Astronomical Reach of Fundamental Physics

Total Page:16

File Type:pdf, Size:1020Kb

Astronomical Reach of Fundamental Physics PERSPECTIVE PERSPECTIVE Astronomical reach of fundamental physics Adam S. Burrows1 and Jeremiah P. Ostriker Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 Edited by Neta A. Bahcall, Princeton University, Princeton, NJ, and approved January 7, 2014 (received for review September 23, 2013) Using basic physical arguments, we derive by dimensional and physical analysis the characteristic masses and sizes of important objects in the universe in terms of just a few fundamental constants. This exercise illustrates the unifying power of physics and the profound connections between the small and the large in the cosmos we inhabit. We focus on the minimum and maximum masses of normal stars, the corresponding quantities for neutron stars, the maximum mass of a rocky planet, the maximum mass of a white dwarf, and the mass of a typical galaxy. To zeroth order, we show that all these masses can be expressed in terms of either the Planck mass or the Chandrasekar mass, in combination with various dimensionless quantities. With these examples, we expose the deep interrelationships imposed by nature between disparate realms of the universe and the amazing consequences of the unifying character of physical law. 3 1=2 −33 Fundamental Physical Constants from connections between the small and the ðRpl = ðGZ=c Þ ∼ 10 cmÞ,andthe 1=2 − Which to Build the Universe large in this universe we jointly inhabit are Planck time ðGZ=c5Þ ð∼ 10 43 sÞ.The One of the profound insights of modern invited to contemplate the examples we remaining quantities of relevance would science in general, and of physics in partic- assembled here. be dimensionless ratios derivable in this ular, is that not only is everything connected, Reducing,eveninapproximatefashion, fundamental theory. For instance, these but that everything is connected quantita- the properties of the objects of the universe to ratios could be tively. Another is that there are physical their fundamental dependencies requires first η = = ð∼ 19Þ constants of nature that by their units, con- and foremost a choice of irreducible funda- p mpl mp 10 η = = ð∼ 22Þ [2] stancy in space and time, and magnitude mental constants. Various combinations of e mpl me 10 η = = ð∼ 20Þ; encapsulate nature’s laws. The constant speed those constants of nature can also be useful, π mpl mπ 10 “ ” of light delimits and defines the fundamental so the word irreducible is used here with character of kinematics and dynamics. great liberty. We could choose among the and α, and, in principle, these ratios could be Planck’s constant tells us that there is some- following: derived in the hypothetical fundamental the- thing special about angular momentum and Z; c; e; G; m ; mπ; m ; [1] ory. We show in this paper that we can write the products of length and momentum and p e astronomical masses in terms of mpl or mp, of energy and time. What is more, in com- with mass ratios and dimensionless com- where Z is the reduced Planck’s constant bination, the constants of nature set the scales binations of fundamental constants setting (lengths, times, and masses) for all objects ðh=2πÞ, c is the speed of light, e is the elemen- the corresponding relative scale factors. We and phenomena in the universe, because tary electron charge, G is Newton’s gravita- thereby reduce all masses to combinations of scales are dimensioned entities and the only tional constant, mp is the proton mass, mπ α α only five quantities: mp, me, mπ, , and g or building blocks from which to construct is the pion mass, and me is the electron mass. m , η , η , ηπ, and α. For radii, Z and c are them are the fundamental constants around It is in principle possible that these masses pl p e explicitly needed. Note that α = 1=η2 and which all nature rotates. Although in part can be reduced to one fiducial mass, with g p that α=α ∼ 1036. The latter is a rather large merely dimensional analysis, such construc- mass ratios derived from some overarching g number, a fact with significant consequences. tions encapsulate profound insights into theory, but this is currently beyond the state diverse physical phenomena. We assume in this simplified treatment of the art in particle physics. However, di- Hence, the masses of nuclei, atoms, stars, that the proton and neutron masses are the mensionless combinations of fundamental and galaxies are set by a restricted collection same and equal to the atomic mass unit, itself constants emerge naturally in the variety of ’ of basic constants that embody the finite the reciprocal of Avogadro sconstant(NA). number of core natural laws. In this paper, contexts in which they are germane. Exam- The pion mass can be the mass of any of the α = 2=Z we demonstrate this reduction to funda- Àples areÁ e c, the fine structure constant threepions,setsthelengthscaleforthenu- ∼ 1 α = 2=Z ð∼ −38Þ mentals by deriving the characteristic masses 137 ; g Gmp c 10 , the corre- cleus, and helps set the energy scale of nu- of important astronomical objects in terms sponding gravitational coupling constant; clear binding energies (6). However, for 1=2 of just a few fundamental constants. In doing and mpl = ðZc=GÞ ,thePlanckmassspecificity and for sanity’s sake, we will as- so, we are less interested in precision than ð∼ 2 × 10−5 gÞ. sume that the number of spatial dimensions illumination and focus on the orders of As noted, if our fundamental theory was is three. Then, with only five constants we magnitude. Most of our arguments are not complete, we would be able to express – original (see refs. 1 5 and references therein), allphysicalquantitiesintermsofonly Author contributions: A.S.B. and J.P.O. performed research and although some individual arguments are. three dimensioned quantities, one each wrote the paper. This exercise will be valuable to the extent for mass, length, and time. Many would The authors declare no conflict of interest. that it provides a unified discussion of the associate this fundamental theory with This article is a PNAS Direct Submission. physical scales found in the astronomical the Planck scale, so everything could be 1To whom correspondence should be addressed. E-mail: burrows@ world. Those interested in the fundamental written in terms of mpl,thePlancklength astro.princeton.edu. www.pnas.org/cgi/doi/10.1073/pnas.1318003111 PNAS | February 18, 2014 | vol. 111 | no. 7 | 2409–2416 Downloaded by guest on October 1, 2021 2 3 1=3 can proceed to explain, in broad outline, Maximum Mass of a White Dwarf: The give PF = ð3π Z neÞ . Because ne = NAρYe, objects in the universe. In this essay, we Chandrasekhar Mass where Ye is the number of electrons per emphasize stars (and planets) and galaxies, Stars are objects in hydrostatic equilibrium baryon (∼0.5), it is easy to show that the = but in principle, life and the universe are for which inward forces of gravity are bal- pressure is proportional to ρ5 3, that the as- amenable to similar analyses (3, 7, 8). anced by outward forces due to pressure sociated γ = 5=3, and that the star is, there- Before we proceed, we make an aside on gradients. The equation of hydrostatic equi- fore, a polytrope. By the arguments above, nuclear scales and why we have introduced librium is such stars are stable. η the pion mass and π. Nucleons (protons and However, as the mass increases, the central neutrons) are comprised of three quarks, and ð Þ dP = − ρ GM r ; [3] density increases, thereby increasing the pions are comprised of quark-antiquark 2 2 dr r fermi momentum. Above cPF ∼ mec ,the pairs. Quantum chromodynamics (QCD) (9) electrons become relativistic. The formula for is the fundamental theory of the quark and where P is the pressure, r is the radius, ρ is the the fermi momentum is unchanged, but the gluon interactions and determines the mass density, and MðrÞ is the interior mass fermi energy is now linear (not quadratic) in properties, such as masses, of composite ρ hɛi × ∼ (the volume integral of ). Dimensional anal- PF.Thisfactmeansthat ne is pro- particles. The proton mass ( 938 MeV/ 4=3 2 ysis thus yields for the average pressure or the portional to ρ and that the white dwarf c ) is approximately equal to ∼ 3 × ΛQCD, central pressure (P ) an approximate relation, becomes unstable (formally neutrally stable, where ΛQCDð∼ 300 MeVÞ is the QCD en- c ∼ GM2 but slightly unstable if general relativistic ergy scale (10), and 3 is its number of Pc R4 , where M is the total stellar mass and constituent quarks (11). The pion, how- R is the stellar radius, and we used the crude effects are included). Hence, the onset of ρ ∼ M relativistic electron motion throughout a ever, is a pseudo-Goldstone boson, and relation R3. the square of its mass is proportional to For a given star, its equation of state, large fraction of the star, the importance of Λ ð + Þ quantum mechanical degeneracy, and the QCD mu md , where mu and md are the connnecting pressure with temperature, up and down bare quark masses, re- density, and composition, is also known in- inexorable effects of gravity conspire to yield a maximum mass for a white dwarf (13, 14). spectively. mu + md is very approximately dependently. Setting the central pressure de- equal to 10 MeV (quite small). In princi- rived using hydrostatic equilibrium equal to This mass, at the confluence of relativity (c), ple, all the hadron masses and physical the central pressure from thermodynamics or quantum mechanics (Z), and gravitation dimensions can be determined from the statistical physics can yield a useful relation (G), is the Chandrasekhar mass, named bare quark masses and the QCD energy between M and R (for a given composition).
Recommended publications
  • Correspondence
    Correspondence A global coalition to [email protected] in money-based laboratory convincingly, even though the sustain core data *On behalf of the Global experiments (see Nature 541, flatness of their outer parts might Life Science Data Resources 294–295; 2017). The assumption convey that impression. As members of an international Working Group (see go.nature. in interpreting such results seems At that time, I and several working group to support the com/2miobmk for full list). to be that consumers aim to other astronomers used the rapidly growing core-data ‘optimize’ the products they buy. 21-centimetre radio wavelength resources in the life sciences, we But unless an optimal product of neutral hydrogen to determine aim to create a sustainable and Zealandia is not a is defined, this hypothesis is rotation curves that often went accessible data infrastructure that continent untestable because it is subjective. well beyond the optical image, will benefit scientists worldwide. Apart from perishable produce, thereby probing the dark matter Although researchers have Now recognized in international I for one do not care about regime more effectively. relied on international resources law, Zealandia — the continental optimality. I care only about Such observations from such as the Protein Data Bank shelf and margin surrounding adequacy: whether an item meets several galaxies, coupled with and Flybase for decades, the New Zealand — is vast and my needs and is available and optical surface photometry, current system is unsustainable worthy of inquiry. However, affordable. Once these criteria are permitted the calculation of local because it is largely funded by we disagree with attempts to satisfied, I need never look again.
    [Show full text]
  • NL#140 May/June
    May/June 2008 Issue 140 A Publication for the members of the American Astronomical President’s Column 5 J. Craig Wheeler, [email protected] Astrozone and K12 Educator Two interesting years go by very rapidly. This is my last newsletter article as President. Reception My thanks to all of you who have commented positively on them for your support and to those of you who did not feel so moved on your discretion. 6-9 My term ends with a bang rather than a whimper with the sudden resignation of Alan Stern and Scenes from the the return to the NASA Science Mission Directorate of old hand Ed Weiler. Reading between the lines, my take on this transition is that Alan was dedicated to doing more with a fixed Austin Meeting budget. An important boundary condition is that he could not allow cost growth in missions. His approach to this was one of tough love. He intended to first say “no.” Any mission with 17 a threat of overrun had to find its own way of solving that problem by downscoping or delay. If, in especially pressing circumstances, the damage could not be contained in the mission, Honored Alan intended to keep it in the division. No bleeding of planetary problems into astrophysics, Elsewhere nor vice versa. I think what happened is that Alan foresaw overruns coming down the pike for which various pressures beyond his control would not allow him to exercise this tough love. It was thus a matter of principle for him to resign. He did so, by his own statement, with 19 respect for the NASA Administrator and for the team he had assembled.
    [Show full text]
  • OBITUARY John Norris Bahcall 1935–2005 Nuclear Astrophysicist Who Uncovered the Solar Neutrino Problem
    1.9 News & Views 037 MH 26/8/05 2:56 PM Page 43 NATURE|Vol 437|1 September 2005 NEWS & VIEWS OBITUARY John Norris Bahcall 1935–2005 Nuclear astrophysicist who uncovered the solar neutrino problem. The philosopher Sir Isaiah Berlin once by a cluster of stars is still called the Bahcall– famously quoted a scrap of Archilochus: “The Wolf model; the most widely quoted model fox knows many things, but the hedgehog for our Galaxy was for decades the Bahcall– knows one big thing.” Astrophysicist John Soneira model; and the most accurate models Bahcall would often introduce himself and for the solar interior were those developed a colleague to a new acquaintance with the by Bahcall, with Roger Ulrich, Marc Pinson- sentence: “I know all about neutrinos, and neault and others. my friend here knows about everything else After completing his graduate education at in astrophysics.” Harvard in 1961 (having started his university Such light-hearted self-deprecation was education at Louisiana State University on a typical of Bahcall, who died on 17 August tennis scholarship), he arrived at the Califor- 2005. But it was inaccurate: Bahcall’s scientific nia Institute of Technology (Caltech), working interests and expertise ranged from neutrino with Willy Fowler and others at the time and physics and the structure of the Sun and other place that ‘nuclear astrophysics’ was invented. stars, to galaxy models, quasars and the inter- There he became engaged with neutrino work galactic medium. His more than 600 scientific and to Neta Assaf (then completing her PhD at publications, on an enormous array of sub- Caltech) — the two constant loves of his life.
    [Show full text]
  • Vera Rubin Finding
    Vera C. Rubin Photograph Collection, circa 1942-2012 Carnegie Institution of Washington Department of Terrestrial Magnetism Archives Washington, DC Finding aid written by: Mary Ferranti and Shaun Hardy March 2018 Revised July 2019 Vera C. Rubin Photograph Collection, circa 1942-2012 TABLE OF CONTENTS Page Introduction 1 Biographical Sketch 1 Scope and Content 2 Image Listing 3 Subject Terms 26 Bibliography 26 Related Collections 27 Vera C. Rubin Photograph Collection, circa 1942-2012 Table of Contents Vera C. Rubin Photograph Collection, circa 1942-2012 DTM-2016-03 Introduction Abstract: This collection consists of photographs documenting the professional and personal life of astronomer Vera C. Rubin. Extent: 3 linear feet: 5 three-ring album boxes, 1 flat print box. Acquisition: The collection was donated by Vera Rubin in 2012 and formally deeded to the archives by her son, Allan M. Rubin, in 2018. Access Restrictions: There are no access restrictions. Copyright: Copyright is held by the Department of Terrestrial Magnetism, Carnegie Institution of Washington. For permission to reproduce or publish please contact the archivist. Preferred Citation: Vera C. Rubin Photograph Collection, circa 1942-2012, Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, D.C. Processing: Maria V. Lobanova processed the collection in December 2016-April 2017 and identified as many individuals, places, and events as possible. Shaun Hardy and Mary Ferranti prepared the finding aid in 2018. Biographical Sketch Vera Rubin was born the younger daughter of Philip and Rose Cooper on July 23, 1928, in Philadelphia, PA. At the age of 10, she and her family moved to Washington, DC, when her father accepted a job offer there.
    [Show full text]
  • Joseph A. Muñoz
    Joseph A. Muñoz Department of Physics [email protected] Broida Hall, UCSB ! !Santa Barbara, CA 93106 RESEARCH INTERESTS: ! Cosmology, ISM of high-z galaxies, first galaxies, reionization, relics in the Local Group CURRENT POSITION: !Postdoctoral Scholar, UCSB, with Peng Oh 2013‒15 EDUCATION: Ph.D, Harvard University, ASTRONOMY 2010 Advisor: Abraham Loeb Thesis title: Galaxies within Hierarchical Structure Formation A.M., Harvard University, ASTRONOMY 2007 A.B., Princeton University, ASTROPHYSICAL SCIENCES, magna cum laude 2005 ! Advisor: Paul Steinhardt and Neta Bahcall HONORS AND AWARDS: NSF Graduate Research Fellowship 2005‒08 Sigma Xi Book Award, Princeton (one graduating senior in astrophysics) 2005 !Sigma Xi Inductee, Princeton Chapter (selected by the faculty) 2005 PREVIOUS RESEARCH POSITIONS: Postdoctoral Scholar, UCLA, with Steven Furlanetto 2010‒13 Graduate Student Researcher, Harvard, with Abraham Loeb 2005‒10 Senior Independent Work, Princeton, with Paul Steinhardt and Neta Bahcall 2004‒05 REU Summer Research Intern, Princeton, with Edward Jenkins 2004 Junior Independent Work, Princeton, with J. Richard Gott 2004 Junior Independent Work, Princeton, with David Spergel 2003 REU Summer Research Intern, Princeton, with Jonathan Tan 2003 Research Assistant, Princeton, with Gillian Knapp 2002 REU Summer Research Intern, University of Florida, with Andrey Korytov 2002 ! Research Assistant, Princeton, with Lyman Page 2001‒02 MENTORING: Lauren Holzbauer, graduate student, UCLA, with Steven Furlanetto 2012‒ Adam Greenberg, first-year graduate student, UCLA 2013 Fred Davies, graduate student, UCLA, with Steven Furlanetto 2013‒ ! Ethan Nadler, undergraduate student, UCSB 2014‒ ! 1/"4 J. A. Muñoz, [email protected] TEACHING POSITIONS: Teaching Fellow, Harvard, Ay 202b: Cosmology (grad) 2010 Designed and graded problem sets and final exam; ran Q&A and review sessions.
    [Show full text]
  • Second Circular on the Nuclear Physics in Astrophysics V Conference (NPA5) That Will Be Held at the Royal Garden Hotel in Eilat, Israel, on April 3-8, 2011
    24th Nuclear Physics Divisional Conference Eilat, Israel | April 3-8, 2011 Dear colleagues, It is our pleasure to send you the second circular on the Nuclear Physics in Astrophysics V Conference (NPA5) that will be held at the Royal Garden Hotel in Eilat, Israel, on April 3-8, 2011. This circular contains information on the general structure of the scientific program, registration, abstract submission, accommodations, excursions, conference proceedings and financial support. This information is also available and is regularly updated on the conference website: www.weizmann.ac.il/conferences/NPA5 Please note that registration, abstract submission and request for financial support are now open with the following deadlines: - Deadline for abstract submission December 1st, 2010 - Deadline for request of financial support December 15, 2010 - Deadline for early registration at reduced rate February 15, 2011 1. Scientific program The scientific program will include the following topics: Nuclear Structure - Theory and Experiment Big-Bang Nucleosynthesis and Formation of First Stars Stellar Reactions and Solar Neutrinos Explosive Nucleosynthesis Radioactive Beams and Exotic Nuclei – New Facilities and Future Possibilities General Astrophysics Neutrino Physics - the Low- and High-Energy Frontiers Rare events, Dark Matter, Double β-decay, Symmetries. NPA5 will consist of invited talks and contributed papers that will be presented in the sessions, and a poster session. Secretariat: Weizmann Institute of Science | Department of Particle Physics
    [Show full text]
  • Neta A. Bahcall Princeton University
    LIGHTING UP THE DARK: WHERE IS THE DARK MATTER? Neta A. Bahcall Princeton University 4:30 p.m., Tuesday, Nov. 11, 2014 Rashid Auditorium Gates & Hillman Centers Neta Bahcall uses different methods and a variety of tracers including galaxies, clusters of galaxies, Free and open to the public superclusters and quasars to answer fundamental questions about the structure of the universe. In Reception to follow work summarized in over 300 scientific publications, Bahcall and her colleagues have provided powerful How is dark matter distributed in the universe? How does it relate to the distribution of light, constraints on cosmology including one of the first stars and baryons? These questions are examined using gravitational lensing and other recent determinations of the mass-density of the universe and observations that trace the distribution of mass in the universe from small to large scales and of the amplitude of mass-fluctuations. reveal the connection between the dark and bright side of the universe. Born in Israel, Bahcall received her Ph.D. from While the halos of dark matter around galaxies show an observed mass distribution that is Tel Aviv University. She later moved to Princeton considerably more extended than that of light, this trend changes on larger scales, where the University where she is now the Eugene Higgins mass, light and stars trace each other remarkably well. This indicates the ‘edge’ of the dark matter Professor of Astrophysics. In her research, Bahcall distribution. The measurements suggest that most of the dark matter in the universe may be works closely with students and postdoctoral fellows.
    [Show full text]
  • The Scaling Relations of Galaxy Clusters and Their Dark Matter Halos
    THE SCALING RELATIONS OF GALAXY CLUSTERS AND THEIR DARK MATTER HALOS B. Lanzoni1, L. Ciotti2,3, A. Cappi1, G. Tormen4, G. Zamorani1 1INAF – Osservatorio Astronomico di Bologna, via Ranzani 1, 40127, Bologna, Italy 2 Dipartimento di Astronomia, Universit`adi Bologna, via Ranzani 1, 40127 Bologna, Italy 3 Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 , Pisa, Italy 4 Dipartimento di Astronomia, Universit`adi Padova, vicolo dell’Osservatorio 5, 35122 Padova, Italy September 19, 2003; accepted ABSTRACT Like early-type galaxies, also nearby galaxy clusters define a Fundamental Plane, a luminosity- radius, and a luminosity-velocity dispersion relations, whose physical origin is still unclear. By means of high resolution N–body simulations of massive dark matter halos in a ΛCDM cosmology, we find that scaling relations similar to those observed for galaxy clusters are already defined by their dark matter hosts. The slopes however are not the same, and among the various possibilities in principle able to bring the simulated and the observed scaling relations in mutual agreement, we show that the preferred solution is a luminosity dependent mass-to-light ratio (M/L ∝ L∼0.3), that well corresponds to what inferred observationally. We then show that at galactic scales there is a conflict between the cosmological predictions of structure formation, the observed trend of the mass-to-light ratio in ellipticals, and the slope of their luminosity-velocity dispersion relation (that significantly differs from the analogous one followed by clusters). The conclusion is that the scaling laws of elliptical galaxies might be the combined result of the cosmological collapse of density fluctuations at the epoch when galactic scales became non-linear, plus important modifications afterward due to early-time dissipative merging.
    [Show full text]
  • Dark Matter Possibilities
    Dark Matter Possibilities We now delve into possible explanations for this dark matter problem. Two readings on explanations for Dark Matter: 1. "Miraculous WIMPs", by Manuel Gnida, Symmetry Magazine, July 2015. https://www.symmetrymagazine.org/article/july-2015/miraculous-wimps 2. "Existence and Nature of Dark Matter in the Universe," Virginia Trimble, Ann. Rev. Astron. Astrophys. 25, 452-72 (1987). Section 1 (pp. 425-7) and Sections 6 and 7 (pp. 452-62). The full article and references are on the course web site. Artwork by Sandbox Studio, Chicago with Ana Kova Miraculous 07/15/15 | By Manuel Gnida What are WIMPs, and what makes WIMPs them such popular dark matter candidates? Invisible dark matter accounts for 85 percent of all matter in the universe, aLecting the motion of galaxies, bending the path of light and inuencing the structure of the entire cosmos. Yet we don’t know much for certain about its nature. Most dark matter experiments are searching for a type of particles called WIMPs, or weakly interacting massive particles. “Weakly interacting” means that WIMPs barely ever “talk” to regular matter. They don’t often bump into other matter and also don’t emit light—properties that could explain why researchers haven’t been able to detect them yet. Created in the early universe, they would be heavy (“massive”) and slow-moving enough to gravitationally clump together and form structures observed in today’s universe. Scientists predict that dark matter is made of particles. But that assumption is based on what they know about the nature of regular matter, which makes up only about 4 percent of the universe.
    [Show full text]
  • Minutes of the Meeting of the Astronomy and Astrophysics Advisory Committee
    Minutes of the Meeting of the Astronomy and Astrophysics Advisory Committee 10–11 May 2007 National Science Foundation, Arlington, VA Members attending: Garth Illingworth (Chair) Daniel Lester John Carlstrom (Vice-Chair) Rene Ong Neta Bahcall E. Sterl Phinney Scott Dodelson Marcia Rieke Wendy Freedman Keivan Stassun Katherine Freese Alycia Weinberger Agency personnel: Arden Bement, NSF Michael Salamon, NASA-HQ G. Wayne Van Citters, NSF-AST F. Rick Harnden, NASA-HQ Eileen Friel, NSF-AST Rick Howard, NASA-HQ Dana Lehr, NSF-AST Eric Smith, NASA-HQ Nigel Sharp, NSF-AST Ray Taylor, NASA-HQ Tom Barnes, NSF-AST Zlatan Tsvetanov, NASA-HQ Wei Zheng, NSF-AST Wilton Sanders, NASA-HQ Philip Puxley, NSF-AST Stephen Ridgway, NASA-HQ Craig Foltz, NSF-AST Robin Staffin, DOE-HEP Elizabeth Pentecost, NSF-AST Kathleen Turner, DOE-HEP Alan Stern, NASA-HQ Randy Johnson, DOE Jon Morse, NASA-HQ Invited participants: Eric Becklin, UCLA Chuck Bennett, Johns Hopkins U. Hank Sobel, UC-Irvine Megan Urry, Yale U. Jonathan Lunine, U. Arizona Kate Beers, OSTP Other participants: Brian Dewhurst, NRC-BPA Nick White, NASA-GSFC Dennis Socker, NRL Ethan Schrier, AUI Michael Ledford, Lewis-Burke Assoc. Antonella Nota, STScI/ESA Jay Frogel, AURA Henry Ferguson, STScI MEETING CONVENED AT 8:30 AM EST, 10 MAY 2007 The Chair called the meeting to order. Alan Stern, NASA Associate Administrator for Science, joined the meeting via teleconference. Stern began the discussion with a few brief comments. He stated that NASA is really working hard to make some substantial changes in the Science Mission Directorate (SMD), both in the pace of flight missions and in improving research and analysis (R&A) and data analysis programs.
    [Show full text]
  • Applications of Quantum Field Theory in Curved Spacetimes
    APPLICATIONS OF QUANTUM FIELD THEORY IN CURVED SPACETIMES by Héctor Hugo Calderón Cadena A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics MONTANA STATE UNIVERSITY Bozeman, Montana November 2007 c COPYRIGHT by Héctor Hugo Calderón Cadena 2007 All Rights Reserved ii APPROVAL of a dissertation submitted by Héctor Hugo Calderón Cadena This dissertation has been read by each member of the dissertation committee and has been found to be satisfactory regarding content, English usage, format, citations, bibli- ographic style, and consistency, and is ready for submission to the Division of Graduate Education. Dr. William A. Hiscock Approved for the Department of Physics Dr. William A. Hiscock Approved for the Division of Graduate Education Dr. Carl A. Fox iii STATEMENT OF PERMISSION TO USE In presenting this dissertation in partial fulfillment of the requirements for a doctoral degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. I further agree that copying of this dissertation is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for extensive copying or reproduction of this dissertation should be referred to ProQuest Information and Learning, 300 North Zeeb Road, Ann Arbor, Michi- gan 48106, to whom I have granted “the exclusive right to reproduce and distribute my dissertation in and from microform along with the non-exclusive right to reproduce and distribute my abstract in any format in whole or in part.” Héctor Hugo Calderón Cadena November 2007 iv DEDICATION To Ruth, Your love has given me support and courage to keep working.
    [Show full text]
  • Sloan Digital Sky Survey III Photometric Quasar Clustering:Probing the Initial Conditions of the Universe Shirley Ho
    BNL-112172-2016-JA Sloan Digital Sky Survey III Photometric Quasar Clustering:Probing the Initial Conditions of the Universe Shirley Ho Submitted to Journal of Cosmology and Astroparticle Physics May 2016 Department/Division/Office Brookhaven National Laboratory U.S. Department of Energy [High Energy Physics], [Astronomy and Astrophysics] Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. This preprint is intended for publication in a journal or proceedings. Since changes may be made before publication, it may not be cited or reproduced without the author’s permission. 2.0/3913e031.doc 1 (08/2010) DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors.
    [Show full text]