Earth's Critical Zone and Hydropedology: Concepts, Characteristics, and Advances
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Soils Section
Soils Section 2003 Florida Envirothon Study Sections Soil Key Points SOIL KEY POINTS • Recognize soil as an important dynamic resource. • Describe basic soil properties and soil formation factors. • Understand soil drainage classes and know how wetlands are defined. • Determine basic soil properties and limitations, such as mottling and permeability by observing a soil pit or soil profile. • Identify types of soil erosion and discuss methods for reducing erosion. • Use soil information, including a soil survey, in land use planning discussions. • Discuss how soil is a factor in, or is impacted by, nonpoint and point source pollution. Florida’s State Soil Florida has the largest total acreage of sandy, siliceous, hyperthermic Aeric Haplaquods in the nation. This is commonly called Myakka fine sand. It does not occur anywhere else in the United States. There are more than 1.5 million acres of Myakka fine sand in Florida. On May 22, 1989, Governor Bob Martinez signed Senate Bill 525 into law making Myakka fine sand Florida’s official state soil. iii Florida Envirothon Study Packet — Soils Section iv Contents CONTENTS INTRODUCTION .........................................................................................................................1 WHAT IS SOIL AND HOW IS SOIL FORMED? .....................................................................3 SOIL CHARACTERISTICS..........................................................................................................7 Texture......................................................................................................................................7 -
The Retention of Organic Matter in Soils
Biogeochemistry 5: 35-70 (1988) © Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht Printed in the Netherlands The retention of organic matter in soils J.M. OADES Department of Soil Science, Waite Agricultural Research Institute, The University of Adelaide, Glen Osmond, South Australia 5064 Key words: organic matter, turnover, organomineral interactions, clay, base status, cation bridges, oxide surfaces Abstract. The turnover of C in soils is controlled mainly by water regimes and temperature, but is modified by factors such as size and physicochemical properties of C additions in litter or root systems, distribution of C throughout the soil as root systems, or addition as litter, distribution of C within the soil matrix and its interaction with clay surfaces. Soil factors which retard mineralization of C in soils are identified from correlations of C contents of soils with other properties such as clay content and base status. The rate and extent of C mineralization depends on the chemistry of the added organic matter and interaction with clays of the microbial biomass and metabolites. The organomineral interactions are shown to depend on cation bridges involving mainly Ca in neutral to alkaline soils, Al in acid soils and adsorption of organic materials on iron oxide surfaces. The various organomineral interactions lead to aggregations of clay particles and organic materials, which stabilizes both soil structure and the carbon compounds within the aggregates. Introduction Soils represent a major pool (172 x 10'°t) in the cycling of C from the atmosphere to the biosphere and are the habitat for terrestrial photosynthet- ic organisms which fix some 11 x 1 0"°tCy-1, about one half of which eventually finds it way into soils. -
Soil As a Huge Laboratory for Microorganisms
Research Article Agri Res & Tech: Open Access J Volume 22 Issue 4 - September 2019 Copyright © All rights are reserved by Mishra BB DOI: 10.19080/ARTOAJ.2019.22.556205 Soil as a Huge Laboratory for Microorganisms Sachidanand B1, Mitra NG1, Vinod Kumar1, Richa Roy2 and Mishra BB3* 1Department of Soil Science and Agricultural Chemistry, Jawaharlal Nehru Krishi Vishwa Vidyalaya, India 2Department of Biotechnology, TNB College, India 3Haramaya University, Ethiopia Submission: June 24, 2019; Published: September 17, 2019 *Corresponding author: Mishra BB, Haramaya University, Ethiopia Abstract Biodiversity consisting of living organisms both plants and animals, constitute an important component of soil. Soil organisms are important elements for preserved ecosystem biodiversity and services thus assess functional and structural biodiversity in arable soils is interest. One of the main threats to soil biodiversity occurred by soil environmental impacts and agricultural management. This review focuses on interactions relating how soil ecology (soil physical, chemical and biological properties) and soil management regime affect the microbial diversity in soil. We propose that the fact that in some situations the soil is the key factor determining soil microbial diversity is related to the complexity of the microbial interactions in soil, including interactions between microorganisms (MOs) and soil. A conceptual framework, based on the relative strengths of the shaping forces exerted by soil versus the ecological behavior of MOs, is proposed. Plant-bacterial interactions in the rhizosphere are the determinants of plant health and soil fertility. Symbiotic nitrogen (N2)-fixing bacteria include the cyanobacteria of the genera Rhizobium, Free-livingBradyrhizobium, soil bacteria Azorhizobium, play a vital Allorhizobium, role in plant Sinorhizobium growth, usually and referred Mesorhizobium. -
Biomechanical and Biochemical Effects Recorded in the Tree Root Zone – Soil Memory, Historical Contingency and Soil Evolution Under Trees
Plant Soil (2018) 426:109–134 https://doi.org/10.1007/s11104-018-3622-9 REGULAR ARTICLE Biomechanical and biochemical effects recorded in the tree root zone – soil memory, historical contingency and soil evolution under trees Łukasz Pawlik & Pavel Šamonil Received: 17 September 2017 /Accepted: 1 March 2018 /Published online: 15 March 2018 # The Author(s) 2018 Abstract increase in soil spatial complexity. We hypothesized that Background and aims The changing soils is a never- trees can be a strong local factor intensifying, blocking ending process moderated by numerous biotic and abi- or modifying pedogenetic processes, leading to local otic factors. Among these factors, trees may play a changes in soil complexity (convergence, divergence, critical role in forested landscapes by having a large or polygenesis). These changes are hypothetically con- imprint on soil texture and chemical properties. During trolled by regionally predominating soil formation their evolution, soils can follow convergent or divergent processes. development pathways, leading to a decrease or an Methods To test the main hypothesis, we described the pedomorphological features of soils under tree stumps of fir, beech and hemlock in three soil regions: Haplic Highlights Cambisols (Turbacz Reserve, Poland), Entic Podzols 1) The architecture of tree root systems controls soil physical and (Žofínský Prales Reserve, Czech Republic) and Albic chemical properties. Podzols (Upper Peninsula, Michigan, USA). Soil pro- 2) The predominating pedogenetic process significantly modifies files under the stumps, as well as control profiles on sites the effect of trees on soil. 3) Trees are a factor in polygenesis in Haplic Cambisols at the currently not occupied by trees, were analyzed in the pedon scale. -
Dynamics of Carbon 14 in Soils: a Review C
Radioprotection, Suppl. 1, vol. 40 (2005) S465-S470 © EDP Sciences, 2005 DOI: 10.1051/radiopro:2005s1-068 Dynamics of Carbon 14 in soils: A review C. Tamponnet Institute of Radioprotection and Nuclear Safety, DEI/SECRE, CADARACHE, BP. 1, 13108 Saint-Paul-lez-Durance Cedex, France, e-mail: [email protected] Abstract. In terrestrial ecosystems, soil is the main interface between atmosphere, hydrosphere, lithosphere and biosphere. Its interactions with carbon cycle are primordial. Information about carbon 14 dynamics in soils is quite dispersed and an up-to-date status is therefore presented in this paper. Carbon 14 dynamics in soils are governed by physical processes (soil structure, soil aggregation, soil erosion) chemical processes (sequestration by soil components either mineral or organic), and soil biological processes (soil microbes, soil fauna, soil biochemistry). The relative importance of such processes varied remarkably among the various biomes (tropical forest, temperate forest, boreal forest, tropical savannah, temperate pastures, deserts, tundra, marshlands, agro ecosystems) encountered in the terrestrial ecosphere. Moreover, application for a simplified modelling of carbon 14 dynamics in soils is proposed. 1. INTRODUCTION The importance of carbon 14 of anthropic origin in the environment has been quite early a matter of concern for the authorities [1]. When the behaviour of carbon 14 in the environment is to be modelled, it is an absolute necessity to understand the biogeochemical cycles of carbon. One can distinguish indeed, a global cycle of carbon from different local cycles. As far as the biosphere is concerned, pedosphere is considered as a primordial exchange zone. Pedosphere, which will be named from now on as soils, is mainly located at the interface between atmosphere and lithosphere. -
World Reference Base for Soil Resources 2014 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps
ISSN 0532-0488 WORLD SOIL RESOURCES REPORTS 106 World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps Update 2015 Cover photographs (left to right): Ekranic Technosol – Austria (©Erika Michéli) Reductaquic Cryosol – Russia (©Maria Gerasimova) Ferralic Nitisol – Australia (©Ben Harms) Pellic Vertisol – Bulgaria (©Erika Michéli) Albic Podzol – Czech Republic (©Erika Michéli) Hypercalcic Kastanozem – Mexico (©Carlos Cruz Gaistardo) Stagnic Luvisol – South Africa (©Márta Fuchs) Copies of FAO publications can be requested from: SALES AND MARKETING GROUP Information Division Food and Agriculture Organization of the United Nations Viale delle Terme di Caracalla 00100 Rome, Italy E-mail: [email protected] Fax: (+39) 06 57053360 Web site: http://www.fao.org WORLD SOIL World reference base RESOURCES REPORTS for soil resources 2014 106 International soil classification system for naming soils and creating legends for soil maps Update 2015 FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2015 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. -
Diagnostic Horizons
Exam III Wednesday, November 7th Study Guide Posted Tomorrow Review Session in Class on Monday the 4th Soil Taxonomy and Classification Diagnostic Horizons Epipedons Subsurface Mollic Albic Umbric Kandic Ochric Histic Argillic Melanic Spodic Plaggen Anthropic Oxic 1 Surface Horizons: Mollic- thick, dark colored, high %B.S., structure Umbric – same, but lower B.S. Ochric – pale, low O.M., thin Histic – High O.M., thick, wet, dark Sub-Surface Horizons: Argillic – illuvial accum. of clay (high activity) Kandic – accum. of clay (low activity) Spodic – Illuvial O.M. accumulation (Al and/or Fe) Oxic – highly weathered, kaolinite, Fe and Al oxides Albic – light colored, elluvial, low reactivity Elluviation and Illuviation Elluviation (E horizon) Organic matter Clays A A E E Bh horizon Bt horizon Bh Bt Spodic horizon Argillic horizon 2 Soil Taxonomy Diagnostic Epipedons Diagnostic Subsurface horizons Moisture Regimes Temperature Regimes Age Texture Depth Soil Taxonomy Soil forming processes, presence or Order Absence of major diagnostic horizons 12 Similar genesis Suborder 63 Grasslands – thick, dark Great group 250 epipedons High %B.S. Sub group 1400 Family 8000 Series 19,000 Soil Orders Entisols Histosols Inceptisols Andisols Gelisols Alfisols Mollisols Ultisols Spodosols Aridisols Vertisols Oxisols 3 Soil Orders Entisol Ent- Recent Histosol Hist- Histic (organic) Inceptisol Incept- Inception Alfisol Alf- Nonsense Ultisol Ult- Ultimate Spodosol Spod- Spodos (wood ash) Mollisol Moll- Mollis (soft) Oxisol Ox- oxide Andisol And- Ando (black) Gelisol -
Sustaining the Pedosphere: Establishing a Framework for Management, Utilzation and Restoration of Soils in Cultured Systems
Sustaining the Pedosphere: Establishing A Framework for Management, Utilzation and Restoration of Soils in Cultured Systems Eugene F. Kelly Colorado State University Outline •Introduction - Its our Problems – Life in the Fastlane - Ecological Nexus of Food-Water-Energy - Defining the Pedosphere •Framework for Management, Utilization & Restoration - Pedology and Critical Zone Science - Pedology Research Establishing the Range & Variability in Soils - Models for assessing human dimensions in ecosystems •Studies of Regional Importance Systems Approach - System Models for Agricultural Research - Soil Water - The Master Variable - Water Quality, Soil Management and Conservation Strategies •Concluding Remarks and Questions Living in a Sustainable Age or Life in the Fast Lane What do we know ? • There are key drivers across the planet that are forcing us to think and live differently. • The drivers are influencing our supplies of food, energy and water. • Science has helped us identify these drivers and our challenge is to come up with solutions Change has been most rapid over the last 50 years ! • In last 50 years we doubled population • World economy saw 7x increase • Food consumption increased 3x • Water consumption increased 3x • Fuel utilization increased 4x • More change over this period then all human history combined – we are at the inflection point in human history. • Planetary scale resources going away What are the major changes that we might be able to adjust ? • Land Use Change - the world is smaller • Food footprint is larger (40% of land used for Agriculture) • Water Use – 70% for food • Running out of atmosphere – used as as disposal for fossil fuels and other contaminants The Perfect Storm Increased Demand 50% by 2030 Energy Climate Change Demand up Demand up 50% by 2030 30% by 2030 Food Water 2D View of Pedosphere Hierarchal scales involving soil solid-phase components that combine to form horizons, profiles, local and regional landscapes, and the global pedosphere. -
Impact of Plant Roots and Soil Organisms on Soil Micromorphology and Hydraulic Properties
CMYK Biologia, Bratislava, 61/Suppl. 19: S339—S343, 2006 S339 Impact of plant roots and soil organisms on soil micromorphology and hydraulic properties Radka Kodešová1,VítKodeš2, Anna Žigová3 &JiříŠimůnek4 1Czech University of Agriculture in Prague, Department of Soil Science and Geology, Kamýcka 129,CZ–16521 Prague, Czech Republic; e-mail: [email protected] 2Czech Hydrometeorological Institute, Department of Water Quality, Na Šabatce 17,CZ–14306 Prague, Czech Republic 3Academy of Sciences of the Czech Republic, Institute of Geology, Rozvojová 269,CZ–16502 Prague, Czech Republic 4University of California Riverside, Department of Environmental Sciences, Riverside, CA 92521,USA Abstract: A soil micromorphological study was performed to demonstrate the impact of soil organisms on soil pore structure. Two examples are shown here. First, the influence of earthworms, enchytraeids and moles on the pore structure of a Greyic Phaeozem is demonstrated by comparing two soil samples taken from the same depth of the soil profile that either were affected or not affected by these organisms. The detected image porosity of the organism-affected soil sample was 5 times larger then the porosity of the not-affected sample. The second example shows macropores created by roots and soil microorganisms in a Haplic Luvisol and subsequently affected by clay coatings. Their presence was reflected in the soil water retention curve, which displayed multiple S-shaped features as obtained from the water balance carried out for the multi-step outflow experiment. The dual permeability models implemented in HYDRUS-1D was applied to obtain parameters characterizing multimodal soil hydraulic properties using the numerical inversion of the multi-step outflow experiment. -
Zinc Redistribution in a Soil Developed from Limestone During Pedogenesis C
Zinc Redistribution in a Soil Developed from Limestone During Pedogenesis C. Laveuf, Sophie Cornu, Denis Baize, Michel Hardy, Olivier Josière, Sylvain Drouin, Ary Bruand, F. Juillot To cite this version: C. Laveuf, Sophie Cornu, Denis Baize, Michel Hardy, Olivier Josière, et al.. Zinc Redistribution in a Soil Developed from Limestone During Pedogenesis. Pedosphere, Elsevier, 2009, 19 (3), pp.292-304. 10.1016/S1002-0160(09)60120-X. insu-00403877 HAL Id: insu-00403877 https://hal-insu.archives-ouvertes.fr/insu-00403877 Submitted on 21 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Zinc Redistribution in a Soil Developed from Limestone During Pedogenesis∗1 C. LAVEUF1,∗2,S.CORNU1, D. BAIZE1, M. HARDY1, O. JOSIERE1, S. DROUIN2, A. BRUAND2 and F. JUILLOT3 1INRA, UR0272 Science du Sol, Centre de recherche d’Orl´eans, 45075 Orl´eans cedex 2 (France) 2ISTO, UMR 6113, CNRS, Universit´ed’Orl´eans, 45071 Orl´eans cedex 2 (France) 3IMPMC, UMR CNRS 7590, Universit´e Paris 6 et 7, IPGC, 75252 Paris cedex 05 (France) (Received November 20, 2008; revised March 23, 2009) ABSTRACT The long-term redistribution of Zn in a naturally Zn-enriched soil during pedogenesis was quantified based on mass balance calculations. -
Soil Properties Database of Spanish Soils. Volumen
65°^ e 0 6,2.1 Centro de Investigaciones Energeticas, Medioambientales y Tecnoldgicas Miner A, is /X Base de Dates de Propiedades Edafoldgicas de los Suelos Espanoles. VolumenXI. CASTHIA-LEON(b): Palentia, Valladolid y Avila C. Trueba RMillan T. Schmid received C. Lago JUL 121999 C. Roquero M. Magister OSTl MormesTecnicosCiemat 898 julio,1999 1. -a;:' ' > DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. Informes T ecnicos Ciemat 898 julio, 1999 Base de Dates dePropiedades Edafologicas de los Suelos Espanoles. VohnnenXL CASHLLA-LEON(b): Palencia, Valladolid y Avila C. Trueba (*) R. Millan(*) T. Schmid (*) C. Lago (*) C. Roquero (**) M.Magister (**) (*) CIEMAT (**)UPM Departamento de Impacto Ambiental de la Energia Toda correspondenica en relation con este trabajo debe dirigirse al Servicio de Information y Documentation, Centro de Investigaciones Energeticas, Medioambientales y Tecnoldgicas, Ciudad Universitaria, 28040-MADRID, ESPANA. Las solicitudes de ejemplares deben dirigirse a este mismo Servicio. Los descriptores se ban seleccionado del Thesauro del DOE para describir las materias que contiene este informe con vistas a su recuperation. La catalogacidn se ha hecho utilizando el documento DOE/TIC-4602 (Rev. 1) Descriptive Cataloguing On-Line, y la clasificacion de acuerdo con el documento DOE/TIC.4584-R7 Subject Categories and Scope publicados por el Office of Scientific and Technical Information del Departamento de Energia de los Estdos Unidos. Se autoriza la reproduction de los resumenes analiticos que aparecen en esta publication. Deposito Legal: M -14226-1995 ISSN: 1135-9420 NIRO: 238-99-003-5 Editorial CIEMAT CLASIFICACION DOE Y DESCRIPTORES 540230 SOILS; SOIL CHEMISTRY; SOIL MECHANICS; RADIONUCLIDE MIGRATION; DATA BASE MANAGEMENT; DATA COMPILATION; SPAIN; “Base de Dates de Propiedades Edafologicas de los Suelos Espanoles. -
Sustainable Soil Management
Top of Form ATTRAv2 page skip navigation 500 500 500 500 500 0 Search Bottom of Form 800-346-9140 Home | Site Map | Who We Are | Contact (English) Us | Calendar | Español | Text Only 800-411-3222 (Español) Home > Master Publication List > Sustainable Soil Management What Is Sustainable Soil Management Sustainable Agriculture? The printable PDF version of the Horticultural By Preston Sullivan entire document is available at: Crops NCAT Agriculture Specialist http://attra.ncat.org/attra- © NCAT 2004 pub/PDF/soilmgmt.pdf Field Crops ATTRA Publication #IP027/133 31 pages — 1.5 mb Download Acrobat Reader Soils & Compost Water Management Pest Management Organic Farming Livestock Marketing, Business & Risk Abstract Soybeans no-till planted into Management wheat stubble. This publication covers basic soil Photo by: Preston Sullivan Farm Energy properties and management steps toward building and maintaining healthy soils. Part I deals with basic Education soil principles and provides an understanding of living soils and how they work. In this section you will find answers to why soil organisms Other Resources and organic matter are important. Part II covers management steps to build soil quality on your farm. The last section looks at farmers who Master have successfully built up their soil. The publication concludes with a Publication List large resource section of other available information. Table of Contents Top of Form Part I. Characteristics of Sustainable Soils o Introduction o The Living Soil: Texture and Structure o The Living Soil: The Importance of Soil Organisms 1011223551022 o Organic Matter, Humus, and the Soil Foodweb o Soil Tilth and Organic Matter oi o Tillage, Organic Matter, and Plant Productivity o Fertilizer Amendments and Biologically Active Soils Go o Conventional Fertilizers Enter your o Top$oil—Your Farm'$ Capital email above o Summary of Part I and click Go.