Phylogenetic–Phylogenomic Approach for Species Tree Estimation in African Agama Lizards with Applications to Biogeography, Character Evolution, and Diversification

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic–Phylogenomic Approach for Species Tree Estimation in African Agama Lizards with Applications to Biogeography, Character Evolution, and Diversification Molecular Phylogenetics and Evolution 79 (2014) 215–230 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A hybrid phylogenetic–phylogenomic approach for species tree estimation in African Agama lizards with applications to biogeography, character evolution, and diversification a, b,c a b d Adam D. Leaché ⇑, Philipp Wagner , Charles W. Linkem , Wolfgang Böhme , Theodore J. Papenfuss , Rebecca A. Chong e, Brian R. Lavin f, Aaron M. Bauer c, Stuart V. Nielsen g, Eli Greenbaum h, Mark-Oliver Rödel i, Andreas Schmitz j, Matthew LeBreton k, Ivan Ineich k, Laurent Chirio k, Caleb Ofori-Boateng l, Edem A. Eniang m, Sherif Baha El Din n, Alan R. Lemmon o, Frank T. Burbrink p a Department of Biology & Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98195-1800, USA b Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, D53113 Bonn, Germany c Department of Biology, Villanova University, 800 Lancaster Avenue, Villanova, PA 19085, USA d Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA e Department of Biology, Colorado State University, Fort Collins, CO 80523-1878, USA f Department of Biology, Sonoma State University, Rohnert Park, CA 94928, USA g Department of Biology, Box 1848, University of Mississippi, University, MS 38677, USA h Department of Biological Sciences, University of Texas at El Paso, 500 West University Ave., El Paso, TX 79968, USA i Museum für Naturkunde, Leibniz Institute for Research on Evolution and Biodiversity, 10115 Berlin, Germany j Department of Herpetology and Ichthyology, Natural History Museum of Geneva, C.P. 6434, CH-1211, Geneva 6, Switzerland k Muséum National d’Histoire Naturelle, Départment Systématique et Evolution (Reptiles), ISYEB (Institut Systématique, Evolution, Biodiversité, UMR 7205 CNRS/EPHE/MNHN), Paris, France l Forestry Research Institute of Ghana, P.O. Box 63, Fumesua, Kumasi, Ghana m Department of Forestry and Wildlife, University of Uyo, Akwa Ibom State, Nigeria n Nature Conservation Sector, Egyptian Environmental Affairs Agency, 3 Abdalla El Katib, Apt. 3, Dokki, Cairo, Egypt o Department of Scientific Computing, Florida State University, Dirac Science Library, Tallahassee, FL 32306-4102, USA p Department of Biology, The College of Staten Island, The City University of New York, Staten Island, NY 10314, USA article info abstract Article history: Africa is renowned for its biodiversity and endemicity, yet little is known about the factors shaping them Received 18 February 2014 across the continent. African Agama lizards (45 species) have a pan-continental distribution, making Revised 24 May 2014 them an ideal model for investigating biogeography. Many species have evolved conspicuous sexually Accepted 14 June 2014 dimorphic traits, including extravagant breeding coloration in adult males, large adult male body sizes, Available online 25 June 2014 and variability in social systems among colorful versus drab species. We present a comprehensive time-calibrated species tree for Agama, and their close relatives, using a hybrid phylogenetic–phyloge- Keywords: nomic approach that combines traditional Sanger sequence data from five loci for 57 species (146 sam- Africa ples) with anchored phylogenomic data from 215 nuclear genes for 23 species. The Sanger data are Agamidae * Anchored phylogenomics analyzed using coalescent-based species tree inference using BEAST, and the resulting posterior distribu- Next-generation sequencing tion of species trees is attenuated using the phylogenomic tree as a backbone constraint. The result is a Sequence capture time-calibrated species tree for Agama that includes 95% of all species, multiple samples for most species, Xenagama strong support for the major clades, and strong support for most of the initial divergence events. Diver- sification within Agama began approximately 23 million years ago (Ma), and separate radiations in South- ern, East, West, and Northern Africa have been diversifying for >10 Myr. A suite of traits (morphological, coloration, and sociality) are tightly correlated and show a strong signal of high morphological disparity within clades, whereby the subsequent evolution of convergent phenotypes has accompanied diversifi- cation into new biogeographic areas. Ó 2014 Elsevier Inc. All rights reserved. Corresponding author. ⇑ E-mail address: [email protected] (A.D. Leaché). http://dx.doi.org/10.1016/j.ympev.2014.06.013 1055-7903/Ó 2014 Elsevier Inc. All rights reserved. 216 A.D. Leaché et al. / Molecular Phylogenetics and Evolution 79 (2014) 215–230 1. Introduction 2. Materials and methods African Agama lizards are among the most diverse and wide- 2.1. Sanger data spread terrestrial squamates in Africa, making them an ideal group for investigating biogeography and conducting comparative eco- 2.1.1. Molecular methods logical and evolutionary studies (Leaché et al., 2009; Geniez Our taxonomic sampling within Agama includes 95% of the et al., 2011; Gonçalves et al., 2012; Mediannikov et al., 2012). Some described valid taxa (43 of 45 taxa, including described species Agama exhibit extreme sexual dimorphism, and extravagant adult and subspecies) and multiple samples for most species (116 spec- male breeding coloration is among the most conspicuous traits in imens total; average = 2.7 samples/species). Outgroups include six the genus (Wagner et al., 2011). Species with brilliantly colored genera belonging to the African/West Asian Agamidae clade males are also usually larger in size compared to females, but adult (Acanthocercus, Laudakia [recently recognized as Stellagama], male body sizes in Agama can vary widely in maximum snout–vent Phrynocephalus, Pseudotrapelus, Trapelus, and Xenagama), and length (SVL) from small A. gracilimembris (47 mm) in West Africa Calotes versicolor from the South Asian sister clade (Macey et al., and the Sahel to large A. caudospinosa (133 mm) in East Africa. 2000, 2006) is used to root phylogenetic trees when necessary. A Social systems are also variable within Agama, with some species total of 146 specimens representing 57 species are included in forming colonies composed of a single male with many females, the phylogenetic analyses (Table 1). whereas males of some species are solitary. This suite of traits is We collected traditional multilocus data using Sanger sequenc- assumed to be the result of sexual selection, and in this study we ing to obtain nearly complete taxonomic coverage with multiple quantify the correlations among these characters, and investigate samples within species. The Sanger data includes five loci: mito- the evolution of these traits in relation to phylogeny, biogeography chondrial DNA (mtDNA) and four single copy protein coding and diversification. nuclear genes. The mtDNA data (1207 aligned base pairs) includes Comparative genomics data are becoming increasingly easy to fragments of the 16S rRNA gene (16S), the ND4 protein-coding obtain for molecular phylogenetic studies of non-model organisms gene (ND4), and the adjacent histidine, serine, and leucine tRNA (reviewed by Lemmon and Lemmon, 2013; McCormack et al., genes (tRNAs). The nuclear genes (2793 aligned base pairs) include 2013). Sequence capture approaches (also referred to as hybrid neurotrophin-3 (NT3), oocyte maturation factor Mos (CMOS), pinin enrichment) are emerging as a popular option for obtaining phy- gene (PNN), and RNA fingerprint protein 35 (R35). Molecular lab logenomic data, because they can provide data capable of resolving protocols for Sanger sequencing follow Leaché et al. (2009), and difficult phylogenetic problems at deep (Crawford et al., 2012) and primer sequences are provided in Table 2. shallow levels (Smith et al., 2014). Sequence capture methods use short probes (60–120 base pairs) to hybridize to specific genomic 2.1.2. Alignment and partitioning regions that are then isolated and sequenced using next-genera- Multiple sequence alignments were estimated for the indel-rich tion sequencing (Gnirke et al., 2009). Competing techniques for 16S and tRNAs using SATé v2.0.3 (Liu et al., 2011). SATé uses max- sequence capture exploit different aspects of the genome for probe imum likelihood (ML) to estimate phylogenetic trees and multiple hybridization, including ultraconserved elements (Faircloth et al., sequence alignments simultaneously using a divide-and-conquer 2012), conserved regions (Lemmon et al., 2012), or protein-coding realignment technique, which can boost alignment accuracy sub- genes (Li et al., 2013). Regardless of which genomic regions are stantially (Liu et al., 2009). Initial alignments were generated using exploited for hybridization, the approach offers genome-wide sam- ClustalW v2.0.12 (Thompson et al., 1994), and subsequent align- pling of large numbers of loci. ment refinement steps in SATé used MUSCLE v3.8 (Edgar, 2004a, A current challenge in molecular phylogenetics is the integra- 2004b) in conjunction with ML trees estimated with RAxML tion of phylogenomic data with traditional multilocus data (‘‘San- v7.2.6 (Stamatakis, 2006) under the GTRGAMMA model. SATé ger’’ data). The dimensions of the data matrices are typically was run for 12 h with default parameter values. transposed in terms of numbers of samples and numbers of loci, The molecular genetic data were partitioned into 17 distinct with the phylogenomic data containing hundreds of loci for rela- data blocks including 15 blocks for the 1st, 2nd, and 3rd codon tively few samples, whereas Sanger
Recommended publications
  • Studies on African Agama III. Resurrection of Agama Agama Turuensis Loveridge, 1932 (Squamata: Agamidae) from Synonymy and Elevation to Species Rank
    Th e status of Agama agama turuensis SALAMANDRA 44 1 35-42 Rheinbach, 20 February 2008 ISSN 0036-3375 Studies on African Agama III. Resurrection of Agama agama turuensis Loveridge, 1932 (Squamata: Agamidae) from synonymy and elevation to species rank Philipp Wagner, Patrick Krause & Wolfgang Böhme Abstract. New material of Agama agama Linnaeus, 758 from Mount Hanang, Tanzania is indistingu- ishable from the type material of Agama agama turuensis Loveridge, 932, a taxon which is so far con- sidered to be a synonym of Agama lionotus elgonis Lönnberg, 922. Our comparative morphological study demonstrates turuensis is most similar to Agama mwanzae Loveridge, 923 and Agama kaimosae Loveridge, 935, and distinct from both A. agama and A. lionotus Boulenger, 896. Agama turuensis can likewise neither be assigned to A. mwanzae nor A. kaimosae but has to be rather considered as a dis- tinct species. Key words. Squamata, Agamidae, Agama turuensis, new status, Africa, Tanzania, Mount Hanang, taxo- nomy. Introduction and subdivided the genus Agama into the fol- lowing six genera: Agama, Stellio, Trapelus, Th e genus Agama is endemic to Africa and Pseudotrapelus, Brachysaura and Xenagama. its species are very widespread in the savan- Later, Joger (99) identifi ed both Laudakia nah regions of Africa. Currently, 34 species and Phrynocephalus as sister taxa of Agama. are recognized but the genus in general, and At present the genus can be divided into especially the Agama agama species complex three diff erent species groups: the Agama and the clade including the East African are agama group which includes the West Af- in need of a thorough taxonomic revision.
    [Show full text]
  • Movement and Habitat Use by Adult and Juvenile Toad-Headed Agama Lizards (Phrynocephalus Versicolor Strauch, 1876) in the Eastern Gobi Desert, Mongolia
    Herpetology Notes, volume 12: 717-719 (2019) (published online on 07 July 2019) Movement and habitat use by adult and juvenile Toad-headed Agama lizards (Phrynocephalus versicolor Strauch, 1876) in the eastern Gobi Desert, Mongolia Douglas Eifler1,* and Maria Eifler1,2 Introduction From 0700–1900 h we walked slowly throughout the study area in search of Toad-headed Agama lizards Phrynocephalus versicolor Strauch, 1876 is a (Phrynocephalus versicolor). When a lizard was small lizard (Agamidae) found in desert and semi- sighted, we captured the animal by hand or noose. desert regions of China, Mongolia, Kazakhstan and We then measured the lizard (snout-to-vent length Kyrgyzstan (Zhao, 1999). The species inhabits areas of (SVL; mm) and mass (g) and sexed adults by probing. sparse vegetation and can be relatively common, with Juveniles were too small to sex. Using non-toxic paint reported densities of up to 400 per hectare (Zhao, 1999). pens, we marked each lizard with a unique colour code In spite of its wide distribution and local abundance, for later identification and to avoid recapture or repeat relatively little detailed ecological information is observations. available, particularly in the northern areas of its range. All focal observations occurred on one day (26 We report our ecological observations on a population August). When an animal was sighted, we positioned of P. versicolor in the Gobi Desert of Mongolia with ourselves 3–5 m from the lizard, waited 5 min for regard to their movement and habitat use. the lizard to acclimate to our presence, and then we began a 10-min observation period.
    [Show full text]
  • Addo Elephant National Park Reptiles Species List
    Addo Elephant National Park Reptiles Species List Common Name Scientific Name Status Snakes Cape cobra Naja nivea Puffadder Bitis arietans Albany adder Bitis albanica very rare Night adder Causes rhombeatus Bergadder Bitis atropos Horned adder Bitis cornuta Boomslang Dispholidus typus Rinkhals Hemachatus hemachatus Herald/Red-lipped snake Crotaphopeltis hotamboeia Olive house snake Lamprophis inornatus Night snake Lamprophis aurora Brown house snake Lamprophis fuliginosus fuliginosus Speckled house snake Homoroselaps lacteus Wolf snake Lycophidion capense Spotted harlequin snake Philothamnus semivariegatus Speckled bush snake Bitis atropos Green water snake Philothamnus hoplogaster Natal green watersnake Philothamnus natalensis occidentalis Shovel-nosed snake Prosymna sundevalli Mole snake Pseudapsis cana Slugeater Duberria lutrix lutrix Common eggeater Dasypeltis scabra scabra Dappled sandsnake Psammophis notosticus Crossmarked sandsnake Psammophis crucifer Black-bellied watersnake Lycodonomorphus laevissimus Common/Red-bellied watersnake Lycodonomorphus rufulus Tortoises/terrapins Angulate tortoise Chersina angulata Leopard tortoise Geochelone pardalis Green parrot-beaked tortoise Homopus areolatus Marsh/Helmeted terrapin Pelomedusa subrufa Tent tortoise Psammobates tentorius Lizards/geckoes/skinks Rock Monitor Lizard/Leguaan Varanus niloticus niloticus Water Monitor Lizard/Leguaan Varanus exanthematicus albigularis Tasman's Girdled Lizard Cordylus tasmani Cape Girdled Lizard Cordylus cordylus Southern Rock Agama Agama atra Burrowing
    [Show full text]
  • Stellio' in Herpetology and a Comment on the Nomenclature and Taxonomy of Agamids of the Genus Agama (Sensu Lato) (Squamata: Sauria: Agamidae)
    ©Österreichische Gesellschaft für Herpetologie e.V., Wien, Austria, download unter www.biologiezentrum.at HERPETOZOA 8 (1/2): 3 - 9 Wien, 30. Juli 1995 A brief review of the origin and use of 'stellio' in herpetology and a comment on the nomenclature and taxonomy of agamids of the genus Agama (sensu lato) (Squamata: Sauria: Agamidae) Kurzübersicht über die Herkunft und Verwendung von "stellio" in der Herpetologie und Kommentar zur Nomenklatur und Taxonomie von Agamen, Gattung Agama (sensu lato) (Squamata: Sauria: Agamidae) KLAUS HENLE ABSTRACT The name 'stellio' has received a wide and variable application in herpetology. Its use antedates modern nomenclature. The name was applied mainly to various agamid and gekkonid species. In modern usage, confu- sion exists primarily with its use as a genus, i. e., Siellio. To solve this problem, STEJNEGER (1936) desig- nated Siellio saxatilis of LAURENTI, 1768 which is based on a figure in SEBA (1734) as the type species. This species is unidentifiable. In an unpublished thesis, MOODY (1980) split the genus Agama (s. 1.) into six genera. He overlooked STEJNEGER's (1936) designation and reused Stellio for the stellio-group of agamid lizards. Many authors followed MOODY (1980). Recently, some authors pointed out that Siellio is unavailable but did not fully dis- cuss the implications for agamid nomenclature. It is argued that a satisfactory nomenclature is difficult with current knowledge of agamid taxonomy. It is suggested to restrict Laudakia to L. tuberculata and to use Ploce- denna for the stellio-group (sensu stricto). KURZFASSUNG Der Name "stellio" sah eine breite und vielfältige Verwendung in der Herpetologie, die weit über die moderne Nomenklatur zurückreicht.
    [Show full text]
  • The Herpetofauna of the Cubango, Cuito, and Lower Cuando River Catchments of South-Eastern Angola
    Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 10(2) [Special Section]: 6–36 (e126). The herpetofauna of the Cubango, Cuito, and lower Cuando river catchments of south-eastern Angola 1,2,*Werner Conradie, 2Roger Bills, and 1,3William R. Branch 1Port Elizabeth Museum (Bayworld), P.O. Box 13147, Humewood 6013, SOUTH AFRICA 2South African Institute for Aquatic Bio- diversity, P/Bag 1015, Grahamstown 6140, SOUTH AFRICA 3Research Associate, Department of Zoology, P O Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031, SOUTH AFRICA Abstract.—Angola’s herpetofauna has been neglected for many years, but recent surveys have revealed unknown diversity and a consequent increase in the number of species recorded for the country. Most historical Angola surveys focused on the north-eastern and south-western parts of the country, with the south-east, now comprising the Kuando-Kubango Province, neglected. To address this gap a series of rapid biodiversity surveys of the upper Cubango-Okavango basin were conducted from 2012‒2015. This report presents the results of these surveys, together with a herpetological checklist of current and historical records for the Angolan drainage of the Cubango, Cuito, and Cuando Rivers. In summary 111 species are known from the region, comprising 38 snakes, 32 lizards, five chelonians, a single crocodile and 34 amphibians. The Cubango is the most western catchment and has the greatest herpetofaunal diversity (54 species). This is a reflection of both its easier access, and thus greatest number of historical records, and also the greater habitat and topographical diversity associated with the rocky headwaters.
    [Show full text]
  • Nyika and Vwaza Reptiles & Amphibians Checklist
    LIST OF REPTILES AND AMPHIBIANS OF NYIKA NATIONAL PARK AND VWAZA MARSH WILDLIFE RESERVE This checklist of all reptile and amphibian species recorded from the Nyika National Park and immediate surrounds (both in Malawi and Zambia) and from the Vwaza Marsh Wildlife Reserve was compiled by Dr Donald Broadley of the Natural History Museum of Zimbabwe in Bulawayo, Zimbabwe, in November 2013. It is arranged in zoological order by scientific name; common names are given in brackets. The notes indicate where are the records are from. Endemic species (that is species only known from this area) are indicated by an E before the scientific name. Further details of names and the sources of the records are available on request from the Nyika Vwaza Trust Secretariat. REPTILES TORTOISES & TERRAPINS Family Pelomedusidae Pelusios rhodesianus (Variable Hinged Terrapin) Vwaza LIZARDS Family Agamidae Acanthocercus branchi (Branch's Tree Agama) Nyika Agama kirkii kirkii (Kirk's Rock Agama) Vwaza Agama armata (Eastern Spiny Agama) Nyika Family Chamaeleonidae Rhampholeon nchisiensis (Nchisi Pygmy Chameleon) Nyika Chamaeleo dilepis (Common Flap-necked Chameleon) Nyika(Nchenachena), Vwaza Trioceros goetzei nyikae (Nyika Whistling Chameleon) Nyika(Nchenachena) Trioceros incornutus (Ukinga Hornless Chameleon) Nyika Family Gekkonidae Lygodactylus angularis (Angle-throated Dwarf Gecko) Nyika Lygodactylus capensis (Cape Dwarf Gecko) Nyika(Nchenachena), Vwaza Hemidactylus mabouia (Tropical House Gecko) Nyika Family Scincidae Trachylepis varia (Variable Skink) Nyika,
    [Show full text]
  • Morphology, Locomotor Performance and Habitat Use In
    applyparastyle “fig//caption/p[1]” parastyle “FigCapt” Biological Journal of the Linnean Society, 2020, XX, 1–12. With 4 figures. Morphology, locomotor performance and habitat use in Downloaded from https://academic.oup.com/biolinnean/advance-article-abstract/doi/10.1093/biolinnean/blaa024/5802286 by guest on 15 March 2020 southern African agamids W. C. TAN1,2,3,*, , B. VANHOOYDONCK4, J. MEASEY3, and A. HERREL1,4, 1UMR 7179 C.N.R.S/M.N.H.N., Département Adaptations du Vivant, 55 rue Buffon, 75005, Paris Cedex 5, France 2Université de Poitiers – UFR Sciences Fondamentales et Appliquées, Laboratoire EBI Ecologie & Biologie des Interactions, UMR CNRS 7267, Poitiers, France 3Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Stellenbosch, South Africa 4Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610 Antwerpen, Belgium Received 11 December 2019; revised 10 February 2020; accepted for publication 10 February 2020 Understanding the relationships between form and function can help us to understand the evolution of phenotypic diversity in different ecological contexts. Locomotor traits are ecologically relevant as they reflect the ability of an organism to escape from predators, to catch prey or to defend territories. As such, locomotion provides a good model to investigate how environmental constraints may influence an organism’s performance. Here, we investigate the ecomorphological relationships between limb morphology, locomotor performance (sprint speed and endurance) and habitat use in six southern African agamid species. The investigated agamid species showed differences in hind limb and toe lengths. Both of these traits were further correlated with endurance capacity. This association was supported by stepwise multiple regression analyses.
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Early German Herpetological Observations and Explorations in Southern Africa, with Special Reference to the Zoological Museum of Berlin
    Bonner zoologische Beiträge Band 52 (2003) Heft 3/4 Seiten 193–214 Bonn, November 2004 Early German Herpetological Observations and Explorations in Southern Africa, With Special Reference to the Zoological Museum of Berlin Aaron M. BAUER Department of Biology, Villanova University, Villanova, Pennsylvania, USA Abstract. The earliest herpetological records made by Germans in southern Africa were casual observations of common species around Cape Town made by employees of the Dutch East India Company (VOC) during the mid- to late Seven- teenth Century. Most of these records were merely brief descriptions or lists of common names, but detailed illustrations of many reptiles were executed by two German illustrators in the employ of the VOC, Heinrich CLAUDIUS and Johannes SCHUMACHER. CLAUDIUS, who accompanied Simon VAN DER STEL to Namaqualand in 1685, left an especially impor- tant body of herpetological illustrations which are here listed and identified to species. One of the last Germans to work for the Dutch in South Africa was Martin Hinrich Carl LICHTENSTEIN who served as a physician and tutor to the last Dutch governor of the Cape from 1802 to 1806. Although he did not collect any herpetological specimens himself, LICHTENSTEIN, who became the director of the Zoological Museum in Berlin in 1813, influenced many subsequent workers to undertake employment and/or expeditions in southern Africa. Among the early collectors were Karl BERGIUS and Ludwig KREBS. Both collected material that is still extant in the Berlin collection today, including a small number of reptile types. Because of LICHTENSTEIN’S emphasis on specimens as items for sale to other museums rather than as subjects for study, many species first collected by KREBS were only described much later on the basis of material ob- tained by other, mostly British, collectors.
    [Show full text]
  • Foraging Ecology and Conservation Biology of African Elephants: Ecological and Evolutionary Perspectives on Elephant-Woody Plant Interactions in African Landscapes
    Foraging ecology and conservation biology of African elephants: Ecological and evolutionary perspectives on elephant-woody plant interactions in African landscapes Item Type Thesis Authors Dudley, Joseph Paine Download date 27/09/2021 15:01:40 Link to Item http://hdl.handle.net/11122/9523 INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter free, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back o f the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zed) Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 Reproduced with permission of the copyright owner.
    [Show full text]
  • A Second Record of Scolecomorphus Kirkii Boulenger, 1883 (Gymnophiona: Scolecomorphidae) for Mozambique
    Herpetology Notes, volume 8: 59-62 (2015) (published online on 10 March 2015) A second record of Scolecomorphus kirkii Boulenger, 1883 (Gymnophiona: Scolecomorphidae) for Mozambique Harith Omar Morgadinho Farooq1 and Werner Conradie2,* The herpetofauna of northern Mozambique (Nampula, Branch et al., 2014), crustaceans (Daniels and Bayliss, Niassa, and Cabo Degabo Provinces) remains one of the 2012) and bats (Taylor et al., 2012). While Portik et al. most poorly-known in Africa. This is a consequence of (2013a) summarised the herpetofauna of the inselbergs the physical inaccessibility of the region as well as the of northern Mozambique, they overlooked the valuable protracted civil war, which affected the study of many amphibian collections in the technical report by Branch areas. Mozambique is expected to have a large diversity (2004) from Niassa Game Reserve and the herpetofaunal of herpetofauna due to the variety of different habitat collections from Mount Mabu (Timberlake et al., 2012), types available and the large size (area) of the country. which led to underestimation and incorrect accounts of The lack of scientific studies of northern Mozambique the herpetofaunal diversity of the montane inselbergs of has led to widely disparate and inaccurate summaries northern Mozambique. of the herpetofaunal diversity of the country. While In November 2011 and May 2014 a team of scientists, there are no formal publications that explicitly deal mountain climbers, and conservationists had the with this topic, reputable internet sources indicate that opportunity to survey Mount Namuli, which resulted 221 reptile (Uetz, 2015) and 69 amphibian species in some additions to the herpetofauna of that area. (AmphibiaWeb, 2015) are expected to occur in the whole of Mozambique.
    [Show full text]
  • The Amphibians and Reptiles of Kakamega Forest, Western Kenya
    07_Wagner&Böhme-2.qxd 12.08.2007 14:01 Uhr Seite 123 Bonner zoologische Beiträge Band 55 (2006) Heft 2 Seiten 123–150 Bonn, Juli 2007 Herpetofauna Kakamegensis – The amphibians and reptiles of Kakamega Forest, western Kenya Philipp WAGNER & Wolfgang BÖHME Bonn, Germany Abstract. We present an annotated checklist of the herpetofauna of Kakamega Forest with comments on the biology and systematics of the taxa. Twenty-five amphibian, one turtle, 22 lizard and 36 snake species are recorded from within the forest and its immediate environment. We discuss the generalized zoogeography of the forest and distribution pattern of the taxa comment on the protection of the forest. Analysis of the reptile species composition shows Kakamega Forest to be similar to the Guinea-Congolian rainforest and is considered the easternmost remnant of this forest block. Kakamega forest has a high diversity value for Kenya and represents a diversity hotspot on a national scale. Two species, Lygodac- tylus gutturalis and Psammophis phillipsi, are recorded in Kenya for the first time. Several other first records and the description of a new species (Agamidae: Agama finchi) were published already separately. Keywords. East Africa, Kenya, Kakamega Forest, herpetological survey, checklist, national diversity hotspot. 1. INTRODUCTION In Africa tropical rainforests extend from southern Sene- covery and scientific descriptions. Uganda, for example gal in the west to the coastal forests of Kenya and Tanza- has lost 86 % of its original forest in the past two decades nia in the east (COLLINS 1992). The East African rainforests and the remaining parts are isolated fragments (VONESH belong to different biogeographical clades.
    [Show full text]