Functionality of Amidines and Amidrazones

Total Page:16

File Type:pdf, Size:1020Kb

Functionality of Amidines and Amidrazones Special Issue Reviews and Accounts ARKIVOC 2008 (i) 153-194 Functionality of amidines and amidrazones Ashraf A. Aly* and Ahmed M. Nour-El-Din Chemistry Department, Faculty of Science, El-Minia University 61519-El-Minia, A. R. Egypt E-mail: [email protected] Abstract The review summarizes literature dealing with the synthesis of amidines and amidrazones including some of their physical and chemical properties along with their applications in heterocycles synthesis. Keywords: Amidines, amidrazones, heterocycles Contents Introduction 1. Synthesis of Amidines 2. Cyclic Amidines 3. Miscellaneous Amidines 4. Amidines as Building Blocks in Synthesis 4.1. Synthesis of amidrazones and amidoximes 4.2. Synthesis of heterocyclic derivatives 5. Amidrazones 5.1. General properties 5.2. Methods in the synthesis of amidrazones 5.3. Reactions of amidrazones 6. Reaction of Monosaccharides with 2-Pyridylcarboxamidrazone 7. Industrial and Medicinal Applications of Amidrazones References ISSN 1551-7012 Page 153 ©ARKAT USA, Inc. Special Issue Reviews and Accounts ARKIVOC 2008 (i) 153-194 Introduction The amidino group in 1a, which contains an amino nitrogen atom with a free electron pair conjugated with the π-electrons of the C=N double bond, is the bis-nitrogen analogue of carboxylic acids and esters 2.1 It combines the properties of an azomethine-like C=N double bond with an amide like C-N single bond with a partial double bond character as indicated by the resonance form 1b.2,3 NR2 NR2 O R1 R1 R NR3R4 NR3R4 OR 1a 1b 2 Amidines are strong bases (pKa ranges from 5-12). The protonation occurs on the imino nitrogen4,5 leading to symmetrical amidinium ion 3 which is stabilized by resonance as in the isoelectronic carboxylate anion 4. NHR2 NHR2 O O R1 R1 R R NR3R4 NR3R4 O O 4 3 In a strong acidic media, the dication 5 is formed, which has a localized carbon-nitrogen double bond, whereas in a strong alkaline solution the anion 6 can be formed.6-8 2 NHR2 NR2 NR 1 R1 R1 R NHR3R4 NR4 NR4 6 5 ISSN 1551-7012 Page 154 ©ARKAT USA, Inc. Special Issue Reviews and Accounts ARKIVOC 2008 (i) 153-194 1. Synthesis of Amidines Numerous methods have been reported for the preparation of amidines.9 The most common methods of amidine synthesis are from amides, nitriles and/or thioamides. 1.1 Amidines from amides or carboxylic acids Amides can be converted to imidoyl chlorides using phosphorous pentachloride. The forming imidoyl chlorides can react with primary or secondary amines to yield amidines (Scheme 1).10 This method is generally poor for preparing unsubstituted amidines from primary amides, but it is an excellent general method for preparing di- and tri-substituted amidines. Other reagents such as phosphorous oxychloride or thionyl chloride can be employed in the synthesis of imidoyl chlorides but usually lower yields are obtained. O Cl NR' PCl5 R"R"'NH R NHR' RNR' RNR''R"' Scheme 1 Amides can be o-alkylated with triethyloxonium fluoroborate at ambient temperature to yield the corresponding imidic ester fluoroborates, which react with amines to yield the target amidines (Scheme 2).11 O OEt NR" Et OBF ,EtOH,25 o C R"NH 3 4 + - 2 BF4 R NHR' 78-90% R NHR' 71-90% RNHR' R=Ar,Me R" = H, Me R' = H, Me Scheme 2 Direct synthesis of amidines from carboxylic acids and amines can be performed via intermediate amides using polyphosphoric acid trimethylsilyl ester (PPSE), generated in situ from the reaction of phosphorus pentoxide with hexamethyldisiloxane as a condensing agent (Scheme 3).12 ISSN 1551-7012 Page 155 ©ARKAT USA, Inc. Special Issue Reviews and Accounts ARKIVOC 2008 (i) 153-194 O NR' R'NH2 R'NH RCOOH 2 o RNHR'65-88% RNHR' PPSE, CH2Cl2,40 C R=Ar,alkyl R' = Ar Scheme 3 1.2 Amidines from nitriles Nitriles are activated to the intermediate salts in the presence of ethanol and hydrogen chloride under anhydrous conditions. The separated salts are then reacted with amines to generate the amidines shown in Scheme 4.13,14 This method can be also considered as the most widely used procedure for the preparation of unsubstituted amidines. The direct synthesis of amidines from nitriles and amines can only be achieved if nitriles are substituted by electron-withdrawing groups.15 Unreactive nitriles have been used to prepare amidines in the presence of Lewis acids 16 such as AlCl3 or ZnCl2 at elevated temperatures of 150-200 °C. Previously, it was shown that alkylchloroaluminum amides are useful reagents for the conversion of nitriles to amidines under milder conditions.16 It was found that17 addition of alkylchloroaluminum amides, generated conveniently from trimethyl aluminum and ammonium chlorides, to nitriles in warm toluene efficiently afforded the desired amidines in reasonable yields after hydrolysis of aluminum species as shown in Schemes 5 and 6. + - NH2 Cl NH EtOH, HCl R'R"NH RCN ROEt RNR'R'' Scheme 4 Scheme 4 Al(Cl)Me NH MeAl(Cl) NR'R", PhMe, 80 o C N H O RCN 2 60-96% R NR'R'' RNR'R" R=Ar,alkyl Scheme 5 Moss18 demonstrated that reaction of methylchloroaluminum amide with sterically hindered nitriles 7-10 produced the corresponding amidines (Scheme 6). ISSN 1551-7012 Page 156 ©ARKAT USA, Inc. Special Issue Reviews and Accounts ARKIVOC 2008 (i) 153-194 Al(Cl)Me N NH MeAl(Cl)NH ,PhMe,80 o C H2O RCN 2 7-10 R NH2 R NH2 Me CH2 Ph R= , , CH CH Me , 2 2 Ph CH2 78 9 10 64% 70% 56% 27% Scheme 6 A general preparation of amidines from unactivated nitriles has been reported.19 Stoichiometric copper(I) chloride induced addition of various amines to nitriles provided amidines in excellent yields (Scheme 7). NH R'R"NH, CuCl, DMSO or MeOH RCN 80-100% R NR'R'' R=Ph,Me R', R" = H, alkyl Scheme 7 Scheme 7 Scheme 8 illustrates the catalytic use of Ln(III) ions in the addition of primary amines to unactivated nitriles to give intermediate mono-substituted amidines, which can react with another primary amine to yield di-substituted amidines.20 o NH NR" R'NH2,Ln(III),80 C R"NH2 RCN R=Me,Ph R NHR' R" = Ph, alkyl R NHR' R' = Ph, cyclohexyl Scheme 8 Substituted benzonitriles were converted into intermediate benzamidoximes, which are then successfully reduced to benzamidines, via palladium-catalyzed hydrogenolysis in acetic acid/acetic anhydride mixture (Scheme 9).21 Acetic anhydride was found to be a necessary acylating agent in providing useful reaction rates in the hydrogenolysis step. ISSN 1551-7012 Page 157 ©ARKAT USA, Inc. Special Issue Reviews and Accounts ARKIVOC 2008 (i) 153-194 NH OH.HCl, Na CO ,EtOH,HO, 80 o C 2 2 3 2 R R or o N OH NH2OH.HCl,KO-Bu,MeOH,PhMe,t 80 C R' CN R' 60-93% NH2 R = H, Me; R' = H, F, Me, CF3,NMe2,CO2Me R" R'' = H, OMe, Me, Et R" R NH H2, Pd/C, HOAc, Ac2O R' 45-99% .HOAc NH2 Scheme 9 R" Scheme 9 Iron pentacarbonyl was employed to the conversion of amidoximes into amidines via reductive cleavage of the N-O bond (Scheme 10).22 OH N o NH Fe(CO)5,THF,65 C R NHR' R=Ar,Ph R NHR' R' = Ar, Ph, alkyl Scheme 10 Imidates were prepared from nitriles in the presence of thiophenol and HBr (Scheme 11).23 Phenylthioimidates were readily converted to amidine salts in the presence of various amines. + - + NH Br - PhSH, Et O, HBr,0 o C 2 R'R"NH, MeOH,20 o C NH2 Br RCN 2 -PhSH 83-100% RSPh RNR'R'' R = Ar, alkyl 57-100% R'R" = H, Ar and alkyl Scheme 11 Scheme 11 Previously, it was shown that addition of primary amines to ethylthioimidates under acidic conditions provided amidines (Scheme 12).24 ISSN 1551-7012 Page 158 ©ARKAT USA, Inc. Special Issue Reviews and Accounts ARKIVOC 2008 (i) 153-194 HN SEt HNNHR o RNH2, HOAc, CHCl3 , 20 C 60-90% N(C16H33)2 R=Ar,alkyl N(C16H33)2 .2HCl .2HCl Scheme 12 Schäfer used N-acetylcysteine 11 to transform nitriles to thioimido intermediates 12, which reacted with ammonia to give amidine salts 13 (Scheme 13).25 The amidines are then isolated as their acetate salts via ion exchange. O NH O O + HS OH R S OH MeOH NH3 NH - HS O RCN+ HN HN 66-94% R NH2 HN O O 11 12 13 O R = hetero, amino acid and alkyl Scheme 13 An efficient synthesis of amidinoformic acids 18 has been published using benzyl cyanoformate (14) as a synthon. Compound 14 was converted to the thioamide 15 in the presence of hydrogen sulfide (Scheme 14).26 Thioamide 15 is S-alkylated with triethyloxonium tetrafluoroborate to afford thioamidate 16. Addition of one equivalent of amines to 16 furnished amidinoformic esters 17, which after hydrolysis provided with amidinoformic acids 18 (Scheme 14). ISSN 1551-7012 Page 159 ©ARKAT USA, Inc. Special Issue Reviews and Accounts ARKIVOC 2008 (i) 153-194 + - S NH2BF4 H S O CN 2 O Et3OBF4 O PhCH2 PhCH NH SEt 95% 2 2 PhCH2 14 1594% 16 O O O + - NH NH BF o 2 4 - R'R''NH, CH2Cl2,25 C Dowex 1 HO O NHR R'R'' = H, alkyl, Ar PhCH2 NHR 92-95% O O Scheme 14 17 18 Scheme 14 2. Cyclic Amidines Cyclic optically active amidines are strongly basic compounds which can serve as chiral reagents for NMR analysis of enantiomeric mixture of weakly acid compounds, or as ligands in catalysts for enantioselective synthesis.
Recommended publications
  • Synthesis of 1,2,4 Oxadiazol-5-Imine, 1,2,4-Triazol-3-Imine and Derivatives: a Substituted Cyanamide-Based Strategy for Heterocycle Synthesis
    Synthesis of 1,2,4 oxadiazol-5-imine, 1,2,4-triazol-3-imine and derivatives: A Substituted Cyanamide-based Strategy for Heterocycle Synthesis Shreesha V. Bhat A thesis submitted in partial fulfilment of the requirements of the University of Lincoln for the degree of Doctor of Philosophy June 2017 Statement of Originality “I, Shreesha V. Bhat, hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been published or accepted for the award of any other degree or diploma at University of Lincoln or any other educational institution, except where references have been made in the thesis. Any contribution made to the research by others, with whom I have worked at the University of Lincoln or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.” (Shreesha V. Bhat) ii | P a g e Abstract Considering the importance of nitrogen-rich heterocycles in drug discovery, a novel strategy towards heterocycle synthesis was envisioned using cyanamide chemistry. Synthesis which involve mild conditions, avoids multi-step sequence and non-toxic reagents are desirable for generation of large combinatorial libraries of drug molecules. We envisaged that the NCN linkage of the cyanamide as well as the concomitant use of the nucleo-and electrophilic centres of the cyanamide could provide a novel synthetic route towards nitrogen heterocycles.
    [Show full text]
  • Part One Amino Acids As Building Blocks
    Part One Amino Acids as Building Blocks Amino Acids, Peptides and Proteins in Organic Chemistry. Vol.3 – Building Blocks, Catalysis and Coupling Chemistry. Edited by Andrew B. Hughes Copyright Ó 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-32102-5 j3 1 Amino Acid Biosynthesis Emily J. Parker and Andrew J. Pratt 1.1 Introduction The ribosomal synthesis of proteins utilizes a family of 20 a-amino acids that are universally coded by the translation machinery; in addition, two further a-amino acids, selenocysteine and pyrrolysine, are now believed to be incorporated into proteins via ribosomal synthesis in some organisms. More than 300 other amino acid residues have been identified in proteins, but most are of restricted distribution and produced via post-translational modification of the ubiquitous protein amino acids [1]. The ribosomally encoded a-amino acids described here ultimately derive from a-keto acids by a process corresponding to reductive amination. The most important biosynthetic distinction relates to whether appropriate carbon skeletons are pre-existing in basic metabolism or whether they have to be synthesized de novo and this division underpins the structure of this chapter. There are a small number of a-keto acids ubiquitously found in core metabolism, notably pyruvate (and a related 3-phosphoglycerate derivative from glycolysis), together with two components of the tricarboxylic acid cycle (TCA), oxaloacetate and a-ketoglutarate (a-KG). These building blocks ultimately provide the carbon skeletons for unbranched a-amino acids of three, four, and five carbons, respectively. a-Amino acids with shorter (glycine) or longer (lysine and pyrrolysine) straight chains are made by alternative pathways depending on the available raw materials.
    [Show full text]
  • Mild Reductive Functionalization of Amides Into N‐Sulfonylformamidines
    http://www.diva-portal.org This is the published version of a paper published in ChemistryOpen. Citation for the original published paper (version of record): Trillo, P., Slagbrand, T., Tinnis, F., Adolfsson, H. (2017) Mild Reductive Functionalization of Amides into N-Sulfonylformamidines. ChemistryOpen, 6(4): 484-487 https://doi.org/10.1002/open.201700087 Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-138585 DOI:10.1002/open.201700087 Mild Reductive Functionalization of Amides into N- Sulfonylformamidines Paz Trillo,[a] Tove Slagbrand,[a] Fredrik Tinnis,*[a] and Hans Adolfsson*[a, b] The development of aprotocolfor the reductivefunctionaliza- tion of amides into N-sulfonylformamidines is reported. The one-pot procedure is based on amild catalytic reduction of tertiaryamides into the corresponding enamines by the use of Mo(CO)6 (molybdenum hexacarbonyl) and TMDS (1,1,3,3-tetra- methyldisiloxane). The formed enamines were allowed to react with sulfonyl azidestogive the target compounds in moderate to good yields. The amidine functional group is frequently found in biological- ly activecompounds possessing anti-inflammatory,antibacteri- al, antiviral, antibiotic, and anestheticproperties.[1] They are also employed as intermediates and precursors in organic syn- thesis of importantheterocyclic compounds such as imida- zoles, quinazolines,isoquinolines, and pyrimidines.[2] Further- more, amidines are employed as ligandsinmetal complexes and as protecting groups for primary amines.[3] Scheme1.Preparation of amidines through a–c) electrophilic amide activa- The stability of amides makes this functional group valuable tion and d) reductive functionalization of amides.
    [Show full text]
  • United States Patent Office Patented Jan
    3,017,356 United States Patent Office Patented Jan. 16, 1962 1. 2 rated aliphatic radical, a cycloaliphatic radical, an aryl 3,017,356 radical, an aralkyl radical, an alkaryl radical, an alkoxy WillianPROCESS B. Hughes, OF andINHIBITING Verner L. Stronberg,CORROSION Webster alkyl radical, an aryloxyalkyl radical, and the like; and Groves, Mo., assignor's to Petroite Corporation, Wii A is an alkylene group; for example, ethylene and propyl mington, Del, a corporation of Delaware ene radicals, such as No Drawing. Original application Mar. 3, 1958, Ser. No. 718,391 Divided and this application Nov. 23, 1959, Ser. No. 854,553 -CH2CH2CH 15 Claims. (C. 252-8.55) CH-CH2 O B This application is a division of Serial No. 718,391, CHs filed March 3, 1958. This invention relates to esters of cyclic amidines of -CH-CH-CH,- the formula gh, CHis O 15 -bH-bH In general, the amidine esters are prepared by reacts o-o-c- ing a hydroxyaliphatic cyclic amidine ()-ROH with less where (A) and (B) are cyclic amidine-containing radicals, than a stoichiometric amount of a polycarboxylic acid to for example, imidazoline and tetrahydropyrimidine radi form a half ester cals (hereafter referred to as “amidine esters'). More 20 particularly, this invention relates to esters wherein. A contains one type of cyclic amidine ring and B contains (a)-R-O C-Z-COH the same or another type not selected in A. This inven which is subsequently reacted with an amidine forming tion also relates to a process of preparing these com polyamine to form the amidine ester pounds which comprises reacting a hydroxy-containing 25 O cyclic amidine with less than a stoichiometric amount of a polycarboxylic acid to form a partial ester and then re Q-R-O-)-2- acting this partial ester with a polyamine capable of form More specifically, the corrosion inhibiting aspect of this ing a second amidine ring of the same or different type.
    [Show full text]
  • Poly(Vinylammonium Formate) and Process for Making Amidine
    Europaisches Patentamt (19) European Patent Office Office europeenpeen des brevets EP0617 054B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) intci.e: C08F 8/12, C08F 8/44 of the grant of the patent: 04.12.1996 Bulletin 1996/49 (21) Application number: 94104538.7 (22) Date of filing: 22.03.1994 (54) Poly(vinylammonium formate) and process for making amidine-containing polymers Poly(Vinylammoniumformiat) und Verfahren zur Herstellung von Amidinegruppen enthaltender Polymeren Poly(formiate vinylique d'ammonium) et procede de preparation de polymeres contenant de groupes amidine (84) Designated Contracting States: (72) Inventor: Ford, Michael Edward BE DE FR GB NL Coopersburg, PA 18036 (US) (30) Priority: 25.03.1993 US 36757 (74) Representative: Kador & Partner Corneliusstrasse 15 (43) Date of publication of application: 80469 Miinchen (DE) 28.09.1994 Bulletin 1994/39 (56) References cited: (73) Proprietor: AIR PRODUCTS AND CHEMICALS, EP-A- 0 374 646 EP-A- 0 528 409 INC. DE-A-3 715 824 US-A- 4 393 174 Allentown, PA 18195-1501 (US) US-A- 4 943 676 DO ^> o Is- CO Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice the Patent Office of the Notice of shall be filed in o to European opposition to European patent granted. opposition a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. a. 99(1) European Patent Convention). LU Printed by Jouve, 75001 PARIS (FR) EP 0 617 054 B1 Description FIELD OF THE INVENTION 5 This invention relates to poly(vinylammonium formate) and to a process for its manufacture.
    [Show full text]
  • CHEM 330 Topics Discussed on Sept 28 Heterocycles Such As Pyrazole
    CHEM 330 Topics Discussed on Sept 28 Heterocycles such as pyrazole, pyrimidine, etc., as common subunits of pharmaceuticals O O Celebrex (Pfizer) S Pyrimethamine H2N N H2N anti-inflammatory antimalarial N N N CF3 Cl R1 N NH N N R1 R3 R2 R4 R2 R3 pyrazole pyrimidine Imine– and enamine-type linkages in nitrogen heterocycles R1 H imine- N N enamine- imine- N N enamine- type type 1 3 type type R R R2 R4 R2 R3 pyrazole pyrimidine Principle: the construction of heterocyclic systems often involves the formation of imines (=Schiff bases) and / or enamines. These are produced upon the condensation of carbonyl compounds with appropriate amines (see CHEM 203 & CHEM 213 notes): 2 + 2 R cat. H R3 R2 ± H+ R3 R 3 R –NH2 + O N N 1 1 H 1 R – H2O R R primary enamine: amine ketone imine (= Schiff base): generally favored generally disfavored tautomer tautomer 4 2 + R4 2 4 R R cat. H R – H+ R R2 NH + O N N 1 3 1 R3 R – H2O R R R3 R1 secondary ketone iminium amine enamine ion Approach to the synthesis of pyrazoles by reaction of 1,3-dicarbonyls with hydrazine: lecture of Sept 28 p. 2 H H N imine-type N N enamine-type 2 imagine the imagine O NH linkage functionality releasing imino or the R1 R3 R1 R3 iminium R2 the imine ... R2 tautomer ... pyrazole: an aromatic compound H2N NH2 hydrazine H2N imagine O N (NH ) releasing O O "type A" 1 3 R1 R3 the imine R R 1,3-di-O functionality! (or iminum)..
    [Show full text]
  • CPC Scheme Between 2015.05 and 2015.07
    2015.07 Compilation of Changes to the CPC Scheme Between 2015.05 and 2015.07 Presentation Details Entries for new symbols and headings: Black text in italics Entries for existing symbols and headings —text insertions: Green text in italics with yellow background —text deletions: Red strikethrough text with grey background Entries for deleted symbols and headings: Black strikethrough text • In cases when the originating project cannot be found, "N/A" is given for the Project information (e.g. the change could be due to an Editorial Correction). • Projects ending in "-F" indicate finalisation after reclassification was completed. Project: N/A (A01B) U A01B 3/00 Ploughs with fixed plough-shares U A01B 3/04 · Animal-drawn ploughs A01B 3/06 · · without alternating possibility, i.e. incapable of making an adjacent furrow on return journey, {i.e. conventional ploughing} U A01B 3/50 · Self-propelled ploughs U A01B 3/52 · · with three or more wheels, or endless tracks U A01B 3/56 · · · Alternating ploughs; {Balance ploughs} U A01B 3/64 · Cable ploughs; Indicating or signalling devices for cable plough systems {(vehicles towed by cable B60D)} U A01B 3/68 · · Cable systems with one or two engines; {e.g. electrically-driven or with diesel generating set} U A01B 5/00 Ploughs with rolling non-driven tools, e.g. discs (with rotary driven tools A01B 9/00) U A01B 5/04 · drawn by tractors A01B 5/06 · · without alternating possibility, {e.g. with rotary counters provided with scrapers} U A01B 13/00 Ploughs or like machines for special purposes (for drainage E02B 11/02); {Ditch diggers, trench ploughs, forestry ploughs, ploughs for land or marsh reclamation (machines for aerating meadows A01B 45/02 ; making furrows A01C 5/00 ; dredging machines in general E02F)} A01B 13/02 · for making or working ridges, e.g.
    [Show full text]
  • United States Patent Office Patented June 6, 1961
    2,987,521 United States Patent Office Patented June 6, 1961 2,987,521 (3) POLYMERIC PARTIAL ESTERS OF HYDRO CARBONDMDAZOLINY LALKANOLS AND DICARBOXYLECACDS William B. Hughes, Webster Groves, and Verner L. Stromberg, Shrewsbury, Mo., assignors to Petroite Corporation, Wilmington, Del, a corporation of Delar in which Ware No Drawing. Filed Mar. 3, 1958, Ser. No. 718,489 R-- 3 Claims. (C. 260-309.6) This invention relate sto esters of hydroxyaliphatic 10 and FC-R-C-F are the residual radicals derived from cyclic amidine compounds and polycarboxylic acids, said the carboxylic acids: esters containing at least one unesterified carboxylic acid group (i.e., where at least one but not all of the carboxylic R-C-OH or R-coil), acid groups are esterified, hereafter referred to as "partial esters”). More particularly, this invention relates to a 15 where R comprises, for example, a saturated or unsatu process of preparing these partial esters which comprises rated aliphatic radical, a cycloaliphatic radical, an aryl reacting a hydroxyaliphatic cyclic amidine, for example, radical, an aralkyl radical, an alkaryl radical, an alkoxy a hydroxyaliphatic imidazoline, or tetrahydropyrimidine alkyl radical, an aryloxyalkyl radical, and the like; and with less than a stoichiometric amount of a polycarboxylic A is an alkylene group, for example, ethylene and propyl acid so that at least one of the carboxylic acid groups 20 ent radicals have a main chain of 2 or 3 carbon atoms, remains unesterified. This invention also relates to a such as -CH2-CH2-, -CH2CHCH process of using these partial esters as corrosive inhibitors CH GHs GHs in preventing the corrosion of metals, most particularly iron, steel and ferrous alloys.
    [Show full text]
  • Synthesis of N-Substituted Aryl Amidines by Strong
    SYNTHESIS OF N-SUBSTITUTED ARYL AMIDINES BY STRONG BASE ACTIVATION OF AMINES by MUHAMMAD M. KHALIFA A THESIS Presented to the Department of Chemistry and Biochemistry and the Robert D. Clark Honors College in partial fulfillment of the requirements for the degree of Bachelor of Science September 2014 Acknowledgements This project was supported by Award Number R01AR059833 from the National Institutes of Health (NIH), Award Number 1R25HD070817 from the National Institutes of Health (NIH) through the University of Oregon Summer Program for Undergraduate Research (UO SPUR), and by the University of Oregon Center for Teaching and Learning Undergraduate Research Fellowship (UO CTL URF) program. The author would like to thank Professors Michael M. Haley and J. Andrew Berglund for their tireless support over the past three years, both within the context of this project and beyond. The success of this project would not have been possible without the help and mentorship of Drs. Micah J. Bodner and Leslie A. Coonrod. A deep debt of gratitude is owed also to Gabriel E. Rudebusch, Chris L. Vonnegut, Aaron G. Docter, and Jessica Y. Choi for their support in the laboratory, and to Dr. S. Michael Strain and the CAMCOR staff for support with NMR Spectroscopy for this project. The project described was supported, in part, by Award Number P30ES000210 from the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH). The content is solely the responsibility of the author and does not necessarily represent the official views of NIEHS or NIH. The author acknowledges the Biomolecular Mass Spectrometry Core of the Environmental Health Sciences Core Center at Oregon State University.
    [Show full text]
  • The Amidine Formed by Tacrine and Saccharin Revisited: an Ab Initio Investigation of Structural, Electronic and Spectroscopic Properties
    Turkish Computational and Theoretical Chemistry Turkish Comp Theo Chem (TC&TC) Volume(Issue): 3(1) – Year: 2019 – Pages: 25-37 e-ISSN: 2602-3237 https://doi.org/10.33435/tcandtc.486573 Received: 22.11.2018 Accepted: 01.02.2019 Research Article The amidine formed by tacrine and saccharin revisited: An ab initio Investigation of Structural, Electronic and Spectroscopic Properties Nursel ACAR SELÇUKİ1 Ege University, Faculty of Science, Chemistry Department, 35100 Izmir / Turkey Abstract: Computational study of tacrine and saccharin and their amidine complex (TacSac) was peformed by ab initio calculations including electron correlation. Structure, UV-Vis spectra and charge distribution of the amidine (TacSac) were investigated using ground state geometries optimized at MP2/6-311++G(d,p) level. The effects of solvent was investigated using polarizable continuum model (PCM) in conjunction with the solvation model based on density (SMD) approach. TacSac geometry remained same in gas phase and in H2O both with PCM and SMD models in contrast to former DFT results. The amidine is calculated to be stable indicating that former DFT calculations underestimated the stability of the investigated amidine. UV- Vis spectra and electronic transitions were calculated at CIS/6-311++G(d,p), B3LYP/6-311++G(d,p) and CAM-B3LYP/6-311++G(d,p) levels of theory and B3LYP gave the best results. TacSac has a peak at a higher wavelength enabling S0→S1 transition with a lower energy. S0→S1 transition corresponds to full charge transfer between HOMO and LUMO orbitals of TacSac in H2O. The ab initio results indicate that the TacSac system can be synthesized with an easy condensation reaction, and that the amidine product is a potential candidate for photochemical charge-transfer systems.
    [Show full text]
  • Amidines: Their Synthesis, Reactivity, and Applications in Heterocycle Synthesis
    The Free Internet Journal Review for Organic Chemistry Archive for Arkivoc 2018, part vi, 85-138 Organic Chemistry Amidines: their synthesis, reactivity, and applications in heterocycle synthesis Ashraf A. Aly,*a Stefan Bräse,b,c and Mohsen A.-M. Gomaaa a Chemistry Department, Faculty of Science, Minia University, El-Minia-61519, Egypt b Institute of Organic Chemistry, Karlsruhe Institute of Technology,76131 Karlsruhe, Germany c Institute of Toxicology and Genetics, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany E-mail: [email protected]; [email protected] Received 04-27-2018 Accepted 07-10-2018 Published on line 09-02-2018 Abstract The reactivity of amidines makes them valuable as building blocks for the synthesis of heterocyclic motifs of biological relevance, for functional materials, for organo-catalysts and as ligand in metal-complexes. As a large number of publications have recently reported on the reactivity of amidines, we compiled some features of these interesting molecules. Consequently, this article aims to review the preparation of functionalized amidines and to highlight their use as starting materials in the synthesis of various organic molecule classes, especially heterocyclic structures. In this review, we cover also related name reactions such as the Pinner reaction. Keywords: Amidines, preparation, three-membered rings, four-membered rings, five-membered rings, heterocycles; secretase inhibitor; Pinner reaction; Pinner salt, amidinium salts; Baylis-Hillman DOI: https://doi.org/10.24820/ark.5550190.p010.607 Page 85 ©ARKAT USA, Inc Arkivoc 2018, vi, 85-138 Aly, A. A. et al. Table of Contents 1. Introduction 2. Amidines as Naturally Occurring Compounds 3.
    [Show full text]
  • B1243 Vol-1Œ25 Cumulative Index.Qxd
    b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 1 FA Cumulative Index to Volumes 1–25* A esters, IV: 8–10, IV: 366 1-Acyldipyrromethanes, XXIII: 112 formation statistical cis-AB porphyrin from two C5-pathway to, XV: 164–165, non-identical, XXIII: 101 XV: 170–175 trans-A2B2 magnesium porphyrin from, Shemin pathway to, XV: 164–170 XXIII: 101 leishmaniasis treatment by ALA or Metvix 1-Azidohexadecanethiol, XXI: 29 (ALA methyl ester), IV: 285 2,3-Anthraporphyrins, II:32, II:38 peptide derivatives, IV: 9–10 2-Arylaminoporphyrins, Buchwald–Hartwig as photodynamic therapy (PDT) agent, reaction and, II:241 IV: 7–8, IV: 285 2-Aza-21-carbaporphyrin. See N-confused structure, IV: 329 porphyrin (NCP) synthetic peptide conjugates, IV: 348–349 2-Aza-5,10,15,20-tetraphenyl-21- transport out of mitochondria of, carbaporphyrin, II:106, II: 107 XV: 10–11 2-Azabenziporphyrin, synthesis and metalation undecyl 5-aminolevulinate (Und-ALA), of, XVI: 192 IV: 366 3,4-Alkylenedioxypyrroles, XVII: 264 5-(4-Aminophenyl)-10,15,20-triphenylporphyrin 3-Acetyl-bacteriochlorins (semisynthetic Ag(II), Cu(II), Ni(II), Zn(II), and Pd(II) chlorophylls), XI: 263–265 complexes’ microwave-assisted 3-Aminotriazole (3-AT), IV: 413 synthesis of, II: 199–200 3-Azabenziporphyrin, synthesis and Fe(III) and Mn(III) complexes’ microwave- protonation of, XVI: 194 assisted synthesis of, II: 200 5-Alkenyl-15-alkynyl–porphyrin, XXIII: 97 17-Allylamino-17-methoxygeldanamycin 5-Aminolevulinic acid (ALA), XX: 7, (17-AAG), IV: 439–440 XX: 219, XX: 221 [18]Annulene, II: 173 adenosine
    [Show full text]