Eon to Rip out Scroby Sands Export Cable
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modeling and Dynamic Analysis of Offshore Wind Farms in France: Impact on Power System Stability
04/11/2011 Modeling and dynamic analysis of offshore wind farms in France: Impact on power system stability KTH Master Thesis report number Alexandre Henry Examiner at KTH Dr. Luigi Vanfretti Supervisors at KTH Dr. Luigi Vanfretti and Camille Hamon Supervisor at EDF Dr. Bayram Tounsi Laboratory Electric Power Systems School of Electrical Engineering KTH, Royal Institute of Technology Stockholm, November 2011 Accessibility : .. Front page Page I / III ... Modeling and dynamic analysis of offshore wind farms in France: Impact on KTH EPS power system stability - EDF R&D Abstract Alexandre Henry Page 1 / 90 KTH Master Thesis Modeling and dynamic analysis of offshore wind farms in France: Impact on KTH EPS power system stability - EDF R&D Nomenclature EWEA : European Wind Energy Association UK : United Kingdom EU : European union AC : Alternating current DC : Direct current HVAC : High Voltage Alternating Current HVDC : High Voltage Direct Current PCC : Point of Common Coupling TSO : Transmission System Operator RTE : Réseau de transport d’électricité (French TSO) XLPE : cross linked polythylene insulated VSC : Voltage source converter LCC : Line commutated converter FACTS : Flexible AC Transmission System SVC : Static Var Compensator DFIG : Double Fed Induction Generator MVAC : Medium Voltage Alternating Current ENTSO-E : European Network of Transmission System Operators for Electricity HFF : High Frequency Filter FRT : Fault Ride Through Alexandre Henry Page 2 / 90 KTH Master Thesis Modeling and dynamic analysis of offshore wind farms -
TOP 100 POWER PEOPLE 2016 the Movers and Shakers in Wind
2016 Top 100 Power People 1 TOP 100 POWER PEOPLE 2016 The movers and shakers in wind Featuring interviews with Samuel Leupold from Dong Energy and Ian Mays from RES Group © A Word About Wind, 2016 2016 Top 100 Power People Contents 2 CONTENTS Compiling the Top 100: Advisory panel and ranking process 4 Interview: Dong Energy’s Samuel Leupold discusses offshore 6 Top 100 breakdown: Statistics on this year’s table 11 Profiles: Numbers 100 to 41 13 Interview: A Word About Wind meets RES Group’s Ian Mays 21 Profiles: Numbers 40 to 6 26 Top five profiles:The most influential people in global wind 30 Top 100 list: The full Top 100 Power People for 2016 32 Next year: Key dates for your diary in 2017 34 21 Facing the future: Ian Mays on RES Group’s plans after his retirement © A Word About Wind, 2016 2016 Top 100 Power People Editorial 3 EDITORIAL resident Donald Trump. It is one of The company’s success in driving down the Pthe biggest shocks in US presidential costs of offshore wind over the last year history but, in 2017, Trump is set to be the owes a great debt to Leupold’s background new incumbent in the White House. working for ABB and other big firms. Turn to page 6 now if you want to read the The prospect of operating under a climate- whole interview. change-denying serial wind farm objector will not fill the US wind sector with much And second, we went to meet Ian Mays joy. -
High-Resolution CFD Modelling of Lillgrund Wind Farm
International Conference on Renewable Energies and Power Quality (ICREPQ’13) Bilbao (Spain), 20th to 22th March, 2013 Renewable Energy and Power Quality Journal (RE&PQJ) ISSN 2172-038 X, No.11, March 2013 High-resolution CFD modelling of Lillgrund Wind farm A.C.W. Creech1, W.-G. Früh2 and A.E. Maguire3 1 Institute of Energy Systems, School of Engineering, University of Edinburgh Kings Buildings, Edinburgh EH9 3JL (UK) E-mail: [email protected] 2 Institute of Mechanical, Process and Energy Engineering, School of Physical Sciences and Engineering, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS (UK) E-mail: [email protected] 3 Vattenfall United Kingdom, Research & Development New Renewables The Tun, Holyrood Road, Edinburgh EH8 8AE (UK) E-mail: [email protected] Abstract. We report on a fully dynamic simulation of key factor affecting the performance is that turbines in Vattenfall’s Lillgrund offshore Wind Farm, with a focus the array may be in the wakes of upstream turbines where on the wake effects of turbines on the performance of they experience substantially lower wind speeds than the individual turbines, and of the farm as a whole. upstream turbines [1]. Common approaches are Reynolds-Averaged Navier-Stokes (RANS) CFD or simpler flow modelling coupled with linear wake theory, The model uses a dynamic representation of a wind turbine such as Jensen’s Park model. However, it is recognised to simulate interaction between the wind and the turbine that the simple wake models lose accuracy when applied rotors, calculating the instantaneous power output and to multiple wakes interacting. -
Lillgrund Wind Power Offshore
LILLGRUND WIND POWER OFFSHORE 110 MW UNDER CONSTRUCTION IN SOUTHERN SWEDEN. Jeju, Korea, April 20, 2007 Kenneth Averstad, Vattenfall AB Wind Power, Sweden © Vattenfall AB 1 Agenda • Short presentation of my company Vattenfall AB and our wind power development activities. • Lillgrund Wind Power Offshore Project 110 MW. • Other Offshore Wind Projects under Development in Sweden. © Vattenfall AB Vattenfall AB's Electricity Generation About 160 TWh / year Finland 0,5 TWh Sweden 80 TWh 7 TWh Denmark 68 TWh 2,3 TWh Germany Poland © Vattenfall AB Vattenfall Nordic Wind Power 2007: 487 MW ; 1200 GWh/yr Denmark 406 WT, 309 MW, Sweden 62 WT, 750 GWh 54 MW, 120 GWh Finland 10 WT, 4 MW, 8 GWh England 30 WT, Poland 15 WT, 90 MW, 270 GWh 30 MW, 60 GWh Own and operate total: 523 wind turbines = Offices © Vattenfall AB Vattenfall’s Offshore Wind Power in Operation 2007 Horns Rev (60%), 360 GWh Utgrunden 1 + + Yttre Stengrund, Kentish Flats, 60 GWh 270 GWh Map from Vattenfall’s Corporate Social Responsibility Report (www.vattenfall.com) © Vattenfall AB Näsudden = Vattenfall’s O&M and Test Centre - since 1982 and prototype testing, for example: Nordic Windpower 2, 1000 kW Nordic Windpower 1, 1000 kW Näsudden 2, 3000 kW Located on the island Gotland in the Baltic Sea. © Vattenfall AB Näsudden 2, 3000 kW Gotland, Sweden 61.4 GWh WORLD RECORD Finally stopped January 9, 2007 at 02:29, after 61,469 generating hours since start March 14, 1993. Vibration alarms, low oil pressure in gear- box. Inspection showed severe damages in gearbox, many teeth in different gear- box steps have been damaged. -
Industrial Impact the Power of Scotland's Renewables Sector
Supported by Industrial impact the power of Scotland’s renewables sector Wind Service at E.ON INTRODUCTION Climate and Renewables Despite daily headlines on energy, climate change and the growth of renewables, few people appreciate the scale of the transformation which is steadily underway in our energy sector. In just eight years Scotland has almost tripled its Glasgow and Edinburgh are home to large power utilities renewable energy capacity, and made a massive dent in as well as some of our most cutting-edge science, the country’s carbon emissions as a result. research and innovation organisations – companies like Limpet Technologies and Neo Environmental are The industrial benefits of this strategic transformation developing unique products which are already being are as impressive as the environmental ones: exported across the globe. renewable energy is driving innovation and clean growth across Scotland. Research by Scottish Renewables in December 2016 showed Scottish renewable energy businesses like these The sector currently employs 21,000 people, from have been involved in projects worth £125.3 million in 43 entrepreneurs who’re designing new ways to capture countries in every continent bar Antarctica. energy from nature, consultants who make projects viable, E.ON in Scotland lawyers who negotiate contracts, a supply chain which In the south of Scotland, organisations like Natural Power builds wind farms, hydro plant and solar farms and an and Green Cat Group are nurturing workforces skilled army of highly-skilled engineers and technicians who in providing the development support that renewable E.ON, through its renewables arm E.ON Climate and multiple turbine manufacturers/types across Europe. -
Community Investment Report
COMMUNITY INVESTMENT REVIEW 2019/20 FOREWORD || CONTENTS FOREWORD 2019/20 has been an extraordinary year for SSE Renewables. We started construction on two new ground-breaking offshore wind farms – Dogger Bank, which will be the world’s largest wind farm once complete, and Seagreen, which will be Scotland’s largest. In January 2020 we greenlighted a first subsidy-free onshore wind farm in Scotland, an extension to the existing Gordonbush wind farm in Foreword 01 Funder’s Report 02 Regional Funds 06 Sutherland. Advancing these wind farms, and others in the development pipeline, are a critical part of the response to the climate emergency. Together, they will make a significant contribution to meeting the UK’s ambitious net zero carbon targets whilst making a positive economic contribution in their local areas. By March 2020, of course, everything helping to make things just that little penny of this funding has been Local Funds 10 Offshore Funds 14 NI and ROI Funds 18 became dominated by the bit easier. As we are emerging from allocated and showcases the strong coronavirus pandemic. Operationally, lockdown it is clear there are many funding decisions local people we adapted quickly to make sure that challenges ahead, but having seen the continue to make to ensure their FUNDS IN FOCUS power supplies from our renewable positive effects of the funding we’ve communities have what they need generators continued to flow at channelled towards the coronavirus now, and for the future. Highlands and Islands Beatrice Moray 29 Clyde Extension 36 the same time as making sure our response so far, our objective is Stronelairg 20 Community Fund South Lanarkshire Sustainable 36 Bhlaraidh 21 Development Fund employees and the wider public were that the funds will play a big part I know that awarding grants is the Dunmaglass 22 Perthshire safe. -
Corporate Responsibility Report 2007 Corporate Responsibility Report 2007
Corporate Responsibility Report 2007 Corporate Responsibility Report 2007 Index Page number Welcome 2 Performance Summary 2007 3 Managing our Responsibilities Our Approach 6 Governance 7 Environment 8 Stakeholder Engagement 11 Scope 12 Benchmarking and Recognition 13 Our 12 Impacts 15 Provision of Energy 16 Health and Safety 25 Customer Experience 35 Climate Change and Emissions to Air 43 Waste and Resource Use 52 Biodiversity 62 Sites, Siting and Infrastructure 70 Employment Experience 75 Customers with Special Circumstances 88 Community 94 Procurement 107 Economic 113 Assurance Statement 116 Page 1 of 118 www.scottishpower.com/CorporateResponsibility.asp Corporate Responsibility Report 2007 Welcome 2007 was a landmark year for our business with the successful integration of ScottishPower and IBERDROLA. The new enlarged IBERDROLA Group ended 2007 as one of the worlds largest electricity companies by market capitalisation. Through the friendly integration, now successfully completed, we have reinforced our shared commitment to Corporate Responsibility. Our reporting year has been aligned to IBERDROLA so going forward we will be working on a calendar year basis. Achieving Scottish Business in the Community Large Company of the Year in 2007 was an important endorsement for ScottishPowers work and to our commitment to environmental and social issues. During 2007, we have announced significant investments in sustainable generation projects and environmental technologies; increased our 2010 target for delivery of wind energy projects in the UK to 1,200 MW and established partnerships that will help secure Scotlands place as the world leader in marine energy. In addition, we announced the UKs largest energy crop project and embarked on a major study into cleaner coal generation. -
Clyde Wind Farm Extension – Impact Analysis
Clyde Wind Farm Extension – Impact Analysis June 2015 In association with: Clyde Wind Farmsiemens.co.uk Extension | 1 Siemens To be a truly sustainable business, Siemens creating more transparency on negatives has to be profitable, but we also have a such as the environmental cost of responsibility to understand the way we manufacturing, installing and operating the affect people’s lives, the environment and onshore wind farm. This greater depth of local communities. To do this we work hard information will help ourselves and our to better understand how the work that we customers make more informed decisions do as Siemens and with our customers on the true value that such a project delivers. impacts society. I believe that it is the duty of responsible This report details work that we have done businesses to look at the broader financial in association with SSE and PwC to and society impact measures when making understand the economic, environmental key business decisions. and social impacts of building an onshore wind farm. Whilst we have looked at the Juergen Maier positive benefits to the economy, jobs and Chief Executive, Siemens plc training we have not shied away from PwC Siemens has used selected elements of We commend Siemens for applying this PwC’s Total Impact Measurement and thinking to its contributions, as one Management framework to understand the constituent of the entire supply chain, to impacts it deemed the most material from the Clyde Extension and its collaboration its contribution to the Clyde Extension with SSE to better understand how their project covering manufacturing, installation impact fits into the broader impact of the and servicing. -
Sustainability Summary 2012
Contents 1. Introduction 1 5. Social 46 Welcome 2 Highlights 47 About this Summary 3 Our Workplace 48 Our Year in Summary - Highlights 4 Overview & Management Approach 48 About Us 7 Performance 50 Stakeholder Engagement 8 Employee Health, 50 Safety & Wellbeing Benchmarking & Recognition 10 Learning & Development 53 2. Governance 11 Employee Benefits 55 How We Manage CSR 16 Employee Relations 57 3. Economic 17 Our Marketplace 58 Highlights & Management Approach 18 Overview & Management Approach 58 Performance 19 Performance 59 Key Financial Results 19 Our Markets 59 Investment 20 Pricing & Product Innovation 59 Energy Prices & Regulation 21 Sales & Marketing 61 4. Environment 22 Customer Information 61 Highlights 23 Customer Service 62 Policy, Organisation 23 Social Programmes 66 & Management System Plant Reliability & 70 Management Focus on 25 Energy Security Environmental Indicators Supply Chain 71 Performance 28 Our Communities 74 Materials 28 Overview & Management Approach 74 Energy 28 Performance 77 Water 30 Project Development 77 Biodiversity 31 Community Investment 78 Emissions, Effluents 40 & Wastes Community Programmes 78 Volunteering & Fundraising 86 Cancer Research UK 88 Introduction 1 Welcome Welcome to ScottishPower’s Sustainability Summary 2012. 1,200MW East Anglia ONE offshore wind development, in partnership with Vattenfall, provide the potential to As part of the Iberdrola Group our generate green energy on a significant scale by 2020. focus is on building a strong and At the same time as pioneering these new, large-scale technologies, we are repowering two of our oldest commercially successful business, and smallest windfarms in Cornwall and Lancashire with sustainability at the heart of our with modern turbines, to improve their efficiency and output. -
GB Wholesale Market Summary April 2021
GB Wholesale Market Summary April 2021 Published May 2021 Aurora offers power market forecasts and market intelligence spanning Europe’s key markets, Australia and the US Comprehensive Power Power Market Bespoke Market Services Forecast Reports forecasts Market forecast Power market Aurora can provide ✓ reports ✓ forecast reports ✓ power market forecasts upon Forecast data in Forecast data in request ✓ Excel ✓ Excel Global energy ✓ Analyst support ✓ market forecast reports Strategic insight ✓ reports Regular subscriber ✓ group meetings ✓ Policy updates ✓ Bilateral workshops ✓ Analyst support Source: Aurora Energy Research 2 Month-on-month Year-on-year Monthly value1 Slide reference(s) E x e c u t i v e change change Power prices + 12.4 + 43.5 66.6 5, 6 £/MWh (23.0%) (188.9%) S u m m a r y Gas prices + 3.1 + 13.8 18.5 7 £/MWh (20.3%) (291.4%) Carbon2 prices + 3.4 + 21.0 56.5 7 ▪ April saw power prices rise to £67/MWh £/tCO2 (6.4%) (58.9%) driven by increased gas and carbon Transmission demand - 2.1 + 3.4 prices 20.8 10 TWh (9.2%) (19.3%) ▪ Monthly transmission power demand in Low carbon3 generation - 1.0 - 0.9 April decreased to 21 TWh due to 10.8 11, 12 warmer temperatures TWh (8.5%) (7.6%) Thermal4 generation + 1.1 + 5.14 ▪ Despite lower demand and higher gas 10.4 11, 12 and carbon prices, thermal generation in TWh (11.8%) (97.7%) April increased to 11 TWh due to lower Carbon emissions + 0.3 + 2.1 renewables output 4.5 14 MtCO2e (7.9%) (85.7%) ▪ Higher thermal generation thus resulted Grid carbon intensity + 33.9 + 84.5 239.9 14 in a rise in emissions to 5 MtCO2e gCO2e/kWh (16.5%) (54.4%) Wind load factors5 24.0 - 16 p.p. -
Offshore Wind Turbine Installation Analyses
= Offshore Wind Turbine Transportation & Installation Analyses Planning Optimal Marine Operations for Offshore Wind Projects EMRE URAZ Master Thesis Visby, Sweden 2011 Offshore Wind Turbine Transportation & Installation Analyses Planning Optimal Marine Operations for Offshore Wind Projects Master Thesis by Emre URAZ Master Thesis written at Gotland University, June 2011, Department of Wind Energy Supervisor: Richard Koehler HGO, Department of Wind Energy Examiner: Dr. Bahri Uzunoğlu HGO, Department of Wind Energy Abstract Transportation and installation of offshore wind turbines (Tower, Nacelle and Rotor) is a complete process conducted over several phases, usually in sequence. There are several factors that can turn this process into a challenge. These factors can either be due to offshore site conditions or the technical limitations of the installation vessels. Each project has its own characteristic parameters and requires a unique optimum solution. This paper identifies the dynamics of the installation process and analyzes the effects of each phase on the progression of events. The challenges in wind turbine installations due to offshore environment were investigated, the effects of each were explained and their significances were stressed. Special installation vessels were examined and their technical specifications were analyzed in terms of working conditions, dimensions, service performances, and crane capacities as well as projecting future design trends. Several offshore wind farm projects were analyzed; their installation methods were specified, and compared to each other to determine advantages and disadvantages of different pre-assembly concepts. The durations of the sub-phases of the process were defined in terms of different variables such as site conditions and individual vessel performance. These definitions were used for making time estimations, and conducting further analyses regarding the effects of different site specific parameters on the overall project duration. -
Offshore Wind Power Projects
Offshore wind power projects Answers for energy. Offshore projects 1 Walney, UK, 2010–2011 10 Horns Rev II, DK, 2009 102 turbines 1) 91 turbines 1) 2 Burbo Banks, UK, 2007 11 Samsø, DK, 2000 25 turbines 10 turbines 3 Rhyl Flats, UK, 2009–2010 12 Middelgrunden, DK, 2000 25 turbines 1) 20 turbines 4 Lynn / Inner Dowsing, UK, 2008 13 Vindeby, DK, 1991 54 turbines 11 turbines 5 Sheringham Shoal, UK, 2011 14 Rødsand II, DK, 2010 88 turbines 1) 90 turbines 1) 6 Greater Gabbard, UK, 15 Lillgrund, SE, 2007 2010–2011, 140 turbines 1) 48 turbines 7 Gunfleet Sands, UK, 2009 16 Baltic I, DE, 2010 48 turbines 1) 21 turbines 1) 8 London Array, UK, 2012 17 Nysted/Rødstand, DK, 2003 175 turbines 1) 72 turbines 9 Hywind, NO, 2009 1) 1 turbine 1) Planned When it comes to offshore wind power, Siemens has not only supplied the world’s no supplier can match Siemens in first, but also the world’s largest offshore experience and stability. Siemens has projects. The 165-MW Nysted offshore a proven and unique offshore track wind farm has held the record as the record, ranging from the world’s first largest offshore project for several years offshore wind farm almost 20 yeas ago now. This record is expected to be broken to today’s largest offshore projects. All when the 200-MW Horns Rev II project projects have been delivered on time is commissioned. The 500-MW Greater and on budget, and have recorded Gabbard project, currently in progress in high availability.