Soil Organic Carbon in a Changing World
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fact Sheet 3: Organic Matter Decline
Sustainable agriculture and soil conservation Soil degradation processes Fact sheet no. 3 Organic matter decline What is organic matter decline? Soil organic matter includes all living soil organisms together with the remains of dead organisms in their various degrees of decomposition. The organic carbon content of a soil is made up of heterogeneous mixtures of both simple and complex substances containing carbon. The sources for organic matter are crop residues, animal and green manures, compost and other organic materials. A decline in organic matter is caused by the reduced presence of decaying organisms, or an increased rate of decay as a result of changes in natural or anthropogenic factors. Organic matter is regarded as a vital component of a healthy soil; its decline results in a soil that is degraded. A soil that is rich in organic matter (Source: Soil Atlas of Europe) Why is soil organic matter/carbon important? Soil organic matter is a source of food for soil fauna, and contributes to soil biodiversity by acting as a reservoir of soil nutrients such as nitrogen, phosphorus and sulphur; it is the main contributor to soil fertility. Soil organic carbon supports the soil’s structure, improving the physical environment for roots to penetrate through the soil. Organic matter absorbs water – it is able to hold about six times its weight in water – making it a lifeline for vegetation in naturally dry and sandy soils. Soils containing organic matter have a better structure that improves water infiltration, and reduces the soil’s susceptibility to compaction, erosion, desertification and landslides. On a global scale, soils contain around twice the amount of carbon held in the atmosphere and three times the amount found in vegetation. -
Soils and Fertilizers for Master Gardeners: Soil Organic Matter and Organic Amendments1 Gurpal S
SL273 Soils and Fertilizers for Master Gardeners: Soil Organic Matter and Organic Amendments1 Gurpal S. Toor, Amy L. Shober, and Alexander J. Reisinger2 This article is part of a series entitled Soils and Fertilizers for Master Gardeners. The rest of the series can be found at http://edis.ifas.ufl.edu/topic_series_soils_and_fertil- izers_for_master_gardeners. A glossary can also be found at http://edis.ifas.ufl.edu/MG457. Introduction and Purpose Organic matter normally occupies the smallest portion of the soil physical makeup (approximately 5% of total soil volume on average, and usually 1 to 3% for Florida’s sandy soils) but is the most dynamic soil component (Figure Figure 1. Typical components of soil. 1). The primary sources of soil organic matter are plant Credits: Gurpal Toor and animal residues. Soil organic matter is important for maintaining good soil structure, which enhances the What is the composition of soil movement of air and water in soil. Organic matter also organic matter? plays an important role in nutrient cycling. This publication is designed to educate homeowners about the importance Soil organic matter contains (i) living biomass: plant, of soil organic matter and provide suggestions about how to animal tissues, and microorganisms; (ii) dead tissues: partly build the organic matter in garden and landscape soils. decomposed materials; and (iii) non-living materials: stable portion formed from decomposed materials, also known as humus. Soil organic matter typically contains about 50% carbon. The remainder of soil organic matter consists of about 40% oxygen, 5% hydrogen, 4% nitrogen, and 1% sulfur. The amount of organic matter in soils varies widely, from 1 to 10% (total dry weight) in most soils to more than 90% in organic (muck) soils. -
Agricultural Soil Compaction: Causes and Management
October 2010 Agdex 510-1 Agricultural Soil Compaction: Causes and Management oil compaction can be a serious and unnecessary soil aggregates, which has a negative affect on soil S form of soil degradation that can result in increased aggregate structure. soil erosion and decreased crop production. Soil compaction can have a number of negative effects on Compaction of soil is the compression of soil particles into soil quality and crop production including the following: a smaller volume, which reduces the size of pore space available for air and water. Most soils are composed of • causes soil pore spaces to become smaller about 50 per cent solids (sand, silt, clay and organic • reduces water infiltration rate into soil matter) and about 50 per cent pore spaces. • decreases the rate that water will penetrate into the soil root zone and subsoil • increases the potential for surface Compaction concerns water ponding, water runoff, surface soil waterlogging and soil erosion Soil compaction can impair water Soil compaction infiltration into soil, crop emergence, • reduces the ability of a soil to hold root penetration and crop nutrient and can be a serious water and air, which are necessary for water uptake, all of which result in form of soil plant root growth and function depressed crop yield. • reduces crop emergence as a result of soil crusting Human-induced compaction of degradation. • impedes root growth and limits the agricultural soil can be the result of using volume of soil explored by roots tillage equipment during soil cultivation or result from the heavy weight of field equipment. • limits soil exploration by roots and Compacted soils can also be the result of natural soil- decreases the ability of crops to take up nutrients and forming processes. -
Soil As a Huge Laboratory for Microorganisms
Research Article Agri Res & Tech: Open Access J Volume 22 Issue 4 - September 2019 Copyright © All rights are reserved by Mishra BB DOI: 10.19080/ARTOAJ.2019.22.556205 Soil as a Huge Laboratory for Microorganisms Sachidanand B1, Mitra NG1, Vinod Kumar1, Richa Roy2 and Mishra BB3* 1Department of Soil Science and Agricultural Chemistry, Jawaharlal Nehru Krishi Vishwa Vidyalaya, India 2Department of Biotechnology, TNB College, India 3Haramaya University, Ethiopia Submission: June 24, 2019; Published: September 17, 2019 *Corresponding author: Mishra BB, Haramaya University, Ethiopia Abstract Biodiversity consisting of living organisms both plants and animals, constitute an important component of soil. Soil organisms are important elements for preserved ecosystem biodiversity and services thus assess functional and structural biodiversity in arable soils is interest. One of the main threats to soil biodiversity occurred by soil environmental impacts and agricultural management. This review focuses on interactions relating how soil ecology (soil physical, chemical and biological properties) and soil management regime affect the microbial diversity in soil. We propose that the fact that in some situations the soil is the key factor determining soil microbial diversity is related to the complexity of the microbial interactions in soil, including interactions between microorganisms (MOs) and soil. A conceptual framework, based on the relative strengths of the shaping forces exerted by soil versus the ecological behavior of MOs, is proposed. Plant-bacterial interactions in the rhizosphere are the determinants of plant health and soil fertility. Symbiotic nitrogen (N2)-fixing bacteria include the cyanobacteria of the genera Rhizobium, Free-livingBradyrhizobium, soil bacteria Azorhizobium, play a vital Allorhizobium, role in plant Sinorhizobium growth, usually and referred Mesorhizobium. -
Dynamics of Carbon 14 in Soils: a Review C
Radioprotection, Suppl. 1, vol. 40 (2005) S465-S470 © EDP Sciences, 2005 DOI: 10.1051/radiopro:2005s1-068 Dynamics of Carbon 14 in soils: A review C. Tamponnet Institute of Radioprotection and Nuclear Safety, DEI/SECRE, CADARACHE, BP. 1, 13108 Saint-Paul-lez-Durance Cedex, France, e-mail: [email protected] Abstract. In terrestrial ecosystems, soil is the main interface between atmosphere, hydrosphere, lithosphere and biosphere. Its interactions with carbon cycle are primordial. Information about carbon 14 dynamics in soils is quite dispersed and an up-to-date status is therefore presented in this paper. Carbon 14 dynamics in soils are governed by physical processes (soil structure, soil aggregation, soil erosion) chemical processes (sequestration by soil components either mineral or organic), and soil biological processes (soil microbes, soil fauna, soil biochemistry). The relative importance of such processes varied remarkably among the various biomes (tropical forest, temperate forest, boreal forest, tropical savannah, temperate pastures, deserts, tundra, marshlands, agro ecosystems) encountered in the terrestrial ecosphere. Moreover, application for a simplified modelling of carbon 14 dynamics in soils is proposed. 1. INTRODUCTION The importance of carbon 14 of anthropic origin in the environment has been quite early a matter of concern for the authorities [1]. When the behaviour of carbon 14 in the environment is to be modelled, it is an absolute necessity to understand the biogeochemical cycles of carbon. One can distinguish indeed, a global cycle of carbon from different local cycles. As far as the biosphere is concerned, pedosphere is considered as a primordial exchange zone. Pedosphere, which will be named from now on as soils, is mainly located at the interface between atmosphere and lithosphere. -
Soil Carbon Science for Policy and Practice Soil-Based Initiatives to Mitigate Climate Change and Restore Soil Fertility Both Rely on Rebuilding Soil Organic Carbon
comment Soil carbon science for policy and practice Soil-based initiatives to mitigate climate change and restore soil fertility both rely on rebuilding soil organic carbon. Controversy about the role soils might play in climate change mitigation is, consequently, undermining actions to restore soils for improved agricultural and environmental outcomes. Mark A. Bradford, Chelsea J. Carey, Lesley Atwood, Deborah Bossio, Eli P. Fenichel, Sasha Gennet, Joseph Fargione, Jonathan R. B. Fisher, Emma Fuller, Daniel A. Kane, Johannes Lehmann, Emily E. Oldfeld, Elsa M. Ordway, Joseph Rudek, Jonathan Sanderman and Stephen A. Wood e argue there is scientific forestry, soil carbon losses via erosion and carbon, vary markedly within a field. Even consensus on the need to decomposition have generally exceeded within seemingly homogenous fields, a Wrebuild soil organic carbon formation rates of soil carbon from plant high spatial density of soil observations is (hereafter, ‘soil carbon’) for sustainable land inputs. Losses associated with these land therefore required to detect the incremental stewardship. Soil carbon concentrations and uses are substantive globally, with a mean ‘signal’ of management effects on soil carbon stocks have been reduced in agricultural estimate to 2-m depth of 133 Pg carbon8, from the local ‘noise’11. Given the time soils following long-term use of practices equivalent to ~63 ppm atmospheric CO2. and expense of acquiring a high density of such as intensive tillage and overgrazing. Losses vary spatially by type and duration observations, most current soil sampling is Adoption of practices such as cover crops of land use, as well as biophysical conditions too limited to reliably quantify management and silvopasture can protect and rebuild such as soil texture, mineralogy, plant effects at field scales9,10. -
The Nature and Dynamics of Soil Organic Matter: Plant Inputs, Microbial Transformations, and Organic Matter Stabilization
Soil Biology & Biochemistry 98 (2016) 109e126 Contents lists available at ScienceDirect Soil Biology & Biochemistry journal homepage: www.elsevier.com/locate/soilbio Review paper The nature and dynamics of soil organic matter: Plant inputs, microbial transformations, and organic matter stabilization Eldor A. Paul Natural Resource Ecology Laboratory and Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523-1499, USA article info abstract Article history: This review covers historical perspectives, the role of plant inputs, and the nature and dynamics of soil Received 19 November 2015 organic matter (SOM), often known as humus. Information on turnover of organic matter components, Received in revised form the role of microbial products, and modeling of SOM, and tracer research should help us to anticipate 31 March 2016 what future research may answer today's challenges. Our globe's most important natural resource is best Accepted 1 April 2016 studied relative to its chemistry, dynamics, matrix interactions, and microbial transformations. Humus has similar, worldwide characteristics, but varies with abiotic controls, soil type, vegetation inputs and composition, and the soil biota. It contains carbohydrates, proteins, lipids, phenol-aromatics, protein- Keywords: Soil organic matter derived and cyclic nitrogenous compounds, and some still unknown compounds. Protection of trans- 13C formed plant residues and microbial products occurs through spatial inaccessibility-resource availability, 14C aggregation of mineral and organic constituents, and interactions with sesquioxides, cations, silts, and Plant residue decomposition clays. Tracers that became available in the mid-20th century made the study of SOM dynamics possible. Soil carbon dynamics Carbon dating identified resistant, often mineral-associated, materials to be thousands of years old, 13 Humus especially at depth in the profile. -
Agricultural Soil Carbon Credits: Making Sense of Protocols for Carbon Sequestration and Net Greenhouse Gas Removals
Agricultural Soil Carbon Credits: Making sense of protocols for carbon sequestration and net greenhouse gas removals NATURAL CLIMATE SOLUTIONS About this report This synthesis is for federal and state We contacted each carbon registry and policymakers looking to shape public marketplace to ensure that details investments in climate mitigation presented in this report and through agricultural soil carbon credits, accompanying appendix are accurate. protocol developers, project developers This report does not address carbon and aggregators, buyers of credits and accounting outside of published others interested in learning about the protocols meant to generate verified landscape of soil carbon and net carbon credits. greenhouse gas measurement, reporting While not a focus of the report, we and verification protocols. We use the remain concerned that any end-use of term MRV broadly to encompass the carbon credits as an offset, without range of quantification activities, robust local pollution regulations, will structural considerations and perpetuate the historic and ongoing requirements intended to ensure the negative impacts of carbon trading on integrity of quantified credits. disadvantaged communities and Black, This report is based on careful review Indigenous and other communities of and synthesis of publicly available soil color. Carbon markets have enormous organic carbon MRV protocols published potential to incentivize and reward by nonprofit carbon registries and by climate progress, but markets must be private carbon crediting marketplaces. paired with a strong regulatory backing. Acknowledgements This report was supported through a gift Conservation Cropping Protocol; Miguel to Environmental Defense Fund from the Taboada who provided feedback on the High Meadows Foundation for post- FAO GSOC protocol; Radhika Moolgavkar doctoral fellowships and through the at Nori; Robin Rather, Jim Blackburn, Bezos Earth Fund. -
Measuring Soil Carbon Change
Measuring soil carbon change Peter Donovan version: October 2013 This guide can be freely copied and adapted, with attribution, no commercial use, and derivative works similarly licensed. Contents What this guide is about, and how to use it iv 1 The work of the biosphere 1 1.1 Technology . 1 1.2 The carbon cycle . 2 1.3 Let, not make . 3 1.4 Monitoring: a strategic and creative choice . 4 2 Measuring soil carbon 7 2.1 Purpose, result, and uncertainty . 7 2.2 Change . 9 2.3 Organic and inorganic soil carbon . 11 2.4 Laboratory tests . 12 2.5 Getting started . 14 3 Site selection and sampling design 15 3.1 Mapping your site . 15 3.2 Stratification . 15 3.3 Locating plots . 17 3.4 Sampling tools . 17 3.5 Sampling intensity within the plot . 17 4 Sampling and field procedures 20 4.1 Lay out a transect and mark the plot center . 20 4.2 Soil surface observations . 23 4.3 Lay out the plot . 23 4.4 Use probe to take samples . 24 4.5 Soils with abundant rocks, gravel, or coarse fragments . 24 4.6 Characterize the soil . 25 4.7 Bag the sample . 26 4.8 Going deeper . 26 4.9 Sampling for bulk density . 27 4.10 Resampling . 29 4.11 Correcting for changes in bulk density . 29 ii 5 Getting your samples analyzed 31 5.1 Sample preparation . 31 5.2 Storing samples . 32 5.3 Split sampling to test your lab . 32 5.4 U.S. labs that do elemental analysis or dry combustion test . -
Sustaining the Pedosphere: Establishing a Framework for Management, Utilzation and Restoration of Soils in Cultured Systems
Sustaining the Pedosphere: Establishing A Framework for Management, Utilzation and Restoration of Soils in Cultured Systems Eugene F. Kelly Colorado State University Outline •Introduction - Its our Problems – Life in the Fastlane - Ecological Nexus of Food-Water-Energy - Defining the Pedosphere •Framework for Management, Utilization & Restoration - Pedology and Critical Zone Science - Pedology Research Establishing the Range & Variability in Soils - Models for assessing human dimensions in ecosystems •Studies of Regional Importance Systems Approach - System Models for Agricultural Research - Soil Water - The Master Variable - Water Quality, Soil Management and Conservation Strategies •Concluding Remarks and Questions Living in a Sustainable Age or Life in the Fast Lane What do we know ? • There are key drivers across the planet that are forcing us to think and live differently. • The drivers are influencing our supplies of food, energy and water. • Science has helped us identify these drivers and our challenge is to come up with solutions Change has been most rapid over the last 50 years ! • In last 50 years we doubled population • World economy saw 7x increase • Food consumption increased 3x • Water consumption increased 3x • Fuel utilization increased 4x • More change over this period then all human history combined – we are at the inflection point in human history. • Planetary scale resources going away What are the major changes that we might be able to adjust ? • Land Use Change - the world is smaller • Food footprint is larger (40% of land used for Agriculture) • Water Use – 70% for food • Running out of atmosphere – used as as disposal for fossil fuels and other contaminants The Perfect Storm Increased Demand 50% by 2030 Energy Climate Change Demand up Demand up 50% by 2030 30% by 2030 Food Water 2D View of Pedosphere Hierarchal scales involving soil solid-phase components that combine to form horizons, profiles, local and regional landscapes, and the global pedosphere. -
Unit 2.3, Soil Biology and Ecology
2.3 Soil Biology and Ecology Introduction 85 Lecture 1: Soil Biology and Ecology 87 Demonstration 1: Organic Matter Decomposition in Litter Bags Instructor’s Demonstration Outline 101 Step-by-Step Instructions for Students 103 Demonstration 2: Soil Respiration Instructor’s Demonstration Outline 105 Step-by-Step Instructions for Students 107 Demonstration 3: Assessing Earthworm Populations as Indicators of Soil Quality Instructor’s Demonstration Outline 111 Step-by-Step Instructions for Students 113 Demonstration 4: Soil Arthropods Instructor’s Demonstration Outline 115 Assessment Questions and Key 117 Resources 119 Appendices 1. Major Organic Components of Typical Decomposer 121 Food Sources 2. Litter Bag Data Sheet 122 3. Litter Bag Data Sheet Example 123 4. Soil Respiration Data Sheet 124 5. Earthworm Data Sheet 125 6. Arthropod Data Sheet 126 Part 2 – 84 | Unit 2.3 Soil Biology & Ecology Introduction: Soil Biology & Ecology UNIT OVERVIEW MODES OF INSTRUCTION This unit introduces students to the > LECTURE (1 LECTURE, 1.5 HOURS) biological properties and ecosystem The lecture covers the basic biology and ecosystem pro- processes of agricultural soils. cesses of soils, focusing on ways to improve soil quality for organic farming and gardening systems. The lecture reviews the constituents of soils > DEMONSTRATION 1: ORGANIC MATTER DECOMPOSITION and the physical characteristics and soil (1.5 HOURS) ecosystem processes that can be managed to In Demonstration 1, students will learn how to assess the improve soil quality. Demonstrations and capacity of different soils to decompose organic matter. exercises introduce students to techniques Discussion questions ask students to reflect on what envi- used to assess the biological properties of ronmental and management factors might have influenced soils. -
Age of Soil Organic Matter and Soil Respiration: Radiocarbon Constraints on Belowground C Dynamics
April 2000 BELOWGROUND PROCESSES AND GLOBAL CHANGE 399 Ecological Applications, 10(2), 2000, pp. 399±411 q 2000 by the Ecological Society of America AGE OF SOIL ORGANIC MATTER AND SOIL RESPIRATION: RADIOCARBON CONSTRAINTS ON BELOWGROUND C DYNAMICS SUSAN TRUMBORE Department of Earth System Science, University of California, Irvine, California 92697-3100 USA Abstract. Radiocarbon data from soil organic matter and soil respiration provide pow- erful constraints for determining carbon dynamics and thereby the magnitude and timing of soil carbon response to global change. In this paper, data from three sites representing well-drained soils in boreal, temperate, and tropical forests are used to illustrate the methods for using radiocarbon to determine the turnover times of soil organic matter and to partition soil respiration. For these sites, the average age of bulk carbon in detrital and Oh/A-horizon organic carbon ranges from 200 to 1200 yr. In each case, this mass-weighted average includes components such as relatively undecomposed leaf, root, and moss litter with much shorter turnover times, and humi®ed or mineral-associated organic matter with much longer turnover times. The average age of carbon in organic matter is greater than the average age predicted for CO2 produced by its decomposition (30, 8, and 3 yr for boreal, temperate, and tropical soil), or measured in total soil respiration (16, 3, and 1 yr). Most of the CO2 produced during decomposition is derived from relatively short-lived soil organic matter (SOM) components that do not represent a large component of the standing stock of soil organic matter. Estimates of soil carbon turnover obtained by dividing C stocks by hetero- trophic respiration ¯uxes, or from radiocarbon measurements of bulk SOM, are biased to longer time scales of C cycling.