I have done over the last several years would not have been possible without the contributions of many people. I first need to thank my terrific mentor and PI, Dr. Alexander Niculescu. He has continuously given me advice and opportunities over the years even as he has suffered through my many mistakes, and I greatly appreciate his patience. The incredible passion he brings to his work every single day has been inspirational. It has been an at times painful but often exhilarating 5 years. I need to thank Helen Le-Niculescu for being a wonderful colleague and mentor. I learned a lot about organization and presentation working alongside her, and her tireless work ethic was an excellent example for a new graduate student. I had the pleasure of working with a number of great people over the years. Mikias Ayalew showed me the ropes of the lab and began my understanding of the power of algorithms. -
Development of Novel Analysis and Data Integration Systems to Understand Human Gene Regulation
Development of novel analysis and data integration systems to understand human gene regulation Dissertation zur Erlangung des Doktorgrades Dr. rer. nat. der Fakult¨atf¨urMathematik und Informatik der Georg-August-Universit¨atG¨ottingen im PhD Programme in Computer Science (PCS) der Georg-August University School of Science (GAUSS) vorgelegt von Raza-Ur Rahman aus Pakistan G¨ottingen,April 2018 Prof. Dr. Stefan Bonn, Zentrum f¨urMolekulare Neurobiologie (ZMNH), Betreuungsausschuss: Institut f¨urMedizinische Systembiologie, Hamburg Prof. Dr. Tim Beißbarth, Institut f¨urMedizinische Statistik, Universit¨atsmedizin, Georg-August Universit¨at,G¨ottingen Prof. Dr. Burkhard Morgenstern, Institut f¨urMikrobiologie und Genetik Abtl. Bioinformatik, Georg-August Universit¨at,G¨ottingen Pr¨ufungskommission: Prof. Dr. Stefan Bonn, Zentrum f¨urMolekulare Neurobiologie (ZMNH), Referent: Institut f¨urMedizinische Systembiologie, Hamburg Prof. Dr. Tim Beißbarth, Institut f¨urMedizinische Statistik, Universit¨atsmedizin, Korreferent: Georg-August Universit¨at,G¨ottingen Prof. Dr. Burkhard Morgenstern, Weitere Mitglieder Institut f¨urMikrobiologie und Genetik Abtl. Bioinformatik, der Pr¨ufungskommission: Georg-August Universit¨at,G¨ottingen Prof. Dr. Carsten Damm, Institut f¨urInformatik, Georg-August Universit¨at,G¨ottingen Prof. Dr. Florentin W¨org¨otter, Physikalisches Institut Biophysik, Georg-August-Universit¨at,G¨ottingen Prof. Dr. Stephan Waack, Institut f¨urInformatik, Georg-August Universit¨at,G¨ottingen Tag der m¨undlichen Pr¨ufung: der 30. M¨arz2018 -
Replication Timing Alterations in Leukemia Affect Clinically Relevant Chromosome Domains
REGULAR ARTICLE Replication timing alterations in leukemia affect clinically relevant chromosome domains Juan Carlos Rivera-Mulia,1 Takayo Sasaki,2 Claudia Trevilla-Garcia,1 Naoto Nakamichi,3 David J. H. F. Knapp,3 Colin A. Hammond,3 Bill H. Chang,4 Jeffrey W. Tyner,5,6 Meenakshi Devidas,7 Jared Zimmerman,2 Kyle N. Klein,2 Vivek Somasundaram,2 Brian J. Druker,4 Tanja A. Gruber,8 Amnon Koren,9 Connie J. Eaves,3 and David M. Gilbert2,10 1Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN; 2Department of Biological Science, Florida State University, Tallahassee, FL; 3Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, Canada; 4Division of Pediatric Hematology and Oncology, Department of Pediatrics, 5Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University Knight Cancer Institute, and 6Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR; 7Department of Biostatistics, College of Medicine, College of Public Health and Health Professions, University of Florida, Gainesville, FL; 8Department of Oncology, St. Jude Children’s Research Hospital, Memphis, TN; 9Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY; and 10Center for Genomics and Personalized Medicine, Florida State University, Tallahassee, FL Human B-cell precursor acute lymphoid leukemias (BCP-ALLs) comprise a group of Key Points genetically and clinically distinct disease entities with features of differentiation arrest at • DNA replication timing known stages of normal B-lineage differentiation. We previously showed that BCP-ALL cells . of 100 pediatric display unique and clonally heritable, stable DNA replication timing (RT) programs (ie, leukemic samples iden- programs describing the variable order of replication and subnuclear 3D architecture of tified BCP-ALL megabase-scale chromosomal units of DNA in different cell types). -
Comparative Host-Coronavirus Protein Interaction Networks Reveal Pan
Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms David Gordon, Joseph Hiatt, Mehdi Bouhaddou, Veronica Rezelj, Svenja Ulferts, Hannes Braberg, Alexander Jureka, Kirsten Obernier, Jeffrey Guo, Jyoti Batra, et al. To cite this version: David Gordon, Joseph Hiatt, Mehdi Bouhaddou, Veronica Rezelj, Svenja Ulferts, et al.. Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science, American Association for the Advancement of Science, 2020, 370 (6521), pp.eabe9403. 10.1126/science.abe9403. hal-03102291 HAL Id: hal-03102291 https://hal.archives-ouvertes.fr/hal-03102291 Submitted on 7 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Corrected 21 December 2020. See full text. RESEARCH ◥ RESULTS: Quantitative comparison of the 389 RESEARCH ARTICLE SUMMARY interactors of SARS-CoV-2, 366 of SARS-CoV-1, and 296 of MERS-CoV highlighted interactions CORONAVIRUS with host processes that are conserved across all three viruses, including where nonortholo- Comparative host-coronavirus protein interaction gous proteins from different virus strains seem to fill similar roles. We also localized each networks reveal pan-viral disease mechanisms individually-expressed viral protein by micros- copy and then raised and validated antisera David E. -
Investigation of Genetic Factors Underlying Typical Orofacial Clefts: Mutational Screening and Copy Number Variation
Journal of Human Genetics (2015) 60, 17–25 & 2015 The Japan Society of Human Genetics All rights reserved 1434-5161/15 www.nature.com/jhg ORIGINAL ARTICLE Investigation of genetic factors underlying typical orofacial clefts: mutational screening and copy number variation Milena Simioni1, Tânia Kawasaki Araujo1, Isabella Lopes Monlleo2, Cláudia Vianna Maurer-Morelli1 and Vera Lúcia Gil-da-Silva-Lopes1 Typical orofacial clefts (OFCs) comprise cleft lip, cleft palate and cleft lip and palate. The complex etiology has been postulated to involve chromosome rearrangements, gene mutations and environmental factors. A group of genes including IRF6, FOXE1, GLI2, MSX2, SKI, SATB2, MSX1 and FGF has been implicated in the etiology of OFCs. Recently, the role of the copy number variations (CNVs) has been studied in genetic defects and diseases. CNVs act by modifying gene expression, disrupting gene sequence or altering gene dosage. The aims of this study were to screen the above-mentioned genes and to investigate CNVs in patients with OFCs. The sample was composed of 23 unrelated individuals who were grouped according to phenotype (associated with other anomalies or isolated) and familial recurrence. New sequence variants in GLI2, MSX1 and FGF8 were detected in patients, but not in their parents, as well as in 200 control chromosomes, indicating that these were rare variants. CNV screening identified new genes that can influence OFC pathogenesis, particularly highlighting TCEB3 and KIF7, that could be further analyzed. The findings of the present study suggest that the mechanism underlying CNV associated with sequence variants may play a role in the etiology of OFC. Journal of Human Genetics (2015) 60, 17–25; doi:10.1038/jhg.2014.96; published online 13 November 2014 INTRODUCTION understand OFC etiology, the molecular mechanisms underlying cleft Orofacial clefts (OFCs) comprise any cleft (that is, a break or gap) in development have not been fully characterized. -
Next Generation Sequencing for SARS-Cov-2
Next generation sequencing for SARS-CoV-2 Next generation sequencing for SARS-CoV-2/COVID-19 Acknowledgements The PHG Foundation and FIND are grateful for the insight provided by the individuals consulted during the course of this work. Full consultee acknowledgements are listed in Appendix 1 Lead writers Chantal Babb de Villiers (PHG Foundation) Laura Blackburn (PHG Foundation) Sarah Cook (PHG Foundation) Joanna Janus (PHG Foundation) Emma Johnson (PHG Foundation) Mark Kroese (PHG Foundation) Concept development and lead review Swapna Uplekar (FIND) Reviewers Devy Emperador (FIND) Jilian Sacks (FIND) Marva Seifert (FIND) Anita Suresh (FIND) Report production PHG Foundation July 2020; Update March 2021 This report is the result of PHG Foundation’s independent research and analysis and is not linked to a third party in any way. PHG Foundation has provided occasional analytical services to Oxford Nanopore Technologies (ONT) as part of a consultancy agreement. Next generation sequencing for SARS-CoV-2 2 Contents Introduction 6 1.1 Methods 6 1.2 SARS-CoV-2 7 1.3 SARS-CoV-2 genome sequencing 8 1.4 SARS-CoV-2 biology 9 2 Global surveillance: applications of sequencing technologies and techniques 14 2.1 Overview of surveillance 15 2.2 Overview of genomic surveillance 17 2.3 Sequencing initiatives across the globe 18 2.4 Sequencing data repositories and data sharing 25 2.5 SARS-CoV-2 genomic data releases by country 26 2.6 Additional sequencing related initiatives 29 3 Diagnostics and the role of sequencing 32 3.1 Sequencing for diagnosis 32 3.2 -
Enriched Alternative Splicing in Islets of Diabetes-Susceptible Mice
International Journal of Molecular Sciences Article Enriched Alternative Splicing in Islets of Diabetes-Susceptible Mice Ilka Wilhelmi 1,2, Alexander Neumann 3 , Markus Jähnert 1,2 , Meriem Ouni 1,2,† and Annette Schürmann 1,2,4,5,*,† 1 Department of Experimental Diabetology, German Institute of Human Nutrition (DIfE), 14558 Potsdam, Germany; [email protected] (I.W.); [email protected] (M.J.); [email protected] (M.O.) 2 German Center for Diabetes Research (DZD), 85764 Munich, Germany 3 Omiqa Bioinformatics, 14195 Berlin, Germany; [email protected] 4 Institute of Nutritional Sciences, University of Potsdam, 14558 Nuthetal, Germany 5 Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and The University of Potsdam, 14469 Potsdam, Germany * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: Dysfunctional islets of Langerhans are a hallmark of type 2 diabetes (T2D). We hypoth- esize that differences in islet gene expression alternative splicing which can contribute to altered protein function also participate in islet dysfunction. RNA sequencing (RNAseq) data from islets of obese diabetes-resistant and diabetes-susceptible mice were analyzed for alternative splicing and its putative genetic and epigenetic modulators. We focused on the expression levels of chromatin modifiers and SNPs in regulatory sequences. We identified alternative splicing events in islets of diabetes-susceptible mice amongst others in genes linked to insulin secretion, endocytosis or Citation: Wilhelmi, I.; Neumann, A.; ubiquitin-mediated proteolysis pathways. The expression pattern of 54 histones and chromatin Jähnert, M.; Ouni, M.; Schürmann, A. -
Variation in Protein Coding Genes Identifies Information Flow
bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 1 1 2 3 4 5 Variation in protein coding genes identifies information flow as a contributor to 6 animal complexity 7 8 Jack Dean, Daniela Lopes Cardoso and Colin Sharpe* 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Institute of Biological and Biomedical Sciences 25 School of Biological Science 26 University of Portsmouth, 27 Portsmouth, UK 28 PO16 7YH 29 30 * Author for correspondence 31 [email protected] 32 33 Orcid numbers: 34 DLC: 0000-0003-2683-1745 35 CS: 0000-0002-5022-0840 36 37 38 39 40 41 42 43 44 45 46 47 48 49 Abstract bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 2 1 Across the metazoans there is a trend towards greater organismal complexity. How 2 complexity is generated, however, is uncertain. Since C.elegans and humans have 3 approximately the same number of genes, the explanation will depend on how genes are 4 used, rather than their absolute number.