Running Head: ARDUINO-BASED OCEANOGRAPHIC INSTRUMENTS 1 Arduino Based Oceanographic Instruments: an Implementation Strategy

Total Page:16

File Type:pdf, Size:1020Kb

Running Head: ARDUINO-BASED OCEANOGRAPHIC INSTRUMENTS 1 Arduino Based Oceanographic Instruments: an Implementation Strategy Running Head: ARDUINO-BASED OCEANOGRAPHIC INSTRUMENTS 1 Arduino Based Oceanographic Instruments: An Implementation Strategy for Low-Cost Sensors Daniel P. Langis California State Maritime Academy ARDUINO-BASED OCEANOGRAPHIC INSTRUMENTS 2 Abstract Oceanographic instruments are expensive, yet essential tools for conducting research on critical environmental processes. Modern trends in technological advancement and inexpensive electronics would suggest that oceanographic instruments should be becoming cheaper; however, low-cost instruments are not yet a reality. This paper describes an implementation strategy and justification for a new form of low-cost instruments using Arduino-based microcontrollers. It describes present-day instruments and methods, the need for low-cost sensors, and barriers which have thus far prevented low-cost instruments from being realized. It also details the unique advantages of the Arduino platform which make it an ideal candidate for reducing costs and suggests how to capitalize on its open source design and flexibility. Particular attention is paid to providing a holistic approach towards reducing life-cycle costs at all stages of planning, development, and operation. This strategy may be used as a baseline and unifying vision for any oceanographic research institution(s) wishing to develop low-cost instruments and reap the benefits of expanding research opportunities. Keywords: Oceanography, instruments, sensors, low-cost, Arduino, life-cycle cost ARDUINO-BASED OCEANOGRAPHIC INSTRUMENTS 3 Arduino Based Oceanographic Instruments: An Implementation Strategy for Low-Cost Sensors The oceans and their resources are major determinants of the global climate, state of the environment, and economic productivity of nations across the globe – a 2012 study estimated that if human impacts on the ocean continue unabated, declines in ocean health and services will cost the global economy $428 billion per year by 2050, and $1.979 trillion per year by 2100. Alternatively, steps to reduce these impacts could save more than a trillion dollars per year by 2100, reducing the cost of human impacts to $612 billion (Virginia Institute of Marine Science). Oceanographic studies are necessary to understand the scope and nature of potential impacts. Those studies are heavily reliant on the measurement and collection of data from a variety of sensors and observation platforms. Characteristics such as water temperature, salinity, depth, currents, fluorescence, photosynthetic radiation, and pH are all used to monitor and predict the health and productivity of the oceans. One of the major cruxes in oceanography is how to collect accurate measurements and sample water from extremely remote, hostile environments. “The ocean is the most complex, challenging, and harsh environment on Earth and accessing it requires specially designed tools and technology” (NOAA, 2013). Traditional methods have relied on robust, precise instruments which are often deployed on elaborate mooring systems from a research vessel – a prospect which is both expensive and dangerous. Recent advances in technology, such as satellite observations and remotely operated vehicles, have already proven great alternatives to traditional methods for many applications (National Ocean Council, 2011), but many programs are still dependent on bulky and expensive instrumentation for the backbone of their data collection. ARDUINO-BASED OCEANOGRAPHIC INSTRUMENTS 4 Due to the dramatic reduction in size and cost of electronic components, there is great hope on the horizon for redefining how instruments are produced and utilized in the field. To many, it seems that the industry is on the cusp of a revolution which could decrease costs of collecting certain data by orders of magnitude. With the remarkable developments and products made in land-based electronics such as cell phones and computers, one might expect the revolution to be at hand. There is hope that a miraculous solution will appear which will provide an immediate low-cost solution to the myriad challenges of technological innovation and collecting data in ocean environments. An ideal solution would integrate a suite of highly accurate sensors into a miniaturized package and be available at very low cost. Despite the optimistic perspective, a survey of the actual available products would suggest that very few ultra-low-cost solutions have actually been developed. A host of reasons exist for the stagnation in what could be a potentially ground-breaking arena for innovation. A number of the major obstacles preventing ultra-low-cost oceanographic instruments from being produced are listed below. This list is neither exhaustive nor absolute, but is provided to illuminate a few of the central challenges that this document and implementation strategy are intended to address and overcome. 1. Many individuals have made attempts at portions of ultra-low-cost sensor development (such as conducting studies on individual low-cost sensors) but little work has been done to propose an end-to-end solution that would make them a reality. A complete solution must consider how to integrate complex issues such as product development, data quality, testing, calibration, maintenance, and user interaction – all while driving down total cost (Blanchard, 2008, p.10). ARDUINO-BASED OCEANOGRAPHIC INSTRUMENTS 5 2. The instrumentation industry is dominated by a limited number of commercial companies who have a strong hold on the market. Those companies create first-rate products and do provide reliable end-to-end solutions for the issues above. Although expensive, the costs for oceanographic instruments are incorporated into budgets as the price of conducting research; programs also have large amounts of capital already invested in instruments. These factors reduce pressure and create a justifiable reluctance to develop and adopt new technologies. 3. Organizational processes and traditions are very hard to change. The adoption of any revolutionary practice may redefine processes, alter job responsibilities, and create internal disruptions which require significant organizational change. The development of ultra-low-cost sensors must also consider how the technology will be utilized and provide time and recommendations for adopting new processes. The implementation strategy that follows justifies using ‘Arduino’ based electronics as the foundation for low-cost instrumentation. The Arduino is an open-source electronics platform, intended for making interactive projects (Arduino, n.d.). Although inexpensive and modest in appearance, it is substantively capable of driving the functions of complex oceanographic instruments. Additionally, the opportunities resulting from open-source design, modularity, customization, and cost reduction would make it ideal for the challenges faced in oceanography. Significant discussion is given to exactly how and why the foundation for this platform should be established, what types of applications it is best suited for, and how to approach future product development. Oceanographic research institutions such as the National Oceanic and Atmospheric Administration, Woods Hole Oceanographic Institute, and the Scripps Institute of Oceanography ARDUINO-BASED OCEANOGRAPHIC INSTRUMENTS 6 are likely to be the immediate beneficiaries of this implementation strategy. It can provide a unifying vision and direction for the development of a branch of technology which can be shared across institutions. Individual laboratories and programs within those institutions would then be able to adapt and customize these technologies for specific projects. The creation of ultra-low-cost sensors has the opportunity to provide a dramatic impact on the environment, commercial industries, and the economy as a whole. Reducing instrument costs by some order of magnitude has the potential to improve monitoring of the climate, generate new models, improve forecasting, and enhance our ability to responsibly manage our planet’s resources. Literature Review Present-Day Platforms and Methods In order to understand how low-cost instruments may be developed and applied in oceanography, one must first consider the current methods of data acquisition and the fundamental strengths and weaknesses of the various approaches. The National Academy of Science’s Committee on an Ocean Infrastructure Strategy published a document in addressing the Critical Infrastructure for Ocean Research and Societal Needs in 2030. The document posed major research questions, addressed technology trends, and set broad strategic goals for how technology and infrastructure will be applied specifically to oceanography in the next two decades (2011). A number of these trends are summarized below. Ships. Traditional oceanography relied on research vessels equipped with sophisticated instrumentation to conduct in-situ measurements or sampling and deploy mooring systems to monitor remote environments. Ships have distinct advantages as mobile, adaptable platforms, but are remarkably expensive. According to the National Ocean Council’s Federal ARDUINO-BASED OCEANOGRAPHIC INSTRUMENTS 7 Oceanographic Fleet Status Report (2013, p. 20), “Federal agencies are facing numerous challenges associated with cost-effectively operating and maintaining the Fleet” of oceanographic vessels. Fuel costs have increased some 400% since 2003, aging vessels require higher maintenance costs, personnel costs for salaries and training are increasing, and new safety and environmental standards are becoming more
Recommended publications
  • Towards Autonomous Localization of an Underwater Drone
    TOWARDS AUTONOMOUS LOCALIZATION OF AN UNDERWATER DRONE A Thesis presented to the Faculty of California Polytechnic State University, San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of Science in Computer Science by Nathan Sfard June 2018 c 2018 Nathan Sfard ALL RIGHTS RESERVED ii COMMITTEE MEMBERSHIP TITLE: Towards Autonomous Localization of an Underwater Drone AUTHOR: Nathan Sfard DATE SUBMITTED: June 2018 COMMITTEE CHAIR: Lynne Slivovsky, Ph.D. Professor of Computer Engineering COMMITTEE MEMBER: John Seng, Ph.D. Professor of Computer Science COMMITTEE MEMBER: Xiao-Hua Yu, Ph.D. Professor of Electrical Engineering iii ABSTRACT Towards Autonomous Localization of an Underwater Drone Nathan Sfard Autonomous vehicle navigation is a complex and challenging task. Land and aerial vehicles often use highly accurate GPS sensors to localize themselves in their envi- ronments. These sensors are ineffective in underwater environments due to signal attenuation. Autonomous underwater vehicles utilize one or more of the following approaches for successful localization and navigation: inertial/dead-reckoning, acous- tic signals, and geophysical data. This thesis examines autonomous localization in a simulated environment for an OpenROV Underwater Drone using a Kalman Fil- ter. This filter performs state estimation for a dead reckoning system exhibiting an additive error in location measurements. We evaluate the accuracy of this Kalman Filter by analyzing the effect each parameter has on accuracy, then choosing the best combination of parameter values to assess the overall accuracy of the Kalman Filter. We find that the two parameters with the greatest effects on the system are the con- stant acceleration and the measurement uncertainty of the system.
    [Show full text]
  • Modeling and Simulation of Motion of an Underwater Robot
    2016 International Symposium on Nonlinear Theory and Its Applications, NOLTA2016, Yugawara, Japan, November 27th-30th, 2016 Modeling and Simulation of Motion of an Underwater Robot Ryo Inoharay, Kaito Isogaiy, Hideo Nakanoz, and Hideaki Okazakiy yGraduate School of Engineering, Shonan Institute of Technology 1–1–25, Tsujidounishikaigan, Fujisawa-shi, Kanagawa Prefecture 251-8511, Japan zFaculty of Engineering, Shonan Institute of Technology 1–1–25, Tsujidounishikaigan, Fujisawa-shi, Kanagawa Prefecture 251-8511, Japan Email: [email protected], [email protected], [email protected], [email protected] Abstract—This paper presents how system dynamics ics [1] of an underwater robot based on [2], [4]. The time and system control equations for an underwater robot were parameter t for all the stated variables, such as r(t), or Ω(t), derived using an Arnold-type operator to control the Open- etc., is omitted for convenience. We use the following no- ROV. Typical behavior of the OpenROV on MATLAB nu- tation as [2] (Fig 2): merical simulations is illustrated. ei 2 w (i = 1; 2; 3) are the base vectors of a right-handed Cartesian stationary coordinate system at the origin O; 2 = ; ; 1. Introduction Ei W (i 1 2 3) are the base vectors of a right moving coordinate system connected to the body at the center of Although there are several designs, control system equa- the mass Oc. tions, and dynamic equations for underwater robots, such as [1], unified methods to describe the dynamic equations Definition 1 Let w and W be oriented euclidean spaces for the rigid body kinetics of an underwater robot have yet (i.e.
    [Show full text]
  • Development of an Underwater Robot
    School of Science & Engineering Capstone Design Development of an Underwater Robot Oumaima Lamaakel Supervised by Dr. Kevin Scott Smith Submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in General Engineering Spring 2018 2 DEVELOPMENT OF AN UNDERWATER ROBOT FOR MUD SAMPLES PICK UP Capstone Report Student Statement: The work submitted is solely prepared by Oumaima Lamaakel and it is original. Excerpts from other’s work have been clearly identified, acknowledged and listed in the list of references. The engineering drawings, computer programs, prototype development, and testing protocols reported in this document are also original and adhere to the engineering design ethics and safety measures. ______________________ Oumaima Lamaakel Approved by the supervisor: ______________________ Dr. Kevin Scott Smith 3 Acknowledgment I am highly indebted to my supervisors prof. Kevin Smith and prof. Lorraine Casazza for their guidance, constant supervision and support throughouts the whole year. I would like to express my gratitude to prof Veronique Van Lierde for helping understand the kinematics behind manipulators, prof. Asmae Khaldoun for her feedback regarding materials selection, prof. Yassine Salih Alj for his support and coordination work, the lab technician Mr Abderahim Boulakrouch, and Al Akhawayn University and the School of Science & Engineering for giving me the opportunity to pursue this project. My gratitude extends to the members of the ROV team, who helped me assemble the prototypes, especially Jade El Haimer for his invaluable help. I would also like to thank my dear family, friends for their support throughout my undergraduate education. 4 List of Tables and Figures Table 2 Comparison of Thrusters ...........................................................................................
    [Show full text]
  • Dynamic Reconfiguration of Mission Parameters in Underwater Human
    Dynamic Reconfiguration of Mission Parameters in Underwater Human-Robot Collaboration Md Jahidul Islam1, Marc Ho2, and Junaed Sattar3 Abstract— This paper presents a real-time programming and in the underwater domain, what would otherwise be straight- parameter reconfiguration method for autonomous underwater forward deployments in terrestrial settings often become ex- robots in human-robot collaborative tasks. Using a set of tremely complex undertakings for underwater robots, which intuitive and meaningful hand gestures, we develop a syntacti- cally simple framework that is computationally more efficient require close human supervision. Since Wi-Fi or radio (i.e., than a complex, grammar-based approach. In the proposed electromagnetic) communication is not available or severely framework, a convolutional neural network is trained to provide degraded underwater [7], such methods cannot be used accurate hand gesture recognition; subsequently, a finite-state to instruct an AUV to dynamically reconfigure command machine-based deterministic model performs efficient gesture- parameters. The current task thus needs to be interrupted, to-instruction mapping and further improves robustness of the interaction scheme. The key aspect of this framework is and the robot needs to be brought to the surface in order that it can be easily adopted by divers for communicating to reconfigure its parameters. This is inconvenient and often simple instructions to underwater robots without using artificial expensive in terms of time and physical resources. Therefore, tags such as fiducial markers or requiring memorization of a triggering parameter changes based on human input while the potentially complex set of language rules. Extensive experiments robot is underwater, without requiring a trip to the surface, are performed both on field-trial data and through simulation, which demonstrate the robustness, efficiency, and portability of is a simpler and more efficient alternative approach.
    [Show full text]
  • Preview of Award 1312333
    8/9/2018 RPPR - Preview Report My Desktop Prepare & Submit Proposals Prepare Proposals in FastLane New! Prepare Proposals (Limited proposal types) Proposal Status Awards & Reporting Notifications & Requests Project Reports Submit Images/Videos Award Functions Manage Financials Program Income Reporting Grantee Cash Management Section Contacts Administration User Management Research Administration Lookup NSF ID Preview of Award 1312333 - Annual Project Report Cover | Accomplishments | Products | Participants/Organizations | Impacts | Changes/Problems | Special Requirements Cover Federal Agency and Organization Element to Which Report is Submitted: 4900 Federal Grant or Other Identifying Number Assigned by Agency: 1312333 Project Title: Scaling Up Success: Using MATE's ROV Competitions to Build a Collaborative Learning Community that Fuels the Ocean STEM Workforce Pipeline PD/PI Name: Jill M Zande, Principal Investigator Candiya Mann, Co-Principal Investigator Deidre Sullivan, Co-Principal Investigator Recipient Organization: Monterey Peninsula College Project/Grant Period: 09/15/2013 - 08/31/2019 Reporting Period: 09/01/2017 - 08/31/2018 Submitting Official (if other than PD\PI): N/A Submission Date: N/A Signature of Submitting Official (signature shall be submitted in accordance with N/A agency specific instructions) Accomplishments * What are the major goals of the project? The information included within this report covers the period from May 16, 2017 through June 30, 2018. Our ITEST Scale-Up project, Scaling up Success: Using MATE’s ROV Competitions to Build a Collaborative Learning Community that Fuels the Ocean STEM Workforce Pipeline, expands the best practices that we identified, based on evaluation data and regional reporting, as most effective in reaching, engaging, and supporting student and teacher participation in STEM.
    [Show full text]
  • WORLD OCEANS WEEK BIOGRAPHIES 5-9 JUNE, 2017 Prince Albert II, HSH of Monaco
    WORLD OCEANS WEEK BIOGRAPHIES 5-9 JUNE, 2017 Prince Albert II, HSH of Monaco His Highness Prince Albert II is the reigning monarch of the Principality of Monaco and head of the princely house of Grimaldi. In January 2009, Prince Albert left for a month-long expedition to Antarctica, where he visited 26 scientific outposts and met with climate-change experts in an attempt to learn more about the impact of global warming on the continent. On 23 October 2009, Prince Albert was awarded the Roger Revelle Prize for his efforts to protect the environment and to promote scientific research.This award was given to Prince Albert by the Scripps Institution of Oceanography in La Jolla, California. Prince Albert is the second recipient of this prize. Dayne Buddo Dr. Dayne Buddo is an expert in Marine Invasive Alien Species with over 10 years experience in this area of study. He has PhD in Zoology with a concentration in Marine Sciences from the University of the West Indies (UWI). Buddo's main area of research has been the invasive green mussel Perna viridis in Jamaica, and more recently Ballast Water Management and the Invasion of the Lionfish in Jamaica. For the past 10 years, Dayne has worked as a marine consultant in Jamaica, as well as the Caribbean Region on Fisheries Policy, Marine Protected Areas, Coastal Development Projects and Natural Resource Management. Buddo was recently appointed Lead Scientist at the Alligator Head Foundation in Jamaica. Graham Burnett Dr Graham Burnett is an American historian of science and a writer. He is a professor at Princeton University and an editor at Cabinet, based in Brooklyn, New York.
    [Show full text]
  • Design of an Open Source-Based Control Platform for an Underwater Remotely Operated Vehicle Diseño De Una Plataforma De Control
    Design of an open source-based control platform for an underwater remotely operated vehicle Luis M. Aristizábal a, Santiago Rúa b, Carlos E. Gaviria c, Sandra P. Osorio d, Carlos A. Zuluaga e, Norha L. Posada f & Rafael E. Vásquez g Escuela de Ingenierías, Universidad Pontificia Bolivariana, Medellín Colombia. a [email protected], b [email protected], c [email protected], d [email protected], e [email protected], f [email protected], g [email protected] Received: March 25th, de 2015. Received in revised form: August 31th, 2015. Accepted: September 9th, 2015 Abstract This paper reports on the design of an open source-based control platform for the underwater remotely operated vehicle (ROV) Visor3. The vehicle’s original closed source-based control platform is first described. Due to the limitations of the previous infrastructure, modularity and flexibility are identified as the main guidelines for the proposed design. This new design includes hardware, firmware, software, and control architectures. Open-source hardware and software platforms are used for the development of the new system’s architecture, with support from the literature and the extensive experience acquired with the development of robotic exploration systems. This modular approach results in several frameworks that facilitate the functional expansion of the whole solution, the simplification of fault diagnosis and repair processes, and the reduction of development time, to mention a few. Keywords: open-source hardware; ROV control platforms; underwater exploration. Diseño de una plataforma de control basada en fuente abierta para un vehículo subacuático operado remotamente Resumen Este artículo presenta el diseño de una plataforma de control basada en fuente abierta para el vehículo subacuático operado remotamente (ROV) Visor3.
    [Show full text]
  • Curriculum Vitae Kakani Katija
    Kakani Katija (Young) 7700 Sandholdt Rd. (831) 775-1952 Moss Landing, CA 95039 [email protected] EDUCATION California Institute of Technology, PasadEna, CA April 2010 PhD, BioEnginEEring Option California Institute of Technology, PasadEna, CA June 2005 MS, AEronautics Option University of Washington, SEattlE, WA June 2004 BS, AEronautics and Astronautics RESEARCH EXPERIENCE Principal Engineer, Monterey Bay Aquarium Research Institute 2017-present - DEEp OcEan Inspiration Group (DOIG) - Big OcEan, Big Data and FathomNet Visiting Associate Professor in Aerospace, California Institute of Technology 2021-present In situ fluid-structurE interactions, roBotics Research Associate, National Museum of Natural History, Smithsonian Institution 2017-present Tomopterid movEmEnt Ecology Postdoctoral Fellow, Monterey Bay Aquarium Research Institute 2015-2017 - DEEpPIV: Flow from thE surfacE to sEafloor - BiomEchanics and Ecology of dEEp-sEa invErteBrates - InvErteBrate (squid, jellies) tagging Research Associate, Hopkins Marine Station, Stanford University 2014-2015 - Fluid transport mEchanisms of swimming animals - InvErteBrate (squid, jElliEs) tagging Postdoctoral Scholar & Investigator, Woods Hole Oceanographic Institution 2010-2014 Biogenic mixing by schooling organisms Graduate Researcher, California Institute of Technology 2004-2010 - Jellyfish propulsion for bio-inspirEd design, advisEd By JO Dabiri - Lagrangian cohErEnt structurEs (LCS) for bio-propulsion - Vortex ring interactions with hEart valvE lEaflEts, advisEd By M GhariB Undergraduate Researcher, University of Washington 2003-2004 - EffEcts of accElEration profilEs on RaylEigh-Taylor flow, advisEd By RE BrEidEnthal - Mars Gravity Biosatellite, advisEd By AP BrucknEr DEVELOPMENT EXPERIENCE EyeRIS (Remote Imaging System) 2019-present Curriculum Vitae Kakani Katija Principal InvEstigator. LightfiEld imaging systems for volumEtric particlE characterizations, 3D particlE tracking, and surfacE rEconstructions on ROVs/AUVs. StealthCam 2019-present Principal InvEstigator.
    [Show full text]
  • Engaging High School Students and Teachers Through an Ocean-Observing Technology STEM Outreach Club by DR
    Volume 31 • No. 2 • Winter 2018 Engaging High School Students and Teachers Through an Ocean-Observing Technology STEM Outreach Club BY DR. JORDON BECKLER, KILEY GRAY, BEN CAROTHERS, HALLE FIELDS, BOB CURRIER, AND DR. RYAN SCHLOESSER ABSTRACT The advancement of regional and global ocean-observing The Mote Ocean Technology Club, a new outreach systems over the past decade is largely dependent on program at Mote Marine Laboratory in Sarasota, Florida, the development of new and emerging sensor technolo- implemented state-of-the-art technology to engage 12 high gies and data integration capabilities. Combined, these school students and four teachers during a semester-long enable the aggregation and integration of a myriad of data afterschool STEM program. Club activities were broad and streams that support critical environmental, economic, interdisciplinary, but the primary goal was to build inex- safety, and scientific services. Autonomous in situ sensors pensive sensors and disseminate data streams to the Gulf are becoming rapidly more advanced and inexpensive, of Mexico Coastal Ocean Observing System (GCOOS)— allowing chemical, physical, and biological measurements emulating the activities of many ocean-observing labs around to be obtained remotely from fixed locations like buoys, the world. This article details club activities, provides links to pilings, and docks, as well as mobile platforms like ROVs, the online curriculum, summarizes successes, challenges and AUVs, and satellites (Perry et al. 2013; Shapiro et al. 2014). recommendations for similar (or smaller) classroom-based These sensors typically report regularly to host network efforts, and describes curriculum plans for the next phase systems that perform data management such as logging of the club.
    [Show full text]
  • 63-17 Self-Evaluation Report, 2016-2017
    63-17 Northwest Regional Professional Development Program Self-Evaluation Report 2016 - 2017 Submitted August 2017 Kirsten Gleissner, Ph.D., Director 380-A Edison Way Reno, NV 89502 775-861-1242 1 | Page Executive Summary During the 2016-17 school year, the Northwest Regional Professional Development Program (NWRPDP) facilitators supported 2,059 teachers and administrators in a variety of content areas across the region’s six districts. Support for diverse learners and parent/family engagement were an integral part of trainings and workshops. Focus areas included, but were not limited to: • Ongoing in-depth training and exposure to the Nevada Academic Content Standards (NVACS) in mathematics content that included a year-long math certificate program serving K-8 teachers to increase their content knowledge and teaching competencies in math. • Literacy and English trainings based on the Nevada Academic Content Standards (NVACS) for PreK-12-based Literacy development and reading strategies with particular focus on writing using the methods of Lucy Calkins and Being a Writer. • Collaboration between NWRPDP facilitators and the Nevada Department of Education (NDE) to support the revision of Nevada Academic Content Standards (NVACS) in social studies. Facilitators developed and completed a nine-month professional learning cohort with novice social studies teachers resulting in significant gains in classroom effectiveness, management, and pedagogy. • Professional learning workshops and activities that focused on the incorporation of NVACS-Science and STEM Standards (based on the Next Generation Science Standards [NGSS]) —made possible through the Great Teaching and Leading Fund grant. • STEM activity teacher trainings on aerial and underwater vehicles through collaborations with university and regional experts—made possible from the College and Career Ready (CCR) grant.
    [Show full text]
  • Annual-Report-2014-2015-Double
    The 2014-2015 fiscal year was a time of great progress for the Environmental Science Center. One of our most significant accomplishments was creating a year-round calendar of programs at our new learning center at Seahurst Park. ESC now offers a wide variety of programs for all ages at one location within 176 acres of forested land and over ¾ mile of shoreline. It is the perfect location for developing a love of nature, creating new environmental stewards, and advanc- ing STEM skills within the community. So many individuals were a part of the vision of creating ESC’s learning center and we are proud to have that vision be a reality today! Dr. Tara Luckie Executive Director Other major successes this year include: Aligning our Beach Heroes and Salmon Heroes curriculum to the Next Generation Science Standards and becoming a leader in modeling these standards for teachers. Working with 9 different after school sites to give low-income youth access to hands-on science activities in their own apartment complex or school. Starting an OpenROV high school program where students had the ESC naturalist, Barb Bruell, leading a group of Beach Heroes students on an exploration of Seahurst Beach opportunity to build an underwater robot and gain valuable career skills. ESC naturalists were thrilled to be back at Seahurst Beach this year educating Releasing the documentary Local Treasure, a film about the Seahurst students about the largest nearshore restoration project in Puget Sound! Students Shoreline restoration project, which has gained great traction in the participated in our 2-hour Beach Heroes field study in which they got to see first- community.
    [Show full text]
  • Underwater Photography May/Jun 2016 Issue 90
    Underwater Photography May/Jun 2016 Issue 90 The magazine that doesn’t have to say anything here An experience without equal At Wakatobi, you don’t compromise on comfort to get away from it all. Our private air charter brings you directly to this luxuriously remote island, where all the indulgences of a five-star resort and luxury liveaboard await. Our dive team and private guides ensure your in-water experiences are perfectly matched to your abilities and interests. Your underwater encounters will create lasting memories that will remain vivid and rewarding long after the visit to Wakatobi is concluded. While at the resort, or on board the dive yacht Pelagian, you need only ask and we will gladly provide any service or facility within our power. This unmatched combination of world-renowned reefs and first-class luxuries put Wakatobi in a category all its own. “A fantastic and unique location with some of the best dive sites we’ve ever experienced. The sites are great at 25 metres, 15 metres and 5 metres, so perfect for any kind of preference. The service and support was downright luxurious. All in all 5 stars!” T. Marshall Manson www.wakatobi.com Issue 90/2 www.uwpmag.com Contents Underwater Photography 3 Editorial A web magazine UwP90 May/Jun 2016 4 News Travel & Events 14 An experience without equal New Products At Wakatobi, you don’t compromise 41 Mike Korostelev on comfort to get away from it all. Our by Duncan Whittaker private air charter brings you directly to this luxuriously remote island, where 55 Gangga all the indulgences of a five-star resort and luxury liveaboard await.
    [Show full text]