Development of an Underwater Robot
Total Page:16
File Type:pdf, Size:1020Kb
School of Science & Engineering Capstone Design Development of an Underwater Robot Oumaima Lamaakel Supervised by Dr. Kevin Scott Smith Submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in General Engineering Spring 2018 2 DEVELOPMENT OF AN UNDERWATER ROBOT FOR MUD SAMPLES PICK UP Capstone Report Student Statement: The work submitted is solely prepared by Oumaima Lamaakel and it is original. Excerpts from other’s work have been clearly identified, acknowledged and listed in the list of references. The engineering drawings, computer programs, prototype development, and testing protocols reported in this document are also original and adhere to the engineering design ethics and safety measures. ______________________ Oumaima Lamaakel Approved by the supervisor: ______________________ Dr. Kevin Scott Smith 3 Acknowledgment I am highly indebted to my supervisors prof. Kevin Smith and prof. Lorraine Casazza for their guidance, constant supervision and support throughouts the whole year. I would like to express my gratitude to prof Veronique Van Lierde for helping understand the kinematics behind manipulators, prof. Asmae Khaldoun for her feedback regarding materials selection, prof. Yassine Salih Alj for his support and coordination work, the lab technician Mr Abderahim Boulakrouch, and Al Akhawayn University and the School of Science & Engineering for giving me the opportunity to pursue this project. My gratitude extends to the members of the ROV team, who helped me assemble the prototypes, especially Jade El Haimer for his invaluable help. I would also like to thank my dear family, friends for their support throughout my undergraduate education. 4 List of Tables and Figures Table 2 Comparison of Thrusters ............................................................................................ 21 Table 3 Standard copper wire gauge resistance over nominal lengths .................................... 25 Table 4 Thruster Activation Using Joystick Control Matrix ................................................... 26 Table 5 Total Cost of the ROV by Component Family ........................................................... 27 Table 6 Indirect Costs of the ROV .......................................................................................... 28 Table 7 Prices of Competitor ROVs in the Market.................................................................. 28 Figure 1 Left to Right: Prototype 1 - Prototype 3- Final Prototype ......................................... 13 Figure 2 Design of the ROV in Solidworks ............................................................................. 14 Figure 3 Final Prototype of the ROV ....................................................................................... 14 Figure 4 Von Mises Stress Simulation Results in Matlab ....................................................... 15 Figure 5 Frame Design is Solidworks ...................................................................................... 16 Figure 6 Von Mises Mesh Parameters and Stress Simulation Results .................................... 16 Figure 7 Vector Propulsion System ......................................................................................... 17 Figure 8 The Six Degrees of Freedom in ROVs ...................................................................... 18 Figure 9 T100 and A2212 Thrusters ........................................................................................ 18 Figure 10 Kort Nozzle Over the Propeller for the A2212 Brushless Thruster ........................ 19 Figure 11 CAD of the Main Enclosure .................................................................................... 19 Figure 12 Polystyrene Cushioning & Aerodynamic Simulation Results................................. 20 Figure 13 CAD of the gripper .................................................. Error! Bookmark not defined. Figure 14 Thrusters from Table 2 ............................................................................................ 21 Figure 15 T100 Thrusters Pulse Width (PWM) Input Signal to ESC (us) .............................. 22 Figure 16 T100 Thrusters Pulse Width (PWM) Input Signal to ESC (us) .............................. 22 Figure 17 Arduino Master-Slave Wiring Diagram .................................................................. 23 Figure 18 PCB Design of the Water Sensor ............................................................................ 24 Figure 19 Components of the Tether ....................................................................................... 24 Figure 20 Wiring Diagram of the PS2 Controller and Arduino Setup .................................... 26 Figure 21 Vector Propulsion System ....................................................................................... 26 Figure 22 Pictures of some ROVs in the Market ..................................................................... 29 5 Table of Contents Abstract ...................................................................................................................................... 7 I. Introduction ........................................................................................................................ 8 II. Design Rationale .............................................................................................................. 12 A. Design Process and Evolution ..................................................................................... 13 B. Mechanical Design....................................................................................................... 14 Mechanical Overview ...................................................................................................... 14 1. Frame ....................................................................................................................... 14 2. Propulsion System ................................................................................................... 17 3. Electronics Housing ................................................................................................. 19 4. Buoyancy ................................................................................................................. 20 5. Manipulator .............................................................. Error! Bookmark not defined. C. Electrical Design .......................................................................................................... 20 Electrical Overview ......................................................................................................... 20 1. Power Distribution ................................................................................................... 20 2. Propulsion System ................................................................................................... 21 3. Main Control Unit .................................................................................................... 23 4. Tether ....................................................................................................................... 24 D. Software Design ........................................................................................................... 25 Software Overview .......................................................................................................... 25 1. Camera Feed ............................................................................................................ 25 2. Control ..................................................................................................................... 25 III. Cost Analysis ............................................................................................................... 27 A. Estimated Cost of Mizuchi Vody ................................................................................. 27 B. Comparison to Other Products in the Market .............................................................. 28 IV. STEEPLE Analysis ...................................................................................................... 29 V. Conclusion and Future Work ........................................................................................... 30 Appendix .................................................................................................................................. 31 A. System Interconnect Diagram ...................................................................................... 31 B. Table of Parts Expenditure for the ROV...................................................................... 32 C. Master Arduino Code ................................................................................................... 33 D. Slave Arduino Code ..................................................................................................... 37 E. Matlab Code: Von Mises Stress Simulation ................................................................ 40 I. References ........................................................................................................................ 41 6 Abstract Remotely Operates Vehicles, ROVs, are underwater robots controlled by an individual on the surface. They usually communicate with the control station through a tether. This work presents the design of a low cost small-scale underwater robot for mud samples pick up and compares its estimated overall cost with the ROVs existing in the market. The design study presented