Implementing the Gaia Astrometric Solution

Total Page:16

File Type:pdf, Size:1020Kb

Implementing the Gaia Astrometric Solution Implementing the Gaia Astrometric Solution William O’Mullane Aquesta tesi doctoral està subjecta a la llicència Reconeixement 3.0. Espanya de Creative Commons. Esta tesis doctoral está sujeta a la licencia Reconocimiento 3.0. España de Creative Commons. This doctoral thesis is licensed under the Creative Commons Attribution 3.0. Spain License. Implementing the Gaia Astrometric Solution prepared by: William O’Mullane supervised by: Xavier Luri, Lennart Lindegren reference: GAIA-C3-CP-ESAC-WOM-007-02 issue: 02 revision: 0 date: 2012-05-15 status: Issued Abstract: An in depth look at the Astrometric Global Iterative Solution (AGIS). This document details the algorithms in AGIS and examines them from several per- spectives. It is argued that they are adequate and probably the best, if not only, approach to making an astrometric solution for Gaia data. Translation of the system of equations to an actual computer infrastructure is a non trivial task. This is the area the author has most experience in and is dealt with in some detail forming the main original content of this thesis. Some initial results us- ing simulation data are presented to demonstrate how the system operates and removes specific effects from the data set within an acceptable time frame. For my pal who ran around the world at my side. My wife, my support, my love Ranpal. Resumen de la tesis: Implementacion´ de AGIS Esta tesis presenta el marco numerico´ y computacional para la solucion´ astrometrica´ Gaia. Tambien´ cubre las consideraciones astrof´ısicas relativas a la solucion´ y los aspec- tos relacionados con la gestion´ de la implementacion´ de un sistema tan complejo. Cada uno de los siguientes apartados es un resumen del correspondiente cap´ıtulo de la tesis. La mision´ Gaia y su procesamiento de datos La astrometr´ıa es uno de los objetivos mas´ antiguos de la ciencia. La medicion´ de las posiciones y subsecuentes movimientos de los cuerpos celestes nos ha ocupado durante milenios. El primer catalogo´ se lo debemos a Hiparco de Nicea (∼ 190 aC - 120 aC) cuyo nombre, por supuesto, se honra en la mision´ Hipparcos (AEE, 1997). Gaia con- tinua´ esta antigua tradicion´ utilizando las tecnicas´ mas´ modernas. En 2013, la AEE lanzara´ el satelite´ Gaia, de unas dos toneladas de peso, en un cohete Soyuz-Fregat. Consta de dos instrumentos astrometricos,´ ademas´ de instrumental fo- tometrico´ y de velocidad radial que le permitiran´ crear un mapa del espacio fasico´ de nuestra galaxia. Se podr´ıa trivializar Gaia afirmando que no es mas´ que una segunda parte de Hipparcos, pero en realidad es mucho mas´ que eso. Hipparcos observo´ con pre- cision´ ciento cuarenta mil fuentes, mientras que Gaia observara´ mas´ de mil millones de fuentes galacticas´ y extragalacticas.´ La exactitud que se espera de Gaia tampoco tiene precedentes: en el rango de microarcosegundos, observara´ fuentes menos luminosas que Hipparcos hasta una magnitud de G=20 (en la que G es la banda pasante del instrumento astrometrico).´ La inclusion´ del espectrografo´ de velocidades radiales subsana una defi- ciencia de la mision´ Hipparcos y permitira´ calcular las velocidades tridimensionales de los objetos. Los potenciales beneficios de Gaia para la ciencia son casi innumerables, sin embargo, la capacidad de procesamiento de datos necesaria para producir el catalogo´ Gaia a partir del que se extraeran´ estos beneficios cient´ıficos no es trivial. Este docu- mento se centra solo´ en la solucion´ astrometrica,´ aunque en las areas´ espectrografica´ y fotometrica´ seran´ necesarias labores de procesamiento igualmente complejas. Gaia se ubicara´ en una orbita´ de tipo Lissajous alrededor del punto de Lagrange L2 en el sistema Sol-Tierra, donde orbitara´ durante al menos cinco anos,˜ observando todo el iii cielo y llevando a cabo un censo de mil millones de fuentes, cada una de las cuales sera´ observada unas ochenta veces en promedio. En la figura 1 la cobertura de cielo estimada para los telescopios astrometricos´ de Gaia, mostrando un m´ınimo de cincuenta transitos´ para la mayor parte del cielo. En el contexto de Gaia, transito´ se refiere a cada vez que una fuente cruza el plano focal. Figure 1: Durante su vida operativa, Gaia escaneara´ el cielo continuamente, aproxi- madamente en grandes c´ırculos, siguiendo una ley de escaneo predefinida y elegida cuidadosamente. Las caracter´ısticas de esta ley, en combinacion´ con la dimension´ AC (across-scan) de los campos astrometricos,´ produce el patron´ que aparece en la ima- gen para a distribucion´ del numero´ predicho de transitos´ en el cielo en coordenadas ecl´ıpticas. (Imagen J. De Bruijne) El autor se ha interesado desde hace mucho tiempo por la solucion´ global de proce- samiento (O’Mullane & Lindegren, 1999) y ha contribuido con una seccion´ al libro blanco de Gaia sobre el tema (ESA-SCI(2000)4). El sistema de procesamiento de Gaia difiere del de otras misiones astronomicas´ por el propio diseno˜ de la mision;´ es decir, porque proporciona astrometr´ıa global absoluta. Para conseguir la exactitud en microar- cosegundos de arco necesaria para obtener la recompensa cient´ıfica que se esboza en (ESA-SCI(2000)4) es necesario llevar a cabo un procesamiento de los datos bastante complicado, tal y como se describe en el cap´ıtulo 2. Principios de la astrometr´ıa Gaia El catalogo´ Hipparcos (ESA, 1997, Volumen 3 Cap´ıtulo 23) formula el principio gene- ral de una mision´ de astrometr´ıa global de manera sucinta en el siguiente problema de minimizacion:´ iv William O’Mullane min obs calc a,nkg − g (a,n)kM (1) Aqu´ı a es el vector de incognitas´ que describe el movimiento baricentrico´ de una es- trella. Estos parametros´ se extraen a partir de un numero´ de observaciones de una es- trella. Las observaciones de una estrella se expresan en las coordenadas del detector denominadas G y H. Por lo tanto, la observacion´ en el tiempo tk se representa mediante 0 obs el vector de mediciones gk = (Gk,Hk) y sus estad´ısticas asociadas. g representa el vector de todas las mediciones y gCALC representa el vector de coordenadas de detector calculadas a partir de los parametros´ astrometricos.´ n es un vector de los parametros´ 1 que no resultan de interes´ para el problema astronomico,´ pero necesarios para dar forma a los datos de manera realista. La norma se calcula en una metrica´ M definida por las estad´ısticas de los datos, lo que se denomina comunmente´ ponderacion´ de errores. En el cap´ıtulo 2 se analizan los detalles matematicos´ de la solucion´ iterativa por bloques para este problema en el caso de Gaia. Implementacion´ de AGIS La implementacion´ eficaz en algun´ tipo de codigo´ de la solucion´ iterativa por bloques resulta todo un reto y durante el procesamiento de datos de Hipparcos se abandono´ un primer intento de alcanzar dicha solucion.´ En (O’Mullane & Lindegren, 1999). se presento´ una prueba basica´ del concepto, mas´ bien una pseudoimplementacion,´ en la que se utilizaron de nuevo los datos y el sistema de gestion´ de base de datos de Hipparcos. Se realizo´ un gran esfuerzo para adaptarlo a las dimensiones de Gaia hasta que el grupo ESAC (O’Mullane et al., 2006) lo consiguio.´ Este ultimo´ marco de trabajo es el que se presenta en el cap´ıtulo 3. AGIS no es sino una de las muchas partes que componen el sistema de procesamiento de datos de Gaia, sin duda una parte fundamental, pero tan solo una parte. En la Fig. 2 se presenta una descripcion´ general aunque simplificada de AGIS. Cada uno de los componentes de la imagen puede ejecutarse en cualquier maquina´ independiente, salvo el Attitude Update Server que requiere un poco mas´ de memoria. El DataTrain, como mediador, se puede observar en el centro del cuadro de la izquierda. Los algoritmos y compiladores se describen en la seccion´ 5 del cap´ıtulo 3. El sistema AGIS se despliega en una maquina´ multiprocesador local dedicada a Gaia. El marco utiliza funciones de lenguaje Java como RMI (Remote Method Invocation, Invocacion´ Remota de Metodos).´ Por supuesto, el acceso a los datos es uno de los principales problemas para AGIS y en la seccion´ 2 del cap´ıtulo 3 se analiza con bastante detalle. Se trata de un sistema de software unico,´ disenado˜ y optimizado para realizar la reduccion´ de datos astrometricos´ de Gaia y constituye la principal contribucion´ original del autor. 1 Llamados parametros´ de perturbacion.´ Implementing the Gaia Astrometric Solution v Convergence Data Source Monitor Servers Collector Data Servers Run Source Whiteboard Manager Updater Global Up. Server Source Up. Manager Data Train Data Global. Up. Servers Client Object Object Calib. Up. Factory Calib. Up. Server Client Attitude Up. GaiaTable Store Client Data Servers Attitude Up. Server DB distribution layer Algorithm Processes Database GIS DB Figure 2: Este diagrama simplificado pretende mostrar una perspectiva de la logica´ general de AGIS. AGIS ejecuta el mismo numero´ de procesos en muchas maquinas,´ que no se muestran aqu´ı. El cuadro grande de la izquierda representa el tren de datos, aunque puede haber un gran numero´ de ellos ejecutandose.´ A la derecha se encuentran los servidores de actualizacion,´ de los que puede haber solo uno ejecutandose´ en todo el sistema. Todos estos procesos estan´ basados en una base de datos. vi William O’Mullane Consideraciones astrof´ısicas En el cap´ıtulo 4 se tratan algunos de los fenomenos´ f´ısicos y astrof´ısicos sobre los que AGIS debe rendir cuenta. Lo que aqu´ı se presenta, por supuesto, es solo un subconjunto de esos fenomenos.´ En efecto, se trata de un amplio rango de efectos cuya descripcion´ en el catalogo´ final ocupara,´ sin duda, varios volumenes.´ El propio AGIS solo se ocupa de una parte de todos los fenomenos´ conocidos que tienen efecto en el ambito´ de µas.
Recommended publications
  • November 1960 Table of Contents
    AMERICAN MATHEMATICAL SOCIETY VOLUME 7, NUMBER 6 ISSUE NO. 49 NOVEMBER 1960 AMERICAN MATHEMATICAL SOCIETY Nottces Edited by GORDON L. WALKER Contents MEETINGS Calendar of Meetings ••••••••••.••••••••••••.••• 660 Program of the November Meeting in Nashville, Tennessee . 661 Abstracts for Meeting on Pages 721-732 Program of the November Meeting in Pasadena, California • 666 Abstracts for Meeting on Pages 733-746 Program of the November Meeting in Evanston, Illinois . • • 672 Abstracts for Meeting on Pages 747-760 PRELIMINARY ANNOUNCEMENT OF MEETINGS •.•.••••• 677 NEWS AND COMMENT FROM THE CONFERENCE BOARD OF THE MATHEMATICAL SCIENCES ••••••••••••.••• 680 FROM THE AMS SECRETARY •...•••.••••••••.•••.• 682 NEWS ITEMS AND ANNOUNCEMENTS .•••••.•••••••••• 683 FEATURE ARTICLES The Sino-American Conference on Intellectual Cooperation .• 689 National Academy of Sciences -National Research Council .• 693 International Congress of Applied Mechanics ..••••••••. 700 PERSONAL ITEMS ••.•.••.•••••••••••••••••••••• 702 LETTERS TO THE EDITOR.. • • • • • • • . • . • . 710 MEMORANDA TO MEMBERS The Employment Register . • . • • . • • • • • . • • • • 712 Employment of Retired Mathematicians ••••••.••••..• 712 Abstracts of Papers by Title • • . • . • • • . • . • • . • . • • . • 713 Reciprocity Agreement with the Societe Mathematique de Belgique .••.•••.••.••.•.•••••..•••••.•. 713 NEW PUBLICATIONS ..•..•••••••••.•••.•••••••••• 714 ABSTRACTS OF CONTRIBUTED PAPERS •.•••••••.••..• 715 RESERVATION FORM .•...•.•.•••••.••••..•••...• 767 MEETINGS CALENDAR OF MEETINGS Note: This Calendar lists all of the meetings which have been approved by the Council up to the date at which this issue of the NOTICES was sent to press. The summer and annual meetings are joint meetings of the Mathematical Asso­ ciation of America and the American Mathematical Society. The meeting dates which fall rather far in the future are subject to change. This is particularly true of the meetings to which no numbers have yet been assigned. Meet­ Deadline ing Date Place for No.
    [Show full text]
  • REPORTS in INFORMATICS Department of Informatics
    REPORTS IN INFORMATICS ISSN 0333-3590 Sparsity in Higher Order Methods in Optimization Geir Gundersen and Trond Steihaug REPORT NO 327 June 2006 Department of Informatics UNIVERSITY OF BERGEN Bergen, Norway This report has URL http://www.ii.uib.no/publikasjoner/texrap/ps/2006-327.ps Reports in Informatics from Department of Informatics, University of Bergen, Norway, is available at http://www.ii.uib.no/publikasjoner/texrap/. Requests for paper copies of this report can be sent to: Department of Informatics, University of Bergen, Høyteknologisenteret, P.O. Box 7800, N-5020 Bergen, Norway Sparsity in Higher Order Methods in Optimization Geir Gundersen and Trond Steihaug Department of Informatics University of Bergen Norway fgeirg,[email protected] 29th June 2006 Abstract In this paper it is shown that when the sparsity structure of the problem is utilized higher order methods are competitive to second order methods (Newton), for solving unconstrained optimization problems when the objective function is three times continuously differentiable. It is also shown how to arrange the computations of the higher derivatives. 1 Introduction The use of higher order methods using exact derivatives in unconstrained optimization have not been considered practical from a computational point of view. We will show when the sparsity structure of the problem is utilized higher order methods are competitive compared to second order methods (Newton). The sparsity structure of the tensor is induced by the sparsity structure of the Hessian matrix. This is utilized to make efficient algorithms for Hessian matrices with a skyline structure. We show that classical third order methods, i.e Halley's, Chebyshev's and Super Halley's method, can all be regarded as two step Newton like methods.
    [Show full text]
  • Arxiv:1807.06205V1 [Astro-Ph.CO] 17 Jul 2018 1 Introduction2 3 the ΛCDM Model 18 2 the Sky According to Planck 3 3.1 Assumptions Underlying ΛCDM
    Astronomy & Astrophysics manuscript no. ms c ESO 2018 July 18, 2018 Planck 2018 results. I. Overview, and the cosmological legacy of Planck Planck Collaboration: Y. Akrami59;61, F. Arroja63, M. Ashdown69;5, J. Aumont99, C. Baccigalupi81, M. Ballardini22;42, A. J. Banday99;8, R. B. Barreiro64, N. Bartolo31;65, S. Basak88, R. Battye67, K. Benabed57;97, J.-P. Bernard99;8, M. Bersanelli34;46, P. Bielewicz80;8;81, J. J. Bock66;10, 7 12;95 57;92 71;56;57 2;6 45;32;48 42 85 J. R. Bond , J. Borrill , F. R. Bouchet ∗, F. Boulanger , M. Bucher , C. Burigana , R. C. Butler , E. Calabrese , J.-F. Cardoso57, J. Carron24, B. Casaponsa64, A. Challinor60;69;11, H. C. Chiang26;6, L. P. L. Colombo34, C. Combet73, D. Contreras21, B. P. Crill66;10, F. Cuttaia42, P. de Bernardis33, G. de Zotti43;81, J. Delabrouille2, J.-M. Delouis57;97, F.-X. Desert´ 98, E. Di Valentino67, C. Dickinson67, J. M. Diego64, S. Donzelli46;34, O. Dore´66;10, M. Douspis56, A. Ducout57;54, X. Dupac37, G. Efstathiou69;60, F. Elsner77, T. A. Enßlin77, H. K. Eriksen61, E. Falgarone70, Y. Fantaye3;20, J. Fergusson11, R. Fernandez-Cobos64, F. Finelli42;48, F. Forastieri32;49, M. Frailis44, E. Franceschi42, A. Frolov90, S. Galeotta44, S. Galli68, K. Ganga2, R. T. Genova-Santos´ 62;15, M. Gerbino96, T. Ghosh84;9, J. Gonzalez-Nuevo´ 16, K. M. Gorski´ 66;101, S. Gratton69;60, A. Gruppuso42;48, J. E. Gudmundsson96;26, J. Hamann89, W. Handley69;5, F. K. Hansen61, G. Helou10, D. Herranz64, E. Hivon57;97, Z. Huang86, A.
    [Show full text]
  • Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods1
    Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods1 Richard Barrett2, Michael Berry3, Tony F. Chan4, James Demmel5, June M. Donato6, Jack Dongarra3,2, Victor Eijkhout7, Roldan Pozo8, Charles Romine9, and Henk Van der Vorst10 This document is the electronic version of the 2nd edition of the Templates book, which is available for purchase from the Society for Industrial and Applied Mathematics (http://www.siam.org/books). 1This work was supported in part by DARPA and ARO under contract number DAAL03-91-C-0047, the National Science Foundation Science and Technology Center Cooperative Agreement No. CCR-8809615, the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S. Department of Energy, under Contract DE-AC05-84OR21400, and the Stichting Nationale Computer Faciliteit (NCF) by Grant CRG 92.03. 2Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830- 6173. 3Department of Computer Science, University of Tennessee, Knoxville, TN 37996. 4Applied Mathematics Department, University of California, Los Angeles, CA 90024-1555. 5Computer Science Division and Mathematics Department, University of California, Berkeley, CA 94720. 6Science Applications International Corporation, Oak Ridge, TN 37831 7Texas Advanced Computing Center, The University of Texas at Austin, Austin, TX 78758 8National Institute of Standards and Technology, Gaithersburg, MD 9Office of Science and Technology Policy, Executive Office of the President 10Department of Mathematics, Utrecht University, Utrecht, the Netherlands. ii How to Use This Book We have divided this book into five main chapters. Chapter 1 gives the motivation for this book and the use of templates. Chapter 2 describes stationary and nonstationary iterative methods.
    [Show full text]
  • The Astrometric Core Solution for the Gaia Mission Overview of Models, Algorithms and Software Implementation
    Astronomy & Astrophysics manuscript no. aa17905-11 c ESO 2018 October 30, 2018 The astrometric core solution for the Gaia mission Overview of models, algorithms and software implementation L. Lindegren1, U. Lammers2, D. Hobbs1, W. O’Mullane2, U. Bastian3, and J. Hernandez´ 2 1 Lund Observatory, Lund University, Box 43, SE-22100 Lund, Sweden e-mail: Lennart.Lindegren, [email protected] 2 European Space Agency (ESA), European Space Astronomy Centre (ESAC), P.O. Box (Apdo. de Correos) 78, ES-28691 Villanueva de la Canada,˜ Madrid, Spain e-mail: Uwe.Lammers, William.OMullane, [email protected] 3 Astronomisches Rechen-Institut, Zentrum fur¨ Astronomie der Universitat¨ Heidelberg, Monchhofstr.¨ 12–14, DE-69120 Heidelberg, Germany e-mail: [email protected] Received 17 August 2011 / Accepted 25 November 2011 ABSTRACT Context. The Gaia satellite will observe about one billion stars and other point-like sources. The astrometric core solution will determine the astrometric parameters (position, parallax, and proper motion) for a subset of these sources, using a global solution approach which must also include a large number of parameters for the satellite attitude and optical instrument. The accurate and efficient implementation of this solution is an extremely demanding task, but crucial for the outcome of the mission. Aims. We aim to provide a comprehensive overview of the mathematical and physical models applicable to this solution, as well as its numerical and algorithmic framework. Methods. The astrometric core solution is a simultaneous least-squares estimation of about half a billion parameters, including the astrometric parameters for some 100 million well-behaved so-called primary sources.
    [Show full text]
  • Object Oriented Design Philosophy for Scientific Computing
    Mathematical Modelling and Numerical Analysis ESAIM: M2AN Mod´elisation Math´ematique et Analyse Num´erique M2AN, Vol. 36, No 5, 2002, pp. 793–807 DOI: 10.1051/m2an:2002041 OBJECT ORIENTED DESIGN PHILOSOPHY FOR SCIENTIFIC COMPUTING Philippe R.B. Devloo1 and Gustavo C. Longhin1 Abstract. This contribution gives an overview of current research in applying object oriented pro- gramming to scientific computing at the computational mechanics laboratory (LABMEC) at the school of civil engineering – UNICAMP. The main goal of applying object oriented programming to scien- tific computing is to implement increasingly complex algorithms in a structured manner and to hide the complexity behind a simple user interface. The following areas are current topics of research and documented within the paper: hp-adaptive finite elements in one-, two- and three dimensions with the development of automatic refinement strategies, multigrid methods applied to adaptively refined finite element solution spaces and parallel computing. Mathematics Subject Classification. 65M60, 65G20, 65M55, 65Y99, 65Y05. Received: 3 December, 2001. 1. Introduction Finite element programming has been a craft since the decade of 1960. Ever since, finite element programs are considered complex, especially when compared to their rival numerical approximation technique, the finite difference method. Essential elements of complexity of the finite element method are: • Meshes are generally unstructured, leading to the necessity of node renumbering schemes and complex sparcity structures of the tangent
    [Show full text]
  • Ubung 4.10 Check That the Inverse of L
    Ubung¨ 4.10 Check that the inverse of L(k) is given by 1 .. 0 . . . .. .. . . 0 1 (L(k))−1 = . (4.7) . .. . −lk ,k . +1 . . 0 .. . . .. .. 0 ··· 0 −l 0 ··· 0 1 n,k Each step of the above Gaussian elimination process sketched in Fig. 4.2 is realized by a multiplication from the left by a matrix, in fact, the matrix (L(k))−1 (cf. (4.7)). That is, the Gaussian elimination process can be described as A = A(1) → A(2) =(L(1))−1A(1) → A(3) =(L(2))−1A(2) =(L(2))−1(L(1))−1A(1) → ... → A(n) =(L(n−1))−1A(n−1) = ... =(L(n−1))−1(L(n−2))−1 ... (L(2))−1(L(1))−1A(1) =:U upper triangular Rewriting this|{z yields,} the LU-factorization A = L(1) ··· L(n−1) U =:L The matrix L is a lower triangular matrix| as{z the product} of lower triangular matrices (cf. Exercise 4.5). In fact, due to the special structure of the matrices L(k), it is given by 1 . l .. L = 21 . . .. .. ln ··· ln,n 1 1 −1 as the following exercise shows: Ubung¨ 4.11 For each k the product L(k)L(k+1) ··· L(n−1) is given by 1 .. 0 . . . .. .. . . 0 1 L(k)L(k+1) ··· L(n−1) = . . . lk ,k 1 +1 . . l .. k+2,k+1 . . .. .. 0 ··· 0 l l ··· l 1 n,k n,k+1 n,n−1 40 Thus, we have shown that Gaussian elimination produces a factorization A = LU, (4.8) where L and U are lower and upper triangular matrices determined by Alg.
    [Show full text]
  • How Astronomical Objects Are Named
    How Astronomical Objects Are Named Jeanne E. Bishop Westlake Schools Planetarium 24525 Hilliard Road Westlake, Ohio 44145 U.S.A. bishop{at}@wlake.org Sept 2004 Introduction “What, I wonder, would the science of astrono- use of the sky by the societies of At the 1988 meeting in Rich- my be like, if we could not properly discrimi- the people that developed them. However, these different systems mond, Virginia, the Inter- nate among the stars themselves. Without the national Planetarium Society are beyond the scope of this arti- (IPS) released a statement ex- use of unique names, all observatories, both cle; the discussion will be limited plaining and opposing the sell- ancient and modern, would be useful to to the system of constellations ing of star names by private nobody, and the books describing these things used currently by astronomers in business groups. In this state- all countries. As we shall see, the ment I reviewed the official would seem to us to be more like enigmas history of the official constella- methods by which stars are rather than descriptions and explanations.” tions includes contributions and named. Later, at the IPS Exec- – Johannes Hevelius, 1611-1687 innovations of people from utive Council Meeting in 2000, many cultures and countries. there was a positive response to The IAU recognizes 88 constel- the suggestion that as continuing Chair of with the name registered in an ‘important’ lations, all originating in ancient times or the Committee for Astronomical Accuracy, I book “… is a scam. Astronomers don’t recog- during the European age of exploration and prepare a reference article that describes not nize those names.
    [Show full text]
  • Mathematical Methods for Physicists: a Concise Introduction
    Mathematical Methods for Physicists: A concise introduction TAI L. CHOW CAMBRIDGE UNIVERSITY PRESS Mathematical Methods for Physicists A concise introduction This text is designed for an intermediate-level, two-semester undergraduate course in mathematical physics. It provides an accessible account of most of the current, important mathematical tools required in physics these days. It is assumed that the reader has an adequate preparation in general physics and calculus. The book bridges the gap between an introductory physics course and more advanced courses in classical mechanics, electricity and magnetism, quantum mechanics, and thermal and statistical physics. The text contains a large number of worked examples to illustrate the mathematical techniques developed and to show their relevance to physics. The book is designed primarily for undergraduate physics majors, but could also be used by students in other subjects, such as engineering, astronomy and mathematics. TAI L. CHOW was born and raised in China. He received a BS degree in physics from the National Taiwan University, a Masters degree in physics from Case Western Reserve University, and a PhD in physics from the University of Rochester. Since 1969, Dr Chow has been in the Department of Physics at California State University, Stanislaus, and served as department chairman for 17 years, until 1992. He served as Visiting Professor of Physics at University of California (at Davis and Berkeley) during his sabbatical years. He also worked as Summer Faculty Research Fellow at Stanford University and at NASA. Dr Chow has published more than 35 articles in physics journals and is the author of two textbooks and a solutions manual.
    [Show full text]
  • SDT 5.2 Manual
    Structural Dynamics Toolbox FEMLink For Use with MATLAB r User’s Guide Etienne Balm`es Version 5.2 Jean-Michel Lecl`ere How to Contact SDTools 33 +1 41 13 13 57 Phone 33 +6 77 17 29 99 Fax SDTools Mail 44 rue Vergniaud 75013 Paris (France) http://www.sdtools.com Web comp.soft-sys.matlab Newsgroup http://www.openfem.net An Open-Source Finite Element Toolbox [email protected] Technical support [email protected] Product enhancement suggestions [email protected] Sales, pricing, and general information Structural Dynamics Toolbox User’s Guide on May 27, 2005 c Copyright 1991-2005 by SDTools The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual in its paper, PDF and HTML versions may be copied, printed, photocopied or reproduced in any form without prior written consent from SDTools. Structural Dynamics Toolbox is a registered trademark of SDTools OpenFEM is a registered trademark of INRIA and SDTools MATLAB is a registered trademark of The MathWorks, Inc. Other products or brand names are trademarks or registered trademarks of their respective holders. Contents 1 Preface 9 1.1 Getting started . 10 1.2 Understanding the Toolbox architecture . 12 1.2.1 Layers of code . 12 1.2.2 Global variables . 13 1.3 Typesetting conventions and scientific notations . 14 1.4 Release notes for SDT 5.2 and FEMLink 3.1 . 17 1.4.1 Key features . 17 1.4.2 Detail by function .
    [Show full text]
  • Finite Element Analysis of Emi in a Multi-Conductor Connector
    FINITE ELEMENT ANALYSIS OF EMI IN A MULTI-CONDUCTOR CONNECTOR A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Mohammed Zafaruddin May, 2013 FINITE ELEMENT ANALYSIS OF EMI IN A MULTI-CONDUCTOR CONNECTOR Mohammed Zafaruddin Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Nathan Ida Dr. Jose Alexis De Abreu Garcia _______________________________ _______________________________ Committee Member Dean of the College Dr. George C. Giakos Dr. George K. Haritos _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Hamid Bahrami Dr. George R. Newkome _______________________________ Date ii ABSTRACT This thesis discusses the numerical analysis of electrical multi-conductor connectors intended for operation at high frequencies. The analysis is based on a Finite Element Tool and looks at the effect of conductors on each other with a view to design for electromagnetic compatibility of connectors. When there is an electrically excited conductor in a medium, it acts as an antenna at high frequencies and radiates electromagnetic power. If there are any conductors in its vicinity they too act as antennas and receive a part of the EM power. Electromagnetic Interference (EMI) from nearby excited conductors causes induced currents, according to Faraday‘s law, which is considered as noise for other conductors. This noise is affected by factors such as distance between the conductors, strength and frequency of currents, permittivity, permeability and conductivity of the medium between the conductors. To reduce the effects of EMI in a shielded multi-conductor connector, values of induced currents at various distances between the conductors have been calculated and analyzed.
    [Show full text]
  • Aladdin : a Computational Toolkit for Interactive Engineering Matrix And
    ALADDIN A COMPUTATIONAL TOOLKIT FOR INTERACTIVE ENGINEERING MATRIX AND FINITE ELEMENT ANALYSIS Mark Austin Xiaoguang Chen and WaneJang Lin Institute for Systems Research and Department of Civil Engineering University of Maryland College Park MD Novemb er Abstract This rep ort describ es Version of ALADDIN an interactive computational to olkit for the matrix and nite element analysis of engineering systems The ALADDIN package is designed around a language sp ecication that includes quantities with physical units branching constructs and lo oping constructs The basic language functionality is enhanced with external libraries of matrix and nite element functions ALADDINs problem solving capabilities are demonstrated via the solution to a series of matrix and numerical analysis problems ALADDIN is employed in the nite element analysis of two building structures and two highway bridge structures Contents I INTRODUCTION TO ALADDIN Intro duction to ALADDIN Problem Statement ALADDIN Comp onents Scop e of this Rep ort II MATRIX LIBRARY Command Language for Quantity and Matrix Op erations How to Start and Stop ALADDIN Format of General Command Language Physical Quantities Denition and Printing of Quantities Formatting of Quantity Output Quantity Arithmetic Making a Quantity Dimensionless
    [Show full text]