<<

b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 1 FA

Cumulative Index to Volumes 1–25*

A esters, IV: 8–10, IV: 366 1-Acyldipyrromethanes, XXIII: 112 formation

statistical cis-AB from two C5-pathway to, XV: 164–165, non-identical, XXIII: 101 XV: 170–175

trans-A2B2 magnesium porphyrin from, Shemin pathway to, XV: 164–170 XXIII: 101 leishmaniasis treatment by ALA or Metvix 1-Azidohexadecanethiol, XXI: 29 (ALA methyl ester), IV: 285 2,3-Anthraporphyrins, II:32, II:38 peptide derivatives, IV: 9–10 2-Arylaminoporphyrins, Buchwald–Hartwig as photodynamic therapy (PDT) agent, reaction and, II:241 IV: 7–8, IV: 285 2-Aza-21-carbaporphyrin. See N-confused structure, IV: 329 porphyrin (NCP) synthetic peptide conjugates, IV: 348–349 2-Aza-5,10,15,20-tetraphenyl-21- transport out of mitochondria of, carbaporphyrin, II:106, II: 107 XV: 10–11 2-Azabenziporphyrin, synthesis and metalation undecyl 5-aminolevulinate (Und-ALA), of, XVI: 192 IV: 366 3,4-Alkylenedioxypyrroles, XVII: 264 5-(4-Aminophenyl)-10,15,20-triphenylporphyrin 3-Acetyl-bacteriochlorins (semisynthetic Ag(II), Cu(II), Ni(II), Zn(II), and Pd(II) chlorophylls), XI: 263–265 complexes’ microwave-assisted 3-Aminotriazole (3-AT), IV: 413 synthesis of, II: 199–200 3-Azabenziporphyrin, synthesis and Fe(III) and Mn(III) complexes’ microwave- protonation of, XVI: 194 assisted synthesis of, II: 200 5-Alkenyl-15-alkynyl–porphyrin, XXIII: 97 17-Allylamino-17-methoxygeldanamycin 5-Aminolevulinic acid (ALA), XX: 7, (17-AAG), IV: 439–440 XX: 219, XX: 221 [18]Annulene, II: 173 adenosine and thymidine conjugates, 22-Acetoxydimethoxybenziporphyrins, proton IV: 10, IV: 12 NMR chemical shifts for, XVI: 117 ALA-based photosensitizers, IV: 7–11, 22-Acetoxy-m-benziporphyrin, II: 145 IV: 12 22-Acetoxytetraphenylbenziporphyrin, ALA derivatives as multifunctional agents, hydrolysis and metalation of, XVI: 149 IV: 10 22-Alkylbenzocarbaporphyrins, with conversion into iron-PPIX, XV: 5 palladium(II) acetate, metalation of, conversion into uroporphyrinogen III XVI: 48 (Urogen), XX: 220 α-Adenosyl-cobalamin, XXV: 148 dendritic ALA, IV: 369–371 α-Cyanodiazo reagents, XXI: 216

* Volume numbers are given in Roman numerals followed by a colon and precede the relevant pages.

1 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 2 FA

2 Cumulative Index to Volumes 1–25

α-Free dipyrromethane, XXI: 116 conjugated porphyrin arrays and, I: 4 α-Functionalized isoindoles, synthesis of corrphycenes and, VII: 383, VII: 390–392 TBPs and Pcs and, II: 6 equine hemoproteins and, VII: 157–160 α-Phycoerythrocyanin (α-PEC), XXII: 4, 16 and film on cuvette walls for BChl mimics, phycoviolobilin (PVB) chromophore in, I: 259–262 Φ XXII: 5 fluorescence spectra/quantum yields ( F)

A1B3-porphyrin, XXIII: 37 and, VII: 281–282

A2B2-porphyrin, XXIII free-base starting from mono-α-protected , porphycenes VII: 380–390

XXIII: 100 porphyrin electronic spectras and Qx/Qy

A3B1-porphyrin, XXIII: 37 notation, VII: 380–381

A3 from mixed dipyrromethane fused structures and, I: 78–79, I: 81–82 condensation, XXIII: 99 future outlook of charge transfers and, I: 208

A4-porphyrin, XXIII: 37 hemiporphycenes and, VII: 383,

AB and AB2 porphyrins, synthesis of, VII: 390–392 XXIII: 126 ionic pyrene derivatives and SWNT,

AB3-type phthalocyanine, preparation, I: 201–202 XVIII: 246 isoporphycene derivatives and, ABC mitochondrial erythroid (ABC-me), and VII: 390–392 transport of PPIX to FECH, XV: 15 maxima. See Electronic absorption ABCB6 maxima and FECH interaction with PPIX oxidase, metal-bridged porphyrin arrays and, I: 110, XV: 95–96 I: 112 and transport of CPgenIII into/PPgenIX metallotetrapyrrole-fullerene dyads and, within mitochondria, XV: 12–13 I: 313 ABCB7, and transport of PPIX to FECH, of methyl 3-substituted pyropheophorbides, XV: 15 XI: 243–244 ABCB10, XV: 97–98 nanometer scale structures and, I: 136

and transport of PPIX to FECH, XV: 15 non-covalently linked hybrids (MP/C60 ABCD-porphyrin, XXIII: 59 β-systems) and, I: 183–184 via bilanes, route to, XXIII: 114 non-covalently linked hybrids (ZnP Absolute configurations, of natural products via functions) and, I: 179 conformational analysis, VII: 232–239 and optical properties (summary) of Absorption. See also Infrared spectroscopy/ porphyrinoids, XIV: 480–481 microscopy; Spectroscopic data inter- perimeter model for absorption elucidation, pretation; Photophysical properties of VII: 392–397 expanded porphyrins; Photophysical π-skeletal effect in organic solvents and, properties of porphyrin arrays XI: 229–230 chlorophylls and, XI: 226 photophysical processes after light of chlorophyll/bacteriochlorophyll/chlorin/ absorption and Jablonski diagram, bacteriochlorin systems, VII: 179–181 VII: 268 of chlorophyll hetero-dyads, VII: 196–197 and photophysical properties of aromatic and chlorosomal bacteriochlorophylls, rings with increasing numbers of I: 229–230 π electrons, XIV: 485–486, circular dichroism (CD)/electronic XIV: 485–486 absorption spectra and , porphyrinoids and origin of intensity of, VII: 154–156 XIV: 476–477 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 3 FA

Cumulative Index to Volumes 1–25 3

predicted absorption spectra based on Acid-acetone method, and removal of heme TD-DFT/ZINDO/s methods, from heme pocket, V: 7 XIV: 514–515 Acid-alcohol pair sequential, cytochrome P450 prototropic tautomer detection, XIV: 483–485 and, V: 185–186 radiative/nonradiative rates for Acidic reaction porphycenes and derivatives, and preparation of 3,6-bis(trifluoromethyl)- VII: 401, VII: 403 phthalonitrile, III: 72, III: 76 spectra of butadiyne-linked porphyrin trialkylsilyl-substituted phthalocyanines dimer, I: 4, I: 7 and, III: 45 and SWNT functionalized with PMMA Acid-labile metalloporphyrin, synthesis of, dendrimers, I: 195 I: 49 synthetic heme systems and, VII: 165–171 Acidobacteria, I: 223, XX: 108 and transmetalation of Mg to Zn in Acridine, IV: 3, IV: 23, IV: 409, IV: 410 bacteriochlorophyll a, XI: 234 AcsF (aerobic cyclization system for toluene solutions, VII: 403 Fe-containing subunit), XX: 13–14, UV-vis-IR absorption spectra of porphyrins XX: 117 and meso-meso-linked porphyrin Actinide derivatives, metalloporphyrin arrays, XIV: 483 derivatives, XXIV: 125–126 Abzymes, FECH mimetics/distortion and, Actinide elements absorption spectra, IX: 37–39 XV: 84 Activatable photosensitizer conjugates, Acenaphtho[1,2-b]porphyrins (AcePs), II: 48 IV: 281–284, IV: 285–286 Acenaphthoporphyrins, properties of, XIII: Activator protein 1 (AP-1), IV: 430 10–11 Active oxygen. See Compound I Acetonitrile (ACN) Active targeting, IV: 330, IV: 332–354 electropolymerization and, XII: 246 antimicrobial PDT, IV: 388–389 nickel porphyrins in alkaline solution and, avidin-biotin complex (AB-C), IV: 330–331 XII: 265 dendrimers, IV: 331 poly(Co(II)-31) films and, XII: 258–259 modular carrier systems, IV: 36, Acetylamino-substituted phthalocyanines, IV: 330–331, IV: 341, IV: 374 examples of, III: 115–118 multiplying units in antibody conjugates, Acetylcholinesterases (AChEs), and IV: 330–331, IV: 335, IV: 342, inhibition-based biosensors, V: 218 IV: 369, IV: 374 Acetylene-linked contracted porphyrinoids, photoimmunotherapy, overview, IV: 330, synthesis of, XVI: 312 IV: 332–333 Acetylene photosensitizer conjugates for active bonds, ethynyl-conjugated porphyrin arrays targeting, overview, IV: 355–362 and, I: 6 polyphasic tumor targeting (PTT), derivative/N-fused porphyrin coupling, IV: 330–331 Sonogashira C–C coupling reactions See also Cellular targeting; Monoclonal and, III: 344 antibodies (MAb); Passive targeting; Acetylenic crown ether-appended zinc specific conjugate types porphyrin, XXIV: 241 Acute intermittent porphyria (AIP), XV: 183 Acetylenic porphyrins, Sonogashira C–C Acyclic coupling reactions and, III: 341–342 anion receptors, VIII: 167–168. See also Acetylenyl bridged porphyrins, access to Pyrrole-based π-conjugated acyclic highly conjugated, XXIII: 238 anion receptors b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 4 FA

4 Cumulative Index to Volumes 1–25

zinc porphyrin dimer, supramolecular Adenosyl-imidazolyl-cobamide, XXV: 139 polymerization of, I: 52 Adenosyltransferases, XXV: 206–208 Acyclic dipyrromethane, XXIII: 14 CobA from S. enterica, mechanism and Acyl carrier protein (ACP), XIX: 83 crystal structure of, XXV: 45 complex formed between P450(BioI) PduO-type adenosyltransferase, XXV: 206 and, XIX: 84 structure of, XXV: 207 Acyl-CoA-mutases, XXV: 183–187 adj-Diazuliporphyrins ethylmalonyl-CoA mutase (ECM), metalation of, XVI: 266 XXV: 186–187 synthesis and protonation of, XVI: 264 isobutyryl-CoA mutase (ICM), XXV: 187 crystal structure of, II: 169 methylmalonyl-CoA-mutase (MCM), adj-Dicarbaporphyrin, XVI: 246 XXV: 183–186 coordinated complexes of, II: 167–168, Acylation with excess of reagents, XXIII: 116 II: 169 Adaptability, antenna pigments and, XI: 7 adj-Dicarbaporphyrinoids, XVI: 252–275 Adeninyl-3-propyl-cobalamin, XXV: 148 systems, retrosynthetic analysis of, XVI: 255 Adeninylcobamides, XXV: 139 Adler–Longo method, XXIII: 86 Adenosine diphosphate (ADP), nanoparticles Adler–Longo–Lindsey methods, XXIII: 87 and, XII: 366 Adler-type reactions Adenosine phosphosulfate (APS), XIX: 143 Adler-Longo porphyrin synthesis Adenosine triphosphate (ATP), nanoparticles procedure, III: 432–433 and, XII: 366 and combinatorial chemistry of porphyrins, Adenosylcobalamin, XXV: 69 III: 493–498 synthesis of, XXV: 69 six-member libraries using two different Adenosylcobamides, XXV: 234–235 , III: 525–529 Adenosylcob(III)yric acid, XXV: 33 AdoCbl-dependent aminomutases, Adenosylcob(III)yrinic acid a,c-diamide, XXV: 195–197 XXV: 33 AdoCbl-dependent dioldehydratases (DDH), Adenosylcobinamide-GDP synthesis, XXV: 192–194 XXV: 64–66 AdoCbl-dependent enzymes, XXV: 159, 232 Adenosylcobinamide (phosphate), AdoCbl-dependent RNRs, XXV: 197 XXV: 63, 65 Adsorption attachment to adenosylcobyric acid, alkylsulfanylphthalocyanines and, III: 190 XXV: 63 fullerene/porphyrin architectures and, I: 90 conversion into adenosyl-GMPcobinamide, of transition-metal tetraaminophthalo- XXV: 65 cyanines, III: 114, III: 119 formation of aminopropanol O-phosphate, Adr–Adx complex, XIX: 90 XXV: 63 Adrenodoxin (Adx), XIX: 90 synthesis, XXV: 62–64 Adrenodoxin reducase (Adr) complex, XIX: 90 Adenosylcobyric acid, XXV: 63 Aedes aegypti, and heme uptake/detoxification synthesis, XXV: 46 in insects, XV: 22–23 Adenosylcobyrinic acid a,c-diamide synthesis, Aerobic bioprocess, nitrification as, V: 128 XXV: 44–46 Aerobic cyclase activity, XX: 15

Adenosyl-factor A, XXV: 139 Aerobic pathway, vitamin B12 biosynthesis Adenosyl-GDP-cobinamide, XXV: 69 XXV Adenosyl-GMP cobinamide, XXV: 65 adenosylcobyric acid synthesis, XXV: 46 conversion of adenosylcobinamide adenosylcobyrinic acid a,c-diamide (phosphate) into, XXV: 65 synthesis, XXV: 44–46 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 5 FA

Cumulative Index to Volumes 1–25 5

cobalt reduction, XXV: 43–44 ALA dehydratase(ALAD), XIX: 146–147 cob(II)yrinic acid a,c-diamide synthesis, XX: 153, XX: 220 XXV: 42–43 condensation of two ALA molecules by, hydrogenobyrinic acid a,c-diamide XX: 153 synthesis, XXV: 41–42 ALA formation, XX: 219–220 hydrogenobyrinic acid synthesis, in α-proteobacteria and non-photosynthetic XXV: 40–41 eukaryotes, XX: 219 precorrin-6A and precorrin-6B synthesis, ALA synthase (ALAS), XX: 151 XXV: 39–40 ALA synthesis by ALAS, proposed precorrin-3A synthesis, XXV: 32–34 mechanism of, XXV: 7 precorrin-3B synthesis, XXV: 34–37 ALA to uroporphyrinogen III, synthesis XXV precorrin-4 synthesis, XXV: 37–39 biosynthesis of δ-aminolevulinic acid, precorrin-5 synthesis, XXV: 39 XXV: 3–16 precorrin-8 synthesis, XXV: 40 biosynthesis of , Ag nanoparticles. see Silver (Ag) XXV: 22–27 nanoparticles biosynthesis of , Age-related macular degeneration (AMD), XXV: 16–21 IV: 27, IV: 30, IV: 254 biosynthesis of uroporphyrinogen III, Aggregation behavior XXV: 27–30 carboxylated derivatives (water soluble Alaremycin, UROGEN formation (PBGS) Pcs) and, VII: 280 and, XV: 179–180 energy levels/transitions (water soluble ALAS-1 gene, XXV: 5 Pcs) of, VII: 278–279 ALAS-2 gene, XXV: 5 in non-water soluble Pcs, VII: 321–323 ALAS homodimer, crystal structure of, XXV: 6 quaternized derivatives (water soluble Pcs) Alcaligenes eutrophus, UROGEN conversion and, VII: 280–281 to heme (CPDH) and, XV: 196 sulfonated derivatives (water soluble Pcs) Alcaligenes faecalis IAM 1015, and bacterial and, VII: 279–280 NOR, V: 132 Aggregation, calixarenes and, XIII: 177–178 Aldehydes Agostic interactions, NCP metal complexes and Adler-type reactions, III: 493–498 and, II: 304, II: 305 condensation with two different, Agostic type bonds/interactions, XVII: 157, III: 525–529 159 and dynamic libraries based on H-bonds, AgPc absorption spectra, IX: 72–74 III: 498–502 AhpC, heme sensor proteins and, XV: 429 and small libraries for therapeutic Akt phosphorylation, IV: 437–438, IV: 440 discovery, III: 502–506 ALA. See 5-aminolevulinic acid (ALA) substituted BODIPYs and, VIII: 8–12 ALAS-1 gene, XXV: 5 and tetraaminophthalocyanines, III: 119 ALAS-2 gene, XXV: 5 Aldol condensations and TBP synthesis, ALA, biosynthesis of, XX: 151 XIII: 22 charge of plastid tRNAGlu with glutamate by Aliphatic glutamyl-tRNA synthetase, XX: 151 aldehydes, substituted BODIPYs and, formation of ALA by GSA VIII: 8–12 aminotransferase, XX: 152 C–H activation by Compound I of reduction of glutamyl-tRNAGlu by CYP450, X: 108–120 glutamyl-tRNA reductase, hydroxylation mechanisms, QM/MM and, XX: 151–152 X: 122–123 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 6 FA

6 Cumulative Index to Volumes 1–25

Alkali metal cations by Ln[(15C5)4Pc]2, Alkoxy-substituted phthalocyanines and intra-molecular binding of, XXIV: 371 derivatives, III: 121, III: 169–170. Alkali metal salts, as phthalocyanine See also Hydroxy-/alkoxy-/ sulfoacids and derivatives, III: 83–92 aryloxy-substituted phthalocyanines Alkanethiolate-gold clusters, XVIII: 194 and derivatives Alkanes, photocatalytic reactions of, bridged, III: 173–176 VII: 347–348 diazotization introducing hydroxyl groups Alkenes into phthalocyanine core, III: 172 aliphatic hydroxylation mechanisms and, introduction of ArO/ArS into X: 123 phthalonitriles and phthalocyanines, epoxidation catalyzed by [MnCl] chiral III: 171 picket fence porphyrins, X: 10–12 preparation of epoxidation catalyzed by [RuCO] chiral 1,2,4,5,8,9,10,11,15,16,17,18,22,23, picket fence porphyrins, X: 12–13 24,25-hexadecaalkyl(aryl)- photocatalytic reactions of, VII: 347–348 oxy-substituted phthalocyanines, Alkenyl porphyrins, Heck C–C coupling III: 171–172 reactions and, III: 345 preparation of tetraplatinum(II) derivatives, Alkoxylation. C–O bond formation, III: 173 XXIII: 197–200 Alkyl of phthalocyanines Alkyl chain–substituted species, 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25- phthalocyanines with chiral carbons in hexadecasubstituted compounds of, side chains, XXIII: 375–383 III: 31–34 CD spectra of in DMSO and in DMSO/ 1,2,8,9,(10,11),15,16(17,18),22,23(24,25)- water solvent mixtures, XXIII: 383 octasubstituted compounds of, chiral alkyl side chains introduced, III: 17 XXIII: 375 1,3,8,10,(9,11),15,17(16,18),22,24(23,25)- electronic absorption spectra, XXIII: 378 octasubstituted compounds of, structures of µ-oxo oligomer and its III: 17–18 proposed arrangement in mesophase, 1,4,8,11,15,18,22,25-octasubstituted XXIII: 376 compounds of, III: 18–23 structures of optically active Pc 1,8(11),15(18),22(25)-tetrasubstituted (phthalocyanines) and its µ-oxo SiPc compounds of, III: 7–11 polymer, XXIII: 378 2,3,9,10,16,17,23,24-octasubstituted and its proposed arrangement in compounds of, III: 23–31 mesophase, XXIII: 376 2,9(10),16(17),23(24)-tetrasubstituted synthetic pathway for preparation of crown compounds of, III: 10–16 ether Pc, XXIII: 381 dodeca-alkyl- or aryl-substituted, III: 31 of Cbl(I), XXV: 161 Alkyl-/alkenyl-/alkynyl-substituted Alkenyl substituents of phthtalocyanines phthalocyanines spectra, III: 199–216, examples of, III: 36–40 III: 286 palladium-catalyzed coupling reactions Alkyl-/arylsulfonyl and sulfinyl-substituted and, III: 35, III: 41 phthalocyanines, as and preparation of 4-vinylphthalonitrile, electron-withdrawing groups of III: 34–35 phthalocyanines, III: 92–95 and preparation of phthalonitriles, Alkylammonium monomers, for III: 41–42 electrochemical polymerization, Alkenyl-substituted BODIPYs, VIII: 42–48 XII: 237–238 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 7 FA

Cumulative Index to Volumes 1–25 7

Alkylhydrazine, and inactivation of HRP, Al(III) tetrasulfonated phthalocyanine, V: 22–23 XVIII: 286 Alkylidenephthalimidines, and synthesis of Alternate bis(arylimino)isoindolines, extended porphyrins by template XVII: 220–225 condensation, XIII: 23–24 homoleptic BTI complexes of Cu(II) and Alkylidenylcorroles, and porphyrins with Pd(II), XVII: 222

double bonds at meso positions, structure of Mn(III)(bimimd)Cl2, XIII: 247–248 XVII: 223 Alkylidenylporphodimethenes, and porphyrins structure of Pd(BTI) complex, XVII: 222 with double bonds at meso positions, structure of two bis-copper complexes of XIII: 246–247 bis-pyridyl phthalazine, XVII: 225 Alkylidenylsapphyrins, and porphyrins with structures of less and more sterically double bonds at meso positions, hindered BTI ligands, XVII: 221 XIII: 243–246 Allenylporphyrins, Suzuki-type C–C coupling Alkylimidazolylporphyrins, SOD mimics and, reactions and, III: 340–341 XI: 321 Allenylporphyrins, XXIII: 157 Alkylpyramidazolylporphyrins, SOD mimics Allosteric systems, fullerene and, I: 43–44 and, XI: 321 Allylic alcohols, catalytic oxidation with PhIO Alkylpyridylporphyrins, SOD mimics and, of, X: 30–32 XI: 310–317, XI: 319–321, XI: 321–323 Allylporphyrins XXIII Alkylsulfide sulfoxidation, X: 129–131 cross-metathesis of, XXIII: 184 Alkylthiol methyl transfer, X: 334–337 metathesis reaction with acrylate ester, Alkylthio-substituted phthalocyanines XXIII: 185 alkylsulfanylphthalocyanines and, III: 176, AlPc absorption spectra, IX: 78–86 III: 190 α-and/or β-substituted Pcs alkylthio-/phenylthio-/phenylsulphonyl- numbering system used in absorption substituted phthalocyanines spectra, database for, IX: 100–101 III: 255–260, III: 286–287 structure/metal/solvent/transition aromatic nucleophilic substitution and, energy/remarks/reference number, III: 173, III: 176 IX: 137–314

examples of, III: 177–189 Alumina (Al2O3), hybrid porphyrin- and Q-band in phenylsulfanyl derivatives, mesoporous materials and, XII: 146 III: 176 Aluminum, unsubstituted Pcs (UV-vis Alkyne-substituted porphyrins, “click chemistry” absorption data) and, IX: 103–104 reaction with azides, II: 275–283 Alzheimer’s disease (AD), Medical effects of Alkynyl substituents of phthalocyanines water-soluble metalloporphyrins and, examples of, III: 36–40 XI: 363, XV: 279–280 palladium-catalyzed coupling reactions Amidation and, III: 35, III: 41 aryl-amidation (Pd-catalyzed C–N and preparation of 4-vinylphthalonitrile, coupling) and, III: 401–404 III: 34–35 β-amidation (Pd-catalyzed C–N coupling) and preparation of phthalonitriles, and, III: 398–401 III: 41–42 meso-amidation (Pd-catalyzed C–N Alkynylporphyrins, III: 340–341 coupling) and, III: 395–398 Alkynyl-substituted BODIPYs, VIII: 42–48 linkage with oxidized CNT, and covalent Al(III) sulfophthalocyanine, XVIII: 296 linkage of carbon nanotubes, X: 280 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 8 FA

8 Cumulative Index to Volumes 1–25

Amide NH site C5 pathway, XXV: 8–15 amidopyrrole-based receptors and, organisms employing either pathway, VIII: 176, VIII: 183 XXV: 15–16 as donor for hydrogen bonding, Shemin pathway, XXV: 4–7 VIII: 167–168 δ-Aminolevulinic acid dehydratase, XXV: 16 guanidinocarbonyl-based anion receptors δ-aminolevulinic acid of mitochondria, and, VIII: 170 transport of, XV: 10–11 demethylation, as catalyzed by covalent amide linkage with oxidized CNT cytochromes P450, V: 189 (CNT functionalization), X: 280 demethylation reaction, and hydroxy-/ and graphene functionalization via amide alkoxy-/aryloxy-substituted linkage, X: 289–292 phthalocyanines, III: 172 and linkage, I: 146 δ-Aminolevulinic acid synthase (ALAS), and Mosher’s chiral amide (chiral picket XXV: 5 fence porphyrins), X: 25 activity of, XXV: 7 noncovalent diamond functionalization via requiring pyridoxal 5′-phosphate (PLP) C–C linkage/amide coupling (CNT , XXV: 5 functionalization), X: 293–294 Aminolevulinic acid dehydratase (ALAD) Amidopyrrole-based receptors, pyrrole-based as catalyst for ALA conversion to PBG, π-conjugated acyclic anion receptors XV: 6–7 and, VIII: 175–181 and transport of home precursors between Amination cytosolic enzymes, XV: 11 aryl-amination (Pd catalyzed C–N Aminolevulinic acid synthase (ALAS) coupling) and, III: 389–395 as catalyst for ALA formation, XV: 6 β-amination (Pd-catalyzed C–N coupling) Shemin pathway and, XV: 165–166 and, III: 385–389 Aminoporphyrins, and porphyrins with double meso-amination (Pd-catalyzed C–N bonds at meso positions, XIII: 222–227 coupling) and, III: 379–384 synthesis of meso-aryl- and meso-alkyl-, of chiral picket fence porphyrins, C–H bond II: 239–240 functionalization and, X: 75–76 Aminopropanol O-phosphate, formation of, Amination (Ullmann, Buchwald–Hartwig). XXV: 63 C–N bond formation, XXIII: 190–197 Aminopropanol-O-2-phosphate, XXV: 63 porphyrin, XXI: 50 Amino-substituted phthalocyanines and Amino acids derivatives carboxylates, and binding by ristocetin, and adsorption of transition-metal VIII: 167 tetraaminophthalocyanines, III: 114, and heme reactivity, XV: 126 III: 119 radicals, freeze-quench EPR experiments and epinephrine detection, III: 114 and Compounds I/ES, V: 309–310 examples of, III: 115–118 Amino acid-substituted phthalocyanines, formation of tetracarbamic acid derivatives, structures of, XVIII: 281–282 III: 118–119 Amino-/hydroxy-/vinyl-substituted porphyrins and preparation of phthalonitriles δ-Aminolevulinic acid (ALA), XXIII: 7 with electron-donating groups, δ-Aminolevulinic acid (δ-ALA), III: 120–121 XIX: 145–146 spectra, III: 231–234, III: 287–288 δ-Aminolevulinic acid biosynthesis, ureido-substituted phthalocyanines, XXV: 3–16 III: 114, III: 118 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 9 FA

Cumulative Index to Volumes 1–25 9

Amino-substituted porphyrins, Ancylostoma ceylanicum, and heme transport electro-polymerization of, XII: 251–263 in helminths, XV: 24–25 Ammonification, nitrite reduction and, V: 130 Angularly annelated extended systems, Amperometric XIII: 9–10 biosensors, V: 252–254 Anhydrides, pyromellitic anhydride/imide diblock copolymers, ethyne-bridged cyclotetramerization, III: 95, polymersomes and, I: 10 III: 104–105 electrochemical sensors, XII: 195–199, Animal biliproteins, XXII: 23–26 XII: 195–199, XII: 299 Animal peroxidases. See Peroxidases (animal receptors, pyrrole-based π-conjugated superfamily) acyclic anion receptors and, Anion binding, expanded porphyrins and, VIII: 224–225 II: 176 Amphipathic bacteriochlorins, synthesis of, Anion binding in calix[n], XVIII: 144 XVII: 26–27 Anion detection/pH measurements, AMPN N-allyl-4-(4′-methyl-piperazinyl)-1,8- electrocatalysis/electroanalysis and, naphthalimide, optical pH sensors and, XII: 287 XII: 178–179 Anion optical sensors, XII: 189–191 Amyotrophic lateral sclerosis (ALS), medical Anion receptors. See Pyrrole-based effects of water-soluble π-conjugated acyclic anion receptors metalloporphyrins and, XI: 361–363 Anionic Fe(III) porphyrins, XI: 327

Anaerobic pathway, vitamin B12 biosynthesis, Anionic meso-substituted porphyrins, XXV: 46–48 syntheses with structural modifications, CbiH, ring contraction and methylation at XIII: 157–160 C-17, XXV: 56–58 Anionic porphyrins CbiL, C-20 methylation, XXV: 54–56 MnTBAP3−, XI: 324–325 cobalt-precorrin-5 and role of CbiF and substituted anionic, XI: 324–325 CbiG, XXV: 58–59 Anion-responsive aryl-bridged bispyrroles, from cobalt-precorrin-5B to cobyrinic acid, pyrrole-based π-conjugated acyclic XXV: 59–61 anion receptors and, VIII: 200–203 from precorrin-2 to cobalt-factor II, Anion-responsive supramolecular gels, XXV: 49–54 pyrrole-based π-conjugated acyclic transformation of cobyrinic acid into anion receptors and, VIII: 219–224 cobyric acid, XXV: 61–62 Anions Analyte optical sensors, XII: 191–192 doping. See Doped AnaPX, XIX: 274 polypyrrole/polythiophene films Anammox (anaerobic ammonium oxidation) impact on metalloporphyrin structures of, bacteria, V: 128, V: 131 VI: 18 Anchor heteroleptic double-decker complex, Anisaldehyde, and tetraaminophthalocyanines, XXIV: 365 III: 119 Anchoring of porphyrin/phthalocyanines. Anisotropy, g-tensor, VI: 83 See Conductors/semiconductors for Anisotropy factors, and natural chlorophyll hybrid electronics a/bacteriochlorophyll a and derivatives, Ancylostoma caninum VII: 177, VII: 182 heme-binding cytoplasmic proteins and, ANKA (Germany), VII: 441 XV: 30 Annulated bacteriochlorins, synthesis of, and heme transport in helminths, XV: 24–25 XVII: 29–30 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 10 FA

10 Cumulative Index to Volumes 1–25

Annelation of aromatic rings by cyclization Anthraporphyrins reactions crystal structure of zinc complex of and condensation of carbonyl group, fullerene-linked, II: 33 XIII: 86–88 Suzuki-type C–C coupling reactions and, cycloaddition reactions, XIII: 75–79 III: 337–338 electrocyclic reactions, XIII: 73–75 synthesis of fullerene-linked, II: 33, II: 40 free-radical cyclizations, XIII: 88–90 zinc template strategy and synthesis of, and modification of extended porphyrins, II: 7 XIII: 90–94 Anthraquinone (AQ), XX: 71 olefin metathesis, XIII: 85–86 Anthraquinone dyes, XIX: 273 pericyclic reactions, XIII: 73 Anthraquinone porphyrin hybrids sulfolenopyrroles/sulfolenoporphyrins, (porphyrin–AQ), IV: 23 XIII: 79–85 Anthraquinone-fused porphyrin, Diels-Alder Annulenes. See also Extended porphyrins reaction on β-vinylTPP in synthesis of, (cyclic π-systems) II: 84 as aromatic system of porphyrins, XIII: 4 Anti-ligation, I: 234–235 Annulene–porphyrin hybrid, XVIII: 332 Anti-angiogenesis treatment, IV: 427, IV: 428, Antenna (photosynthetic) IV: 432–435 EET and, I: 225 Antiaromatic 16 and 20 π-electron systems, photosynthetic reaction centers (RCs) and, XXIII: 358–364 I: 227–228 absorption and MCD data for 18π Antenna complex strategy coupled to reaction Zn(II)TPTBP and 16π center, background information, XI: 5 [Zn(II)TPTBP]2+, XXIII: 362 Antenna effect energy levels of and their contour plots for

for cyanobacteria, XI: 103–131. See also H2OiBTPP/OiBTPP, XXIII: 361 Cyanobacteria MCD and electronic absorption spectra of

defined, XI: 13 H2OiBTPP/OiBTPP, XXIII: 360 for green sulfur bacteria, XI: 161–166 MO energies of 18π Zn(II)TPTBP and 16π natural chlorophylls and, XI: 226, [Zn(II)TPTBP]2+ in TD-DFT XI: 228–229 calculations, XXIII: 363 for purple photosynthetic bacteria, oxidized 16π -electron porphyrin, XI: 131–161. See also Purple XXIII: 359 photosynthetic bacteria Antiaromatic porphyrinoids, XVI: 25 Antenna pigments, protein structures of, XI: 7 Antiaromaticity, I: 513, I: 529–534 Antenna system, tandem solar cells and, Antibodies (monoclonal). See Monoclonal X: 152 antibodies (MAb) Antenna-reaction center mimicry, - Antibody conjugation with photosensitizers, nanocarbon hybrids, I: 391–397 IV: 157–158 Anthracene and biphenylene pillars, See also Antibody fragments (Fab); XXI: 52–58 Conjugates; Linkers in conjugates; Anthracene–fused porphyrins, XXIII: 152 Monoclonal antibody (MAb)– Anthracene-linked cofacial porphyrin, XXI: 54 photosensitizer conjugates Anthracene-pillared cofacial dimers, XXI: 57 Antibody fragments (Fab), IV: 158, Anthracene-pillared porphyrins, XXI: 58 IV: 170–171 Anthracocyanine/naphthalocyanine/ C6.5, IV: 171 ring-expanded Pc analogs, UV-vis conjugation to photosensitizers, absorption data, IX: 383–396 IV: 170–171, IV: 172 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 11 FA

Cumulative Index to Volumes 1–25 11

L19 fragment conjugate with chlorin e6, Antioxidative mechanism and cancer, medical IV: 342 effects of water-soluble δ OC125F(ab )2, IV: 170, IV: 342 metalloporphyrins, XI: 365–368 single-chain fragments (ScFv), IV: 158, Antipodes and CD spectra, VII: 200–201, IV: 160, IV: 170–171, IV: 172, VII: 203 IV: 342–343 APC hexamers, XXII: 6 Antiferromagnetic coupling, chloroiron ApcE, XXII: 7, 30, 33–34 corrolate complexes and, XIV: 531 Apo HasA, heme-loaded HasA and, Antimalarial artemisin, XII: 149–150 VI: 353–354 Antimicrobial PDT, IV: 386–393 Apoenzyme model/B model complexes 12 active targeting, IV: 388–389 and activity in hydrophobic bacteriophages, IV: 386, IV: 388–389 microenvironments of B , 12 Candida albicans, IV: 392–393 X: 327–328 cationic or neutral photosensitizer effect on glutamate mutase-like reactions and, Gram-negative bacteria, IV: 387, X: 331–333 IV: 389–390 methylmalonyl-CoA mutase-like reactions Escherichia coli, IV: 47, IV: 60, IV: and, X: 328–331 82–83, IV: 387 and other carbon-skeleton rearrangement fungi, IV: 392–393 reactions, X: 333–334 immunoglobulin G–bacteriochlorophyll Apo-phytochrome, XX: 177 conjugate (IgG–Bchl), IV: 388 Apoproteins, artificial hemes and, V: 6–7

immunoglobulin G–Sn(IV) chlorin e6 Apoptosis, IV: 405–408, IV: 419–420 conjugate (IgG–SnCe6), IV: 388 AIF, IV: 410 passive targeting, IV: 389–393 benzoporphyrin derivative delivery by 5-phenyl-10,15,20-tris(N-methyl-4- liposomes, IV: 363 pyridyl)porphyrin chloride 9-capronyloxytetrakis- 3(Py+–Me), IV: 393 (methoxyethyl)porphycene (CPO), photodynamic antimicrobial chemotherapy IV: 408–409, IV: 410 (PACT), IV: 149 caspase-3, IV: 281, IV: 405–406, IV: 407, polymer nanofibers, IV: 387 IV: 414 Staphylococcus aureus, IV: 47, chromatin fragmentation, IV: 406–407, IV: 285–286, IV: 388–389 IV: 413, IV: 415 Staphylococcus epidermidis, IV: 391 cytochrome c release from mitochondria, targeting of microorganisms, overview, IV: 385, IV: 405–406, IV: 408, IV: 386–388 IV: 409–410, IV: 416, IV: 419 waste water bacteria, IV: 389–390 DNA fragmentation, IV: 405–407 See also Infectious disease treatment by endonucleosomes, IV: 405–406, IV: 407 photosensitizers; Photodynamic galectin affect on T-cell apoptosis, IV: 266 inactivation (PDI); Targeting Golgi apparatus photodamage, IV: 385 strategies for PDT HA14-1, IV: 409 Antimony porphyrins, as reductive lysosome-localized photosensitizers, photocatalysts, XI: 200–205 IV: 385 Antimony, unsubstituted Pcs (UV-vis mitochondrial membrane integrity loss, absorption data) and, IX: 131 IV: 409–410 Antioxidants, ROS in biosensors and, morphologic appearance, IV: 415 V: 208 necrosis vs. apoptosis, IV: 414 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 12 FA

12 Cumulative Index to Volumes 1–25

photodamage to Bcl-2, IV: 408–410, epoxidation catalyzed by [RuCO] chiral IV: 418, IV: 432 picket fence porphyrins, X: 12–13

photodamage to Bcl-xL, IV: 408–409, Aromatic bridges, cofacial porphyrin dimers IV: 412 and, I: 54 photosensitizer damage to endoplasmic Aromatic C–H activation by Cpd I of reticulum, IV: 279 CYP450, X: 125–127 photosensitizer damage to mitochondria, Aromatic compounds, cytochrome P450 IV: 279 enzymes and, V: 191, V: 301 photosensitizer localization sites, IV: 408, Aromatic conjugation IV: 409, IV: 410, IV: 411 of BODIPY-analogs procaspase-3, IV: 406, IV: 411, IV: 414 benz[c,d]indole (extended systems) and, role of reactive oxygen species (ROS), VIII: 112–114 IV: 412–414 and bis-BODIPY systems, VIII: Smac/Diablo, IV: 410 117–119 ursodeoxycholic acid (UDCA) effect, di(iso)indomethene dyes (extended IV: 408–409 systems) and, VIII: 112 ZnPPIX treatment, IV: 384 and phenanthrene-fused systems, AppA, XV: 440 VIII: 114–116 AP-pyrrole XXIII and porphyrin-fused systems, VIII: 116 porphyrins derived from, XXIII: 10 restricted systems, VIII: 104–112 Aqueous solution. See Noncovalent syntheses porphyrins and, II: 81 of multiporphyrin species in aqueous Aromatic nucleophilic substitution solution for alkylthio-/arylthio-substituted Aquifex aeolicus phthalocyanines, III: 173, III: 176 FECH purification and, XV: 57 and electron-donating/electron-withdrawing UROGEN conversion to heme (PPO) and, substituents in same benzene ring, XV: 197 III: 190, III: 195–198 Arabidopsis, mitochondrial import and, for introduction of ArO/ArS into XV: 100–101 phthalonitriles and phthalocyanines, Arabidopsis thaliana, XIX: 362 III: 171

see also cytochrome b561 and precursor phthalonitriles, III: 173 Arabidopsis thaliana, heme-binding for preparation of dialkylamino-substituted cytoplasmic proteins and, XV: 30 phthalocyanines, III: 120–121 plant peroxidases and, VI: 372 and tetrafluorophthalonitrile/alcohols in

Arachidic acid (AA), optical pH sensors and, DMF/K2CO2, III: 171–172 XII: 179–180 Aromatic pyridine containing porphyrinoid, Arbuzov-Mikhaelis reaction, for 21-substituted porphyrin rearrangement polysubstituted phthalocyanine metal to give, XVI: 177 complexes, III: 61–62 Aromatic rings Arginine-glycine-aspartic acid (RGD). See porphyrin triflates and oxidation potential RGD (arginine-glycine-aspartic acid) of, II: 61, II: 63 peptides pyrroles fused with, II: 2 Argon, main trapping site of porphycene in, synthetic methods of porphyrins fused VII: 398–399 with, II: 1, II: 2 Aromatic alkenes Aromatic systems epoxidation catalyzed by [MnCl] chiral angularly annelated extended systems, picket fence porphyrins, X: 10–12 XIII: 9–10 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 13 FA

Cumulative Index to Volumes 1–25 13

and condensation of carbonyl group, Arthromyces ramosus peroxidase (ARP) XIII: 86–88 electronic absorption maxima of Fe(III) cycloaddition reactions for annelation, resting state/intermediate compounds XIII: 75–79 of, VI: 418 electrocyclic reactions for annelation, plant peroxidases and, VI: 373 XIII: 73–75 Artificial corrins, chemical synthesis of, free-radical cyclizations for annelation, XXV: 266–269 XIII: 88–90 synthetic concepts for construction of and modification of extended porphyrins, corrin macrocycle XIII: 90–94 different approaches, from A–D and B–C olefin metathesis for annelation, Intermediates, XXV: 269–278 XIII: 85–86 Jacobi’s Sonogashira coupling–sulfide ortho-fusion and, XIII: 4 contraction approach leading to pericyclic reactions for annelation, corrins, XXV: 298–300 XIII: 73 Mulzer’s synthesis of monocyclic

and porphyrins with double bonds at meso building blocks for vitamin B12, positions, XIII: 198, XIII: 201 XXV: 300–301 sulfolenopyrroles/sulfolenoporphyrins for Stevens’ isoxazole approach leading to annelation, XIII: 79–85 corrins, XXV: 293–297 tetrabenzoporphyrins and, XIII: 6–9 synthesis of corrins at different Aromatic tetraheteroporphyrin dications, oxidation levels by A–D skeletal core and synthesis of, II: 173 cyclization, XXV: 288–293 Aromaticity synthesis of seco-corrins and photo- experimental magnetic criteria and NICS as chemical A–D cyclization, measures of, II: 110 XXV: 278–288 hexapyrrolic expanded porphyrins and, Artificial enzymes composed of apoenzyme

I: 519–529 model/B12 model complexes NMR chemical shifts of inner vs. perimeter and activity in hydrophobic

hydrogens of porphyrins and, microenvironments of B12, II: 108–109 X: 327–328 pentapyrrolic expanded porphyrins and, glutamate mutase-like reactions and, I: 513 X: 331–333 porphyrins and criteria for, II: 108 methylmalonyl-CoA mutase-like reactions quantitative measures of, I: 509 and, X: 328–331 Soret and Q-band intensities and electronic and other carbon-skeleton rearrangement criterion of, II: 110 reactions, X: 333–334 Aromatics, fluorescence process in, XI: 9 Artificial hemes. See Hemoproteins Arrays of chemical sensors (reconstituted with artificially created and clinical analysis of biological liquids, hemes) XII: 212–213 Artificial lipid films, as biomimetic differences between, XII: 210–211 membrane, V: 230 historical aspects of chemometrics/ Artificial photosynthesis, supramolecular olfaction, XII: 207–208 chlorophyll assemblies for, XX: 46–48 and quartz microbalance (QMB), XII: 212 energy and electron transfer in covalent Arsenics (inorganic) methyl transfer, light-harvesting arrays, XX: 82–89 X: 337–338 energy transfer in heterogeneous Artemisin, XII: 149–150 chlorophyll dyads, XX: 78–81 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 14 FA

14 Cumulative Index to Volumes 1–25

photophysics of donor-bridge-acceptor dipyrrolylquinoxalines, pyrrole-based systems, XX: 64–78 π-conjugated acyclic anion receptors photophysics of special pair/chlorophyll and, VIII: 190–200 dimer mimics, XX: 48–63 Aryldiazonium reaction with reductive Si–H self-assembled circular light-harvesting surface, X: 271–272 mimics, XX: 89–92 Aryl-end capped oligopyrroles, XVII: 321 self-assembled rod-like chlorosome Aryl hydrocarbon receptor nuclear translocator mimics, XX: 93–94 (ARNT, HIF-1β ), IV: 432 role of 3-position in self-assembly, Aryl lithium reagents, and fluoride atom XX: 98–100 substitution in BF2-group with aryl role of 13-position in self-assembly, groups, VIII: 91–92 XX: 94–95 Arylpinacolborolane, XVII: 26 role of 17-position in self-assembly, Aryloxy-substituted phthalocyanines and XX: 95–98 derivatives. See Hydroxy-/alkoxy-/ Artificial photosynthetic systems aryloxy-substituted phthalocyanines and charge separation using chlorophyll derivatives analogs for, X: 196–203 Aryl-substituted design of photosynthetic reaction center BODIPYs, VIII: 42–48 models, X: 184–186 3,5-diaryl-substituted BODIPYs from and monomer vs. dimer porphyrins, arylpyrroles, VIII: 48–52 X: 190–196 pyrrole-based π-conjugated acyclic anion multistep photoinduced electron transfer receptors, VIII: 211–219 and, X: 203–212 Aryl substituents of phthalocyanines need for, X: 183–184, X: 210 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25- and planar vs. nonplanar porphyrins, hexadecasubstituted compounds of, X: 186–190 III: 31–34 porphyrin–nanocarbon composites and, 1,2,8,9,(10,11),15,16(17,18),22,23(24,25)- X: 221–231 octasubstituted compounds of, porphyrin solar cells and, X: 231–236 III: 17 supramolecular porphyrin complexes and, 1,3,8,10,(9,11),15,17(16,18),22,24(23,25)- X: 212–221 octasubstituted compounds of, Artificial reversed riboswitches, III: 17–18 XXV: 229–230 1,4,8,11,15,18,22,25-octasubstituted Arylacetic acids, and synthesis of extended compounds of, III: 18–23 porphyrins by template condensation, 1,8(11),15(18),22(25)-tetrasubstituted XIII: 23 compounds of, III: 7–11 Aryl-amidation (Pd-catalyzed C–N coupling), 2,3,9,10,16,17,23,24-octasubstituted palladium-catalyzed, III: 401–404 compounds of, III: 23–31 Aryl-amination (C–N coupling), 2,9(10),16(17),23(24)-tetrasubstituted palladium-catalyzed, III: 389–395 compounds of, III: 10–16 Arylboronic acids. See Palladium-catalyzed aryl-substituted phthalocyanines spectra, C–B coupling III: 217–219 Aryl-bridged dodeca-alkyl- or aryl-substituted, III: 31 bispyrroles, pyrrole-based π-conjugated Arylthio-substituted phthalocyanines acyclic anion receptors and, alkylsulfanylphthalocyanines and, III: 176, VIII: 200–203 III: 190 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 15 FA

Cumulative Index to Volumes 1–25 15

aromatic nucleophilic substitution and, LBL deposition and, XII: 131 III: 173, III: 176 porphyrin-based films and, XII: 257 examples of, III: 177–189 ATP-binding cassete (ABC) and Q-band in phenylsulfanyl derivatives, ABCB6, XV: 12–13, XV: 95–96 III: 176 ABCB7, XV: 15 AsA. see cytosolic ascorbate (AsA) ABCB10, XV: 15, XV: 97–98 AsA-reducible PMCytb, XIX: 363 and FECH interaction with PPIX oxidase, Ascaris, and heme transport in helminths, XV: 95 XV: 24 and transport of CPgenIII into/PPgenIX Ascorbate peroxidase (APX), X: 101, X: 103, within mitochondria, XV: 12–13 XIX: 50, XIX: 72 ATP: cob(I)alamin adenosyltransferase (ACA), as classification, VI: 372, VI: 423–426 adenosyl transfer reaction catalyzed by, structure, XIX: 63 XXV: 206 vs. CCP, XIX: 65, XIX: 69 ATP-binding cassette (ABC) transporter, and Asp XIX: 251, XIX: 85–86, XIX: 89 bacterial acquisition of iron, AsPc absorption spectra, IX: 95–99 VI: 340–341 Assimilatory nitrate reductase (Nas), as ATP-binding cassette (ABC) transporter, and Mo-containing enzyme, V: 128 bacterial acquisition of iron, VI: 340–341 Asymmetric atom/group transfer reactions ATP-dependent transport of heme across aziridination and, X: 68–72 cytoplasmic membrane, heme uptake C–H bond functionalization and, X: 73–78 and, XV: 366–367 cyclopropanation and chiral picket fence Atropisomers, XI: 315–317, III: 438–439 porphyrins, X: 45–64. See also Atropisomers, XXIII: 67–68 Cyclopropanation example, XXIII: 67 cyclopropanation and chiral strapped of meso-tetrakis(2-aminophenyl)porphyrin, porphyrins, X: 64–68 XXIII: 67 epoxidation (chiral basket handle Attenuation factor porphyrins), X: 40–43 β-substituted ZnP-p-phenyleneethynylene-

epoxidation (chiral picket fence C60 system and, I: 157 porphyrins), X: 5–26. See also covalent bridge and, I: 154–155 Chiral picket fence porphyrins impact of nature of oligomers on, I: 159

epoxidation (chiral strapped porphyrins), ZnP-thiophene-C60 system and, I: 158 X: 26–40. See also Chiral strapped Atypical phytochromes (Phys), XXII: 14 porphyrins AuPc absorption spectra, IX: 72–74 epoxidation (historical), X: 3–5 Au nanoparticles. See Gold (Au) nanoparticles Asymmetric cyclopropanation, XXI: 179 Australian Synchrotron, VII: 441 Asymmetric hemiporphyrazines, XVII: 177–179 Autophagosomes, IV: 414, IV: 415, IV: 416, synthesis of, XVII: 178 IV: 417 ATG18660. See DVR gene Autophagy, IV: 414–418, IV: 420 Atomic force microscopy (AFM), calixarenes Autoxidation and, XIII: 178, XIII: 188 and catalytic cycle of cytochromes P450, of copolymer on ITO, XII: 272, XII: 274 V: 174–178 and films with luminescent properties, copper 2,9(10),16(17),23(24)- XII: 262–263 tetrabromophthalocyanine and, III: 71 images, four-leaf clover self-assembly reaction of 3,4,5,6-tetrafluorophthalonitrile of porphyrin nanostructures, and perfluoropropene with cesium XI: 199–200 fluoride, III: 76–77 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 16 FA

16 Cumulative Index to Volumes 1–25

and uncoupling in catalytic cycle, spin delocalization and plane orientation, V: 181–182 VI: 50–55 Avastin (bevacizumab), IV: 434–435 UV-vis absorption data of sub-/super-Pcs Avidin-biotin complex (AB-C), IV: 330–331 and, IX: 101 Axial imidazole, electronic properties of, Axial ligands, and solvent effects of natural XXI: 19 chlorophylls, XI: 235 Axial ligand type phthalocyanine solar cell, Axial substitution XXIII XVIII: 108–109 phthalocyanines with optically active Axial ligand. See also Chiral basket handle aromatic substituents, porphyrins; Chiral picket fence XXIII: 419–420 porphyrins; Chiral strapped porphyrins structure of tert-butylated TiPc with and aromatic alkenes catalyzed by [MnCl] (S)-binaphthyl molecule as axial chiral picket fence porphyrins, ligand, and its optimized structures, X: 10–12 XXIII: 419 and carbon monoxide of M(II) porphyrins, AxPDEA1, heme-PAS domains and, XV: 137 VII: 446–448 Aza-BODIPY dyes and cyanide of M(II) porphyrins, VII: 448 benz[c,d]indole-based, VIII: 130–131 and dioxygen of M(II) porphyrins, cyclized, VIII: 131–133 VII: 444–445 miscellaneous metals and, VIII: 133–134 effect on ground states, and electronic/ restricted systems and, VIII: 126–130 magnetic structures, VII: 26–31 tetra-aryl systems and, VIII: 119–126 and epoxidation of 1,2-dihydronaphthalene, Aza-substitution, XXIII: 304–308 X: 21–22 MCD, electronic absorption, and and four-coordinate iron(III) porphyrin fluorescence excitation spectra, cation for formation of pure XXIII: 308 intermediate-spin complexes, molecular structures of MAP/oppDAP/ VII: 60–61 TBadjDAP/TBoppDAP/TBTrAP general axial ligands (X1, X2) of Pcs, compounds, XXIII: 306 VII: 260–263 partial MO energy diagrams based on and HasA–HasR interaction, VI: 356–357 INDO/1 calculations, XXIII: 307 and imidazoles of M(II) porphyrins, Azadipyrromethene chromophores. See VII: 444 Aza-BODIPY dyes and Fe(IV)-oxo porphyrin π-cation radical Azepiphthalocyanine, XVII: 186 complexes, X: 94–97 Azepiporphyrins, XVI: 8 and magnetochemical series for formation Azido phthalocyanine, XVIII: 296 of pure intermediate-spin complexes, Azidophenylene-ethynylenebenzyl thiol, VII: 58–60 XXI: 29 and modeling of CYP450 properties/ Azidoporphyrins reactivities of compound I (Cpd I), “click chemistry” reaction with alkynes, X: 100 II: 273–275 and nitric oxide of M(II) porphyrins, incorporation with porphyrin analogs, VII: 448–450 V: 31–32 and Pcs as sensitizers of dye-sensitized Aziridination solar cells, X: 160–161 chiral picket fence porphyrins and, and quantum-chemical calculations of X: 69–72 push/pull effect of, X: 103–106 importance of, X: 68 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 17 FA

Cumulative Index to Volumes 1–25 17

Azobenzene derivatives as analogs, BODIPYs in 1% Et3N-CHCl3, UV-vis spectra of, and, VIII: 144–145 XVI: 66 Azoesters, meso-amination and, III: 382–383 formation of pyrrolidine adduct with, Azomethine ylide formation/1,3-dipolar XVI: 75 cycloaddition, XXI: 356–359 MacDonald “2 + 2” synthesis of, XVI: 63 Azoporphyrins, XIII: 226 metalation of, XVI: 82 synthesis of, I: 110–111 400-MHz proton NMR spectra of, XVI: 64 Azomethine ylides, XVII: 78–82 ORTEP III drawing, XVI: 68 addition reaction, XVII: 80 potential tautomers for, XVI: 61 bacteriochlorin bis-adducts, XVII: 83 resonance contributors possessing chlorins, derived from Diels–Alder 18π-electron delocalization reactions of porphyrins, XVII: 80 pathways for, XVI: 65 reaction of isolated chlorin, XVII: 78–79 synthesis by “3 + 1” strategy, XVI: 60 reaction of porphyrin with diazafulvenium “back-to-front” version of, XVI: 62 methides, XVII: 80–81 and tert-butyl hydroperoxide, use of azafulvenium/diazafulvenium benzocarbaporphyrins formation methides, XVII: 81 mechanism from, XVI: 77 Azospirillium brasilense, metal ion substrate Azulisapphyrin specificity and, XV: 86 formation of pyrrolidine adduct of, XVI: 287 Azotobacter vinelandii, FECH purification synthesis of, XVI: 286 and, XV: 57 Azulene B

adj-dicarbaporphyrin incorporating, II: 168 “B561 core domain,” XIX: 344 opp-dicarbaporphyrins containing one model structure for, XIX: 344

moiety of, II: 166–167 10B(boron-10), IV: 192–193, IV: 204, IV: 238

Azulene-2-carbaldehydes, synthesis of fulvene 11B(boron-11), IV: 192 aldehydes from, XVI: 257 1-Butyl-3-methylimidazolium

Azulene, favored sites for electrophilic tetrafluoroborate [bmim][BF4], substitution in, XVI: 137 metalloporphyrin formation using, Azulene-fulvene dialdehyde, attempted II: 197–198 synthesis, XVI: 255 1,3-Bis(2-pyridylimino)isoindoline (BPI), Azulene-fused porphyrins, optical properties XVII: 115 of, II: 68 2,1,3-Benzoselenadiazole, porphyrin fused Azulene-indene derived fulvene, formylation with, II: 51, II: 53 of, XVI: 257 2-BromoTPP, heterodimer from reaction of Azulinoporphyrins, coordination compounds boronated TPP with, II: 220, II: 223 of, II: 157–158 2,1,3-Benzoxadiazole, porphyrin fused with, external reactivity of, II: 151–156 II: 51, II: 53 Azuliporphyrins, XVI: 4, XVI: 59–91, 3,4-Bis(alkylthio)pyrroles, XVII: 264 XVIII: 330 4,4′-Bipyridine (bipy), XVIII: 35 to give benzocarbaporphyrins, oxidative 5,10-Bis(2,6-dibromophenyl)porphyrin, ring contraction of, XVI: 76 palladium-mediated chiral porphyrins in CDCl3, selected proton NMR data for from, II: 240 free base, XVI: 65 5,15-Bis-meso-(4-carboxyphenyl)-10,20-bis- dications in TFA-CDCl3, selected proton meso-(3,5-di-tert-butylphenyl)porphyrin. NMR data for, XVI: 4 see trans-BCaTBPP b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 18 FA

18 Cumulative Index to Volumes 1–25

5-Bromo-10,15,20-triphenylpor- dehydration of diol functionalities of meso- phyrinatonickel(II), palladium-catalyzed tetraarylbacteriochlorins, XVII: reaction of hydrazine with, II: 240 59–60 21-Bromo-N-fused tetraphenylporphyrin double amide Claisen- (21-Br-NFTPP), II: 337, II: 339 rearrangement, XVII: 71 β-alkenyl-substituted porphyrins, metathesis in functionalization of β-tetramethyl- synthesis of, II: 234–235 β-tetraethylporphyrin, XVII: 61 β-alkyl NCPs, synthesis of, II: 300, II: 301 hematoporphyrin dimethyl ester, synthesis, β-Alkylisobacteriochlorin, XVII: 69–70 XVII: 71 β-alkynylporphyrins, Sonogashira protocol in methylated diol functionalities, XVII: 60 synthesis of, II: 228 osmylation/dehydration, exocyclic double β-amidation (C–N coupling), bond, XVII: 72 palladium-catalyzed, III: 398–401 pinacol–pinacolone rearrangement, XVII: β-amination (C–N coupling), 60, XVII: 63 palladium-catalyzed, III: 385–389 2-hydroxyalkyl-substituted chlorins, β-aryl/alkyl-meso-tetraarylporphyrins, XVII: 63, XVII: 65 synthesis of mono-, tetra- and octa-, reacting dioxobacteriochlorin with II: 215 Lawesson’s reagent, XVII: 66–67 β-Arylaminoporphyrins, XXIII: 196 structures of β-arylporphyrins, synthesis of zinc complex [dioxoisobacteriochlorinato]Ni(II), of, II: 223–224, II: 225 XVII: 72 β-azafulvenones, tetracarbaporphyrinoids and free base octaethyldioxo- tetramerization of, II: 172 isobacteriochlorin, XVII: 62 β-boryl-5,10,15-triarylporphyrins, Heck-type isobacteriochlorin, XVII: 69 protocol in reaction of acrylate with, [octaethyldioxoisobacteriochlorinato] II: 234 Fe(III)Cl, XVII: 62 β-borylated porphyrins, as building blocks for [octaethyldioxoisobacteriochlorinato] multiporphyrin systems, II: 227 Ni(II), XVII: 62 β-borylation (C–B coupling), synthesis of meso-tetraaryl- palladium-catalyzed, III: 377–378 oxobacteriochlorins and β-borylporphyrins -oxoisobacteriochlorins by oxidation direct borylation in synthesis of, II: 61, of β,β′-diol moieties, XVII: 66 II: 63 synthesis of octaalkyloxobacteriochlorins porphyrin-containing molecules and, II: 61 by dehydration of β,β′-diol β-Brominated dihydrodipyrrins, preparation bacteriochlorins, XVII: 60–66 of, XVII: 20 synthesis utilizing susceptibility of ketones β-brominated porphyrins, transition metal toward nucleophiles, XVII: 67–68 catalysts and, I: 7 tert-alcohol from bacteriopurpurinimide, β-bromo-meso-tetraarylporphyrins, XVII: 67–68 modification of β-pyrrolic positions transformations of oxobacteriochlorins and and, II: 206 oxoisobacteriochlorins, XVII: 66–72 β,β′-Diolbacteriochlorins, functionalization of, zinc oxobacteriochlorins, synthesis, XVII: 58–72 XVII: 63 alkylation of β,β′-diol functionalities, β,β-linked porphyrin-phthalocyanine dyads, XVII: 58–59 XXIII: 196 bacteriopurpurin diol, XVII: 59 β-carboranylated porphyrins b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 19 FA

Cumulative Index to Volumes 1–25 19

as agents for BNCT of tumors, II: 220 β-Octaalkylbacteriopurpurin synthesis, as conducting or catalytic materials, XVII: 73–77 II: 220 cyclization of 5,10-disubstituted porphyrin, Suzuki reaction in synthesis of, XVII: 75 II: 220–221 5,15-disubstituted octaethylporphyrin β-Carboxy groups, porphyrins anchored formation, XVII: 74 through, XVIII: 97–100 isobacteriobenzopurpurins formations, β-Cyclodextrin-conjugated silicon(IV) XVII: 76 phthalocyanines, XVIII: 262 regioselectivity of cyclization, XVII: 76 β-Cyclodextrin-conjugated subphthalocyanines, ring-fusion reaction of meso-acryclic structure of, XVIII: 263 esters, XVII: 73 β -D-lactose-chlorin e6 conjugate, “click structure analysis, XVII: 73 chemistry” synthesis of, II: 277, β-octabromo-meso-tetrakis(4-carboxyphenyl)- II: 279 porphyrin, as potential inhibitor of β-etheration (C–O coupling), palladium- topoisomerase I, II: 219 catalyzed, III: 413 β-Octabromotetraphenylporphyrin, β-extended porphyrins, Diels-Alder reaction in XVIII: 129–120 synthesis of, II: 81, II: 83 β-octacarboranyl-meso-tetraphenylporphyrin, β-formylated porphyrins, microwave-assisted II: 220, II: 222 synthesis of, II: 202 β-octaphenylporphyrins, II: 217 β-formylporphyrins, as a 1,3-dipole moiety β-octasubstituted precursor, II: 266–267, II: 268 cationic porphyrins, II: 217–218 β-fused oligoporphyrin, synthesis of directly, porphyrins, Suzuki cross-coupling and II: 73 mixed antipodal, II: 216–217 β-Hexyl β-linked cofacial porphyrins XXI β-perfluoroalkylated porphyrins, cyclization ORR (oxygen reduction reaction) catalytic and aromatization of, II: 61–62 data for, XXI: 87 β-substituted β-iminoporphyrins, as heterodienes in meso-substituted arylporphyrins, II: 194 Diels-Alder cycloadditions, II: 256, meso-tetraarylporphyrins, Heck protocol in II: 259 synthesis of, II: 232 β-Lactamase-enzyme-activated photosensitizer meso-tetraarylporphyrins, palladium (β-LEAP), IV: 286, IV: 287 catalysis in synthesis of, II: 239 β-Linked porphyrins in DSSCs, XVIII: 98 Pcs. See α- and/or β-substituted Pcs solar cell performances of, XVIII: 100 porphyrins, Sonogashira protocol in structures for, XVIII: 99 coupling, II: 227–228 β-Linked anthracene, XXI: 92 tetraphenylporphyrins, zinc complexes of, β-Linked biphenylene pillared porphyrins, II: 232, II: 233 XXI: 92 β-Substituted tetrapyrrole isomers, β-Linked cofacial porphyrins, XXI: 52–53 mathematical enumeration of XXIII β, meso, β-anthracene triply fused porphyrins, applications with Fischer’s restrictions, UV-vis spectrum of, II: 60 XXIII: 29–34 β, meso-anthracene doubly fused porphyrins, lifting Fischer’s restrictions, XXIII: 34–35 UV-vis spectrum of, II: 60 methods to assess number of substituted β,Meso-linked diporphyrin, construction of tetrapyrrole isomers, XXIII: 25–26 XXIII molecular shape, XXIII: 17–19 β,Meso-linked porphyrin-phthalocyanine formally regular polygons, examples of, dyads, XXIII: 197 XXIII: 18 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 20 FA

20 Cumulative Index to Volumes 1–25

tetrapeptide, XXIII: 18 B12-antibodies, XXV: 226

tetrapyrrole framework, XXIII: 19 B12-bioconjugates, XXV: 224–226

Pólya’s theorem, XXIII: 26–29 B12-uptake and transport in gram-negative symmetry point groups of substituted bacterium, XXV: 217–224

tetrapyrrole macrocycles, B12-uptake and transport in mammals, XXIII: 23–25 XXV: 208–207

theoretical isomers of, XXIII: 35 B12-binding RNA, XXV: 249A β -Substituted tetrapyrrole macrocycles, B12-bioconjugates, XXV: 224–226 XXIII: 20 representative, XXV: 224 β -Substitution of tetraphenylporphyrin, B12-dependent dehalogenases, XXV: 201–203 XVIII: 128–130 B -dependent enzymes 12 β-sulfanylation/selenation (C–S/C–Se dechlorination of organic halides by other coupling), palladium-catalyzed, cobalt complexes, X: 349–350 III: 415–417 electrocatalytic reduction of organic halides β -Tethered dyads, XXI: 82 by B12 derivatives, X: 344–346 β-Tethered strapped dyads, XXI: 45–52 photocatalytic reduction of organic halides β -tetrabromo-meso-tetraphenylporphyrin, by B12 derivatives, X: 346–349

synthesis of antipodal, II: 208 reduction of organic halides by B12 β-tetrafluorobenzo-meso- derivatives, X: 339–344

tetraphenylporphyrins, II: 62, II: 64 B12-dependent enzymes XXV β -tetrasubstituted cationic porphyrins, II: 217 B12-binding in, XXV: 230 β -vinylporphyrins, as dienophiles in B12-binding proteins and nucleic acids, Diels-Alder reactions, II: 253 structures of, XXV: 244A–249A

B4-porphyrin, XXIII: 37 B12-dependent methyltransferases, XXV: 170

B12-antibodies, XXV: 226 B12-derivatives. See organometallic catalysts,

B12 apoenzyme model complexes cofactors and ligands of and activity in hydrophobic bio-macromolecules; vitamin microenvironments of B , X: 327–328 B -derivatives; vitamin B -derivatives 12 12 12 glutamate mutase-like reactions and, for spectroanalytical and medicinal X: 331–333 applications XXV methylmalonyl-CoA mutase-like reactions B enzyme functions. See Catalysts with B 12 12 and, X: 328–331 enzyme functions

and other carbon-skeleton rearrangement B12-riboswitches and reversed riboswitches, reactions, X: 333–334 XXV: 227–230

B12-aptamers, XXV: 230–231 artificial reversed riboswitches, in vitro evolved consisting of seven-tiered XXV: 229–230

RNA triplex, XXV: 230 natural B12-riboswitches, XXV: 227–229

B12-binding and transport, XXV: 247A–248A btuB riboswitch from E. coli, XXV: 22

B12-binding nucleic acids, B12-derivatives as B12-uptake and transport in gram-negative ligands in bacterium, XXV: 217–224

B12-aptamers, XXV: 230–231 BtuB upon TonB-binding, XXV: 221

B12-riboswitches and reversed riboswitches, inner membrane B12-transport, XXV: 227–230 XXV: 222–224

organometallic “reverse” outer membrane B12-uptake and transport,

B12-riboswitch, XXV: 167 XXV: 217–220

B12-binding proteins, B12-derivatives as outer membrane transporter BtuB, ligands in XXV: 219 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 21 FA

Cumulative Index to Volumes 1–25 21

periplasmatic transporter BtuF, XXV: 222 substrate inhibition/selectivity, XV: 91

periplasmic B12-transport, XXV: 220–222 substrate specificity and, XV: 86

B12-uptake and transport in mammals, and oligomeric structure of FECH, XV: 61 XXV: 208–211 porphyrin substrate specificity and, XV: 85

biophysical studies of B12-binding, and UROGEN conversion to heme, XV: 187 XXV: 215–217 UROGEN conversion to heme haptocorrin, XXV: 215 FC and, XV: 201–202 intrinsic factor, XXV: 213–214 PPO and, XV: 197, XV: 199 ligand recognition by the mammalian Back energy transfer, effects of, XI: 17–18

B12-transport proteins, XXV: 216 Back face ligation, I: 234

topological analysis of typical B12-binding, Bacteria and iron acquisition, VI: 340–342. XXV: 233 See also Peroxidases (plant/ transcobalamin, XXV: 211 fungal/bacterial superfamily)

B12-uptake and transport pathway, XXV: 209 Bacterial B12-uptake mechanism, XXV: 218 B bands, IX: 6–8, IX: 10–12 Bacterial CCP, XIX: 52 and electronic transitions resulting in Q/B LP/HP heme, XIX: 52 bands, XIV: 507–513 Bacterial denitrification. see cycle trends between calculated parameters/ XXII observed properties, XIV: 515–519 Bacterial nitric oxide reductase (NOR) Bach1, heme sensor proteins and, XV: 421–422 of, V: 137–138 Bacillus anthracis dynamics of gas molecules and, V: 137–138 and crystal structures of FECH, XV: 67 and electron/proton transfer to active site, and heme uptake in gram-positive bacteria, V: 138–140 XV: 20 general information, V: 132–133 Bacillus azotoformans molecular evolution of, V: 141–142 and active site of bacterial NOR, V: 138–139 oxidized form of, V: 133–136 spectra of qCuANOR from, V: 133–134 reaction mechanism of, V: 140–141 Bacillus cereus, IV: 390–391 reduced form of, V: 135, V: 137 Bacillus megaterium, and rapid-scanning Bacterial nitric oxide reductase (NOR), stopped-flow studies of P450BM3 XXII: 240 Compounds I/ES, V: 322 beyond NOR, XXII: 291 Bacillus stearothermophilus, and bacterial hemoproteins, XXII: 291–292 NOR, V: 132 non-heme-based metalloproteins, Bacillus subtilis XXII: 292 and crystal structures of FECH, XV: 67–71 organometallic complexes, XXII: 292 FECH biomimetic models, XXII: 244–245 activity and, XV: 54 mechanism of NO reduction in NOR, interaction with PPIX oxidase, XV: 95 XXII: 242–244 mimetics/distortion and, XV: 82 proposed mechanisms and purification and, XV: 57 intermediates, XXII: 243 reaction mechanism summary and, questions, unanswered in, XV: 92–93 XXII: 242–244 HemATs and, XV: 141 nitric oxide (NO), XXII: 244 and metal-ion structure of NOR, XXII: 240–242 binding sites of FECH, XV: 73–74, turnover rate in NOR in Paracoccus XV: 76–78 denitrificans, XXII: 242 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 22 FA

22 Cumulative Index to Volumes 1–25

Bacterial NOS, XIX: 77 1,3-dipolar cycloaddition reactions, Bacterial pathogens, heme uptake mechanisms XVII: 77–86 in. See Heme uptake mechanisms in functionalization of β,β′-diolbacterio- bacterial pathogens chlorins, XVII: 58–72 Bacteriochlorins, DSSCs, XVIII: 102–104 functionalization of meso- tetraaryl- solar cell performances of, XVIII: 103 bacteriochlorins, XVII: 55–58 structures for, XVIII: 103 miscellaneous reactions, XVII: 96–99 Bacteriochlorins, XX: 4, XX: 48, oxidations of porphyrins/chlorins, XVII: 3–6, 19 XVII: 45–55 chromophore, XVII: 86 reductions of porphyrins, XVII: 35–44 functionalization of, XVII: 23–28 by self-condensation of dihydrodipyrrin β-bromobacteriochlorin series, dimethyl acetal, XVII: 30 XVII: 25–26 Bacteriochlorin macrocycle formation, bromination of, XVII: 24 XVII: 22 dihydrodipyrrins, XVII: 24 Bacteriochlorin sensitizers, XVIII: 104 manipulations of Bacteriochlorin systems. See Chlorophyll/ β-substituents, XVII: 27–28 bacteriochlorophyll/chlorin/ halogenation, XVII: 23–24 bacteriochlorin systems palladium-mediated carbonylation Bacteriochlorophyll a, XVII: 9 reactions, XVII: 25, 30 Bacteriochlorophyll b, XVII: 9 Pd-catalyzed coupling reactions of Bacteriochlorophyll g, XVII: 9 bromobacteriochlorins, Bacteriochlorophylls (BChl), II: 194, IV: 5, XVII: 25–27 IV: 33–34, IV: 42, IV: 388 regioselective halogenation, XVII: 23 3-acetylbacteriochlorins (semisynthetic naturally occurring, XVII: 9–11 chlorophylls), XI: 263–265 optical properties of, XVII: 6–9 basic structure of, XIII: 255 pathways of synthesis, XVII: 12 benzobacteriochlorin derivatives, IV: 37 saponification, XVII: 34 chlorosomes trapping photons/hour/, I: 223 semi-synthesis XVII: 33 color plot of Photosystem II in Rps.viridis, Soret band, XVII: 7 XI: 6 structure of, XVII: 97–98 cycloimide derivatives of bacteriochlorin synthesized, spectra, XVII: 23 p, IV: 38–39 transesterifications, XVII: 34 diastereomeric ligation of, I: 231–238 UV-vis spectra of, XVII: 6, XVII: 53 dimers/oligomers of, I: 238–245 Bacteriochlorin-Zn(II)(py), structure of, and fully synthetic self-assembling BChl XVII: 38 mimic, I: 273–279 Bacteriochlorin dicarboxylimides, synthesis of, isobacteriochlorins, IV: 5 XVII: 29 as main pigment of antenna systems, Bacteriochlorins/isobacteriochlorins, synthesis, XI: 53–56 XVII: 12–13 meso-tetraphenylporphyrin (TPP) analogs, conversion of porphyrins/chlorins to IV: 40–41 bacteriochlorins/isobacteriochlorins, metallobacteriochlorins, IV: 257 XVII: 35 and micelle formation from MGDG, I: 245 β-octaalkylbacteriopurpurin synthesis, molecular structures of, XI: 227 XVII: 73–77 π-skeleton of semisynthetic chlorophylls Diels–Alder reactions, XVII: 87–95 and, XI: 236–237 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 23 FA

Cumulative Index to Volumes 1–25 23

and photosynthetic RCs of cyanobacterial Barton–Zard reaction photosystems, I: 2–3 control of HOMO and LUMO energy and semisynthetic chlorosomal mimics, levels and porphyrin synthesis using, I: 280–290 II: 48 and semisynthetic self-assembling BChl isoindoles with fused aromatic rings and, mimics, I: 280–290 II: 7 structure, IV: 32 synthesis of isoindoles using, II: 9 structural chemistry of, XIII: 287–288 Basal cell carcinoma (BCC), IV: 8, IV: 48 synthesis, IV: 31 “Base-on/base-off” constitutional switch of tetrakis-pyridyl-tetrahydroporphyrin “complete corrinoids,” XXV: 153–156 tosylate (THP), IV: 42 constitutional “molecular switch,” Tookad (WSR09), IV: 255, IV: 257–258 XXV: 153 See also Chlorins (2,3-dihydroporphyrins); Baseplate-deficient chlorosomes, I: 226 Fully synthetic self-assembling BChl “Basket-handle” porphyrins, XXI: 21, 32 mimic OER (oxygen evolution reaction) activity and unstability of Mg atom, I: 236 of, XXI: 33 Bacteriochlorophyll systems. See Chlorophyll/ Bathocuproine (BCP), XVIII: 62 bacteriochlorophyll/chlorin/ bc1 complex, and respiratory chain enzyme bacteriochlorin systems studies, VII: 472–474 Bacteriochlorophyll. see BChl BchE protein, XX: 17–18 Bacteriochlorophylls c and antibioticum BchJ gene, XX: 24 fosfomycin (Fos), XXV: 180 BChl, XX: 7, XX: 25 Bacteriochlorophylls, photophysics of, biosynthesis, XX: 4 XVII: 11 conversion of protoporphyrin IX into Bacteriochlorophyllide a, XX: 5 Chl a and BChl a, XX: 5 Bacterioferritin — iron homeostasis, XIX: 154 in chlorosomes, XX: 99 biochemical studies, XIX: 155 found in bacteria, XX: 134 pyridine hemochrome, XIX: 156 Bcl-2 BLAST search, XIX: 154 degradation by celecoxib, IV: 428, functional studies, XIX: 156–157 IV: 431–432 spectroscopic studies, XIX: 155–156 HA14-1 binding, IV: 409 structural studies, XIX: 157–159 localization in ER and mitochondria, Bacteriophages, IV: 386, IV: 388–389 IV: 408, IV: 411 Bacteriopheophytin a, semi-synthesis from photodamage to Bcl-2, IV: 408–410, natural sources, XVII: 33 IV: 418, IV: 432 Bacteriopheophytins, XVII: 9 Bcl-xL, IV: 408–409, IV: 412 Bacteriophins, UV-vis spectrum of, BChl biosynthesis and assembly, XX: 108–110 II: 208–209 assembly of BChls c, d, and e in Bacteris, heme uptake in, XV: 17–20 chlorosomes, XX: 129–133 Bai-based coordination polymers, (bacterio)chlorophyll biosynthetic supramolecular assemblies and, pathways in green bacteria, VIII: 470–478 XX: 111–113 Band gap materials, III: 487 biosynthesis of bacteriochlorophyll Band gaps Eop. See HOMO-LUMO gaps Eeg a and from chlorophyllide a, BaPc absorption spectra, IX: 21–24 XX: 127 Bartonella qintana, transcriptional heme alcohol reduction and esterification, regulation and, XV: 384 XX: 128–129 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 24 FA

24 Cumulative Index to Volumes 1–25

biosynthesis of bacteriochlorophyll c, d, BChls c, d, and e in chlorosomes, assembly of, and e from chlorophyllide a XX: 129–133 C-82 and C-121 methylation, bchQRU chlorosomes, XX: 131 XX: 122–123 CsmA, XX: 129 C-31 hydration, XX: 123–124 suprastructure formed by BChl c, d, or e C-20 methylation, XX: 124–125 molecules, XX: 132 esterification, XX: 126–127 BciA gene, XX: 24 removal of C-132-methylcarboxyl Bdellovibrio bacteriovorus, FECH purification group, XX: 121–122 and, XV: 57 synthesis of bacteriochlorophyllide e, Beclin-1, IV: 418 XX: 125–126 Benvix (ALA-benzyl ester), IV: 8 biosynthesis of chlorophyllide a Benz[c,d]indole, and aromatic conjugation of C-8 vinyl reduction, XX: 118–120 BODIPY-analogs, VIII: 112–114 D ring reduction, XX: 120–121 Benz[c,d]indole-based, aza-BODIPY dyes and, isocyclic ring formation, XX: 117–118 VIII: 130–131 magnesium chelation, XX: 113 Benzene-annulated tetraazachlorin, methylation of C-13 propionate, XVII: 31–32 XX: 117 Benzene-centered porphyrin hexamers, Granick hypothesis, XX: 133–135 I: 38–39, I: 42 BChl a, XX: 5 Benzene dicarbinols, meso-tetra- BChl a biosynthesis, XX: 148 arylbenziporphyrins synthesis from, from chlorophyllide a, XX: 127 XVI: 102 alcohol reduction and esterification, Benzene, reorganization energy and, I: 147 XX: 128–129 Benzene ring biosynthetic pathways producing electron-donating/electron-withdrawing BChl aP, XX: 112 substituents in, III: 190–198 enzymes involved in, XX: 116 and hydroxy-/alkoxy-/aryloxy-substituted BChl c, d, and e biosynthesis from phthalocyanines, III: 170 chlorophyllide a tetrabenzoporphyrins and, XIII: 4–6 biosynthetic pathways producing, Benzene-1,3,5-tricarboxamides, XX: 112 self-assembling metalloporphyrins and, C-82 and C-121 methylation, I: 94, I: 98 XX: 122–123 Benzhydroxamic acid (BHA) binding to HRP, bchQ mutant, XX: 122 XIX: 70 C-31 hydration, XX: 123–124 Benzipentaphyrin, synthesis with two C-20 methylation, XX: 124–125 exocyclic double bonds, XVI: 291 absorption properties of monomeric Benziphthalocyanines, XVII: 152–153 BChl c and d, XX: 124 Co(II) adduct oxidized, XVII: 165 enzymes involved in, XX: 115 cobalt complexes of, XVI: 155 esterification, XX: 126–127 examples of, XVI: 156 removal of C-132-methylcarboxyl incorporation of phenol and resorcinol into, group, XX: 121–122 XVII: 167 bciC gene, XX: 121 metalation of, XVII: 156 synthesis of bacteriochlorophyllide e, nickel complexes of, XVI: 155 XX: 125–126 phenol and resorcinol substituted, Bchlide a, XX: 50, XX: 127 XVII: 168 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 25 FA

Cumulative Index to Volumes 1–25 25

structure of, XVII: 155 NH tautomerization in, XVI: 30 synthesis, XVII: 154 ORTEP III drawing, XVI: 31 Benziporphodimethanes, synthesis and oxidative ring contractions structures, XVI: 108 of meso-tetra-arylazuliporphyrins, Benziporphodimethenes, formation of nickel, XVI: 81 zinc, cadmium and mercury complexes of 23-substituted meso-tetra- of, XVI: 109 arylazuliporphyrins, XVI: 81 Benziporphyrins, XVI: 4, XVI: 98–161 crystal structure and reactivity of, II: 152, derivative, synthesis of further oxidized, II: 153, II: 155 XVI: 136 Benzocarbasapphyrins, synthesis and

dication in TFA-CDCl3, 500 MHz proton protonation of, XVI: 284 NMR spectrum of, XVI: 100 Benzochlorins, IV: 27–28, IV: 32, formation of nickel, zinc, cadmium and IV: 131–134, IV: 135, IV: 136 mercury complexes of, XVI: 109 structural chemistry of, XIII: 288–289 metalation of, XVI: 101 Benzodiazepines protonation of, XVI: 99 preparation from fulvene aldehydes, proton NMR data for, XVI: 164 XVI: 268 synthesis, XVI: 98 proposed mechanism for formation of, with exocyclic double bonds and related XVI: 269 expanded porphyrinoid, Benzoflavin, XII: 302 XVI: 152 Benzo-fused neo-confused porphyrins, with exocyclic double bonds in synthesis of, XVI: 242 meso-positions of, II: 141, II: 142 Benzoic acid-modified porphyrins, XVIII: 16 meso-modifications of, II: 142 Benzoporphycenes Benzisapphyrins, synthesis with two exocyclic Q and Soret bands, bathochromic shifts of, double bonds, XVI: 291 II: 37 Benzo-[18]annulene, structure of, XVI: 35 synthesis of di- and tetra-, II: 36, II: 41 Benzocarbaheteroporphyrins, II: 152 Benzoporphyrins coordination compounds of, II: 158–159 benzothiadiazole porphyrins, III: 337–339 Benzocarbaporphyrins, II: 107, II: 151, Ruthenium-catalyzed C–C coupling XVI: 4 reactions and, III: 352–353 alkylation of, XVI: 47 solar cell use potential of polycyclic cations, with C-protonated species, aromatics-fused, II: 53 proposed equilibria of, XVI: 36 Suzuki protocol and synthesis of mono-,

in CDCl3, 500-MHz proton NMR spectrum di-, and tri-, II: 219–220 of, XVI: 29 synthesis of, II: 23–24 diprotonation of, XVI: 35 synthesis of mono-, di-, tri-, and penta-, examples of, XVI: 31 II: 39, II: 42, II: 43

in 1% Et3N-CHCl3, UV-vis spectra of, synthesis of sulfur and oxygen analogs of, XVI: 28 II: 31, II: 35, II: 36 with ferric chloride, oxidation of, XVI: 38 vicinal dibromoporphyrins in synthesis of in chloroform-water, XVI: 42 mono-, di-, or tri-, II: 58, II: 59 formation mechanism Benzoporphyrin derivatives (BPD) from azuliporphyrin/tert-butyl antibody fragment conjugates, IV: 343 hydroperoxide, XVI: 77 monoclonal antibody conjugates, IV: 159, from 23-substituted azuliporphyrins, IV: 165–166, IV: 335–337, IV: 338 XVI: 78 structure, IV: 329 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 26 FA

26 Cumulative Index to Volumes 1–25

synthesis, IV: 30 Biliproteins, XXII: 3 Benzoporphyrin derivative monoacid ring A animal, XXII: 23–26 (BPD-MA), IV: 126, IV: 143, IV: 166, approaches for heterologous generation for IV: 183, IV: 185, IV: 363–364 internal imaging, XXII: 50–51 See also Verteporfin chromophore interconversion in sensory Benzothiadiazole porphyrins, Suzuki-type C–C biliproteins and α-PEC, XXII: 14 coupling reactions and, III: 337–339 chromophores, biosynthesis of, XXII: 27 Benzotriazole (BOP), IV: 133–134, IV: 136, chromophore-sites and -, and IV: 144–145, IV: 174 additional post-translational Benzylamine, with meso-tetra- modifications of, XXII: 8 arylazuliporphyrins, nucleophilic circular dichroism of, XXII: 12 addition of, XVI: 80 as fluorescence label, advantage, XXII: 50 Benzylic hydroxylation catalyzed by insect, XXII: 26 [MnCl] porphyrins, X: 73 from Pieris brassica, XXII: 26 [RuO] porphyrins, X: 73–75 sensory, XXII: 13–23 BePc/MgPc/CaPc/BaPc absorption spectra, structures and binding modes of IX: 21–24 chromophores of native light- Beryllium, unsubstituted Pcs (UV-vis harvesting and sensory, XXII: 11 absorption data) and, IX: 103 use advocated, reasons, XXII: 52 BF2-group (BODIPYs). See BODIPY IXα (BR), XXII: 23 dyes/derivatives E-isomers of, XXII: 24 3,3′-Bi-indolizines, XVII: 280 Bilirubin, XVII: 289 Bi-/multi-enzymatic biosenors, V: 270–273 coordination chemistry of open-chain

Bi2Pc3 absorption spectra, IX: 95–99 oligopyrroles and, VIII: 406–410

Biimidazol-2-yl-BF2 complexes as analogs, and preparation of open-chain oligopyrrole BODIPYs and, VIII: 141–142 systems, VIII: 361–362 Biladienes, synthesis of, II: 208 Biliverdin (BV) chromophore, XXII: 15 Bilanes, in microwave-assisted synthesis of Biliverdin IXα (BV), XXII: 23 porphyrins, II: 200 Biliverdin IXδ, XXII: 25 Bilayer Biliverdin IXγ, XXII: 24–25 heterojunctions fabricated using two Biliverdin, XVII: 289 different processing techniques and coordination chemistry of open-chain OPV by vapor deposition, oligopyrroles and, VIII: 406–410 X: 149–150 dimeric complexes (metal complexes) and, lipid membranes, as biomimetic membrane, VIII: 310–312, VIII: 318–321 V: 230 free ligand (metal complexes) and, Bilayer zinc phthalocyanine: fullerene solar VIII: 307–310 cell, XVIII: 77–78 iron complexes (metal complexes) and, Bile pigments, XVII: 289–292 VIII: 321–328 Bile pigments. See Dipyrrin-based receptors and metal complexes of formylbiliverdin, Bilindione, verdoheme formation by, VIII: 328–334 VIII: 301, VIII: 304 monomeric complexes (metal complexes) Bilins, XX: 146, XX: 167. see also Heme/ and, VIII: 312–318 branch and preparation of open-chain oligopyrrole Bilins, as light-harvesting pigments, XI: 228 systems, VIII: 361–362 Bilin analogs, synthesis from Binaphthyl bridge and chiral basket handle di-indenylmethane, XVI: 267 porphyrins, X: 41–43 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 27 FA

Cumulative Index to Volumes 1–25 27

Binaphthyl-linked porphyrins, structures/ Biology effects of water-soluble spectra of, VII: 199–200 metalloporphyrins Binding sites, and heme-propionate side detection of Mn porphyrins in chains, V: 44–48 plasma/tissues/cellular components, Bingel reaction, of meso–meso-linked XI: 348, XI: 350–354

oligoporphyrin bis-malonates with C60, lipophilicity (partition coefficient between I: 89–90 n-octanol/water, P ), XI: 347–350 OW Binuclear FeFe Models, XXII: 247–249 Mn porphyrins in Bioactive molecules, antimalarial artemisin, mitochondria, XI: 355–356 XII: 149–150 nucleus/cytosol, XI: 356 Biocatalysts, nanobiomaterials and, V: 48–49 pharmacokinetics and, XI: 356–358 Bioconjugates, and PDT, III: 88. See also in vivo accumulation of Mn porphyrins Conjugates affected by cellular reductants, Bioengineered models XXII XI: 356 biomimetic studies, second NO binding, Biological substrates

NO reduction and N2O formation, camphor as, X: 87 XXII: 290–291 CYP450 as superfamily of cysteine nitric oxide reductase, XXII: 266–268 thiolate-ligated heme enzymes for, crystal structure of bioengineered swMb X: 85–86 active site, XXII: 267 cytochromes P450 as superfamily of “quick-mutagenesis kit,” XXII: 267 cysteine thiolate-ligated heme Bioinorganic chemistry enzymes for, X: 85–86 background information, XI: 5–8 Biological tetrapyrrole pigments, relative electron/energy transfers and, XI: 8–18 planarity of, XVIII: 125 and metalation of Pacman bisporphyrins/ Biomedical imaging, II: 2 biscorroles/porphyrin-, Biomimetic iron complexes XI: 32–34 direct metalation of 2,2′-bidipyrrins, photophysical parameters, XI: 4 VIII: 452–456 and synthesis of intermediates/products from ring-opening biscorroles, XI: 21–26 reactions in, VIII: 447–452 bisporphyrins, XI: 20–22 Biomimetic membranes and electrodes, porphyrin-corroles, XI: 24, XI: 26–28 biosensors and, V: 230–232 trimacrocycle, XI: 28–32 Biomimetic models, XXII: 244–245

Bioinspired catalysts with B12 enzyme approaches, XXII: 245

functions. See Catalysts with B12 Biomimetic studies, first NO binding, enzyme functions XXII: 280–283 Bioinspired immobilized catalysts computational models XXII

B12 immobilized polymers and, X: model A, XXII: 280–281 357–358 model A, mononitrosyl FeB(NO)

B12 modified electrodes and, X: 350 species in, XXII: 281

covalently bound B12 modified electrodes model B, XXII: 281 and, X: 356–357 model B, mononitrosyl FeB(NO)

noncovalently bound B12 modified species in, XXII: 282 electrodes and, X: 350–352 synthetic models XXII

polymer-coated B12 modified electrodes heme-iron/non-heme iron (with no tail), and, X: 352–355 XXII: 283 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 28 FA

28 Cumulative Index to Volumes 1–25

tailed heme-iron/non-heme iron FeHFeB Biotin-linked phthalocyanine assemblies, and (non-heme), XXII: 282–283 PDT, III: 88–89 Biomimetic studies, second NO binding, NO BiPc absorption spectra, IX: 95–99 reduction and N O formation, BiPc absorption spectra, IX: 95–99 2 2 XXII: 283–291 Biphenylene-pillared cofacial dimers, XXI: 57 bioengineered models, XXII: 290–291 Bipyridylene-bridged dimers, I: 112, I: 115 computational models, model A, Bipyrroles XXII: 283–285 dimerization of, XVII: 252

Cis: b3 mechanism, XXII: 284–285 influence of acidity on electrochemical

Cis: FeB mechanism, XXII: 285 dimerization of, XVII: 251 trans mechanism, XXII: 285 monoelectronic oxidation of, XVII: 355–358 computational models, model B, XXII: 285 Bis(arylimino)isoindolines hyponitrite dianion intermediate binds absorption spectra of BPI and

to both FeB and FeH [FeH(N2O2) dichlorodihydroxy BPI, XVII: 189

FeB], XXII: 286 alternate, XVII: 220–224 synthetic models XXII alternate binding mode for BPI ligand, heme-iron/non-heme iron (with no tail), XVII: 200 XXII: 288–289 aromatic groups extension, absorption intermolecular reaction between spectra, XVII: 204 non-heme iron nitrosyl 15-NO asymmetric cobalt complexes, XVII: 212 and heme-iron nitrosyl 18-NO, binuclear metal complexes synthesized, XXII: 290 XVII: 194 tailed heme-iron/non-heme iron, binucleating complexes, XVII: 194 XXII: 286–288 bioinorganic BPI chemistry, XVII: 215–220 tailed heme-iron/non-heme iron, fully catechol oxidase modeling chemistry, reduced model, XXII: 287–288 XVII: 218 tailed heme-iron/non-heme iron, mixed copper BPI complexes as catechol valence model, XXII: 288 oxidase model complexes, Biosensor. See also Electrochemical XVII: 219

biosensors (heme protein-based) [Fe(BPI)Cl]2O, XVII: 217

classification of, V: 205 [Fe(BPI)]2O, XVII: 216 defined, V: 296 N-alkylated BPI ligand and its Cu(I) Biosynthesis complex, XVII: 219 of chlorophylls, XI: 225–226 bipyridyl pyrazole as bidentate chelate, and cleavage of C–C bonds by cytochrome XVII: 202 P450, V: 191–192 BPI metal complexes, XVII: 190–215 cytochrome P450 enzymes and, V: 166 as catalysts, XVII: 207 of heme. See Heme biosynthesis crystal structures, XVII: 192 Biosynthesis of cobalamin, aerobic pathway chemistry of free BPI ligand, XVII: 186–190 for, XXV: 33 chemistry of ruthenium BPI complexes, Biosynthesis, phycobiliproteins XXII XVII: 201 chromophores, 26–29 Cu(II)(BPI)(2,3-dichlorophenylcyanamide) maturation of phycobiliproteins/ complex, XVII: 197 phytochromes/cyanobacteriochromes, [Cu(II)(BPI)]TMTA trimeric molecule, XXII: 29–39 XVII: 201 Biotechnology probes and BODIPY, dendridic and modular BPI containing VIII: 80–86 compounds, XVII: 189–190 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 29 FA

Cumulative Index to Volumes 1–25 29

generate binuclear chelating BPI variants, Bis(arylimino)isoindolines in dendrimers, XVII: 193 supramolecular assemblies and, homoleptic complex Cu(II)(BPI)(OAc), VIII: 478–482 XVII: 209 Bis-BODIPY systems, and aromatic conjugation hydrogenation of olefins, XVII: 210 of BODIPY-analogs, VIII: 117–119 metal chemistry of BPI ligand, XVII: 205 Bis(carbene) osmium porphyrin, XXI: 348 metal complexes of BPI based chelates, higher reactivity of, XXI: 341 XVII: 195 Bis-15-crown-5-appended porphyrin, XXIV: 256 modified palladium BPI catalysts, Bis--functionalized porphyrins. XVII: 209 see CaTBPP palladium-coordinating BPI units, Bis-chlorophyllide a, synthesis of, XX: 49 XVII: 211 Bis- cofacial dyads, XXI: 102 Pd(II)(BPI)Cl complex, XVII: 197 Biscorroles, synthesis of, XI: 21–26 pinene appended Pd(II)BPI complex, Bis-diene, XVII: 144 XVII: 205 Bis-dienophile, XVII: 144 spectrum of ESIPT dyes vs. normal BPI, hemiporphyrazine monomer, bis-pyridine XVII: 188 adduct of anti-isomer of, XVII: 145 structure of Bis-diiminoisoindoline resorcinol trimer, azole bridged dimeric complex structure of, XVII: 169

[Ru(BPI)(pic)]2bis Bis-dinitrogen meso- (2-pyridyl)pyrazole, XVII: 202 tetramesitylporphyrinatoruthenium(II)

bis(6-methyl-2-iminopyridyl) [RuTMP(N2)2], XVIII: 7 isoindoline, XVII: 218 formation of multiple layers, XVIII: 7 BPI ligand, XVII: 187 Bisfullerene-porphyrin conjugate, XXIII: 180

Cd(II)(BPI)2(NO3)2 complex, XVII: 200 Bis-homo-coenzyme B12, XXV: 148 chiral (+)-2-carene based ligand and Bis-meso free bis-18-crown-5 substituted Cu(II) complex, XVII: 213 porphyrins, XXIV: 234

Co(BPI)2, XVII: 207 Bis(oxazolinyl)pyrroles Co(BPI)(OBz)(OO-tert-Bu), XVII: 207 coordination chemistry of open-chain Cu(II)BPI flavonol complex, XVII: 216 oligopyrroles and, VIII: 404–406

Cu(II)(BPI)(OAc)(H2O), XVII: 195 [H(bop)] and preparation of open-chain Cu(NBAII)OAc, XVII: 206 oligopyrrole systems, VIII: 359, heteroleptic BPI complexes, XVII: 214 VIII: 361 homoleptic BPI complexes, XVII: 214 Bis(phthalocyaninato) complexes

homoleptic complex Fe(BPI)2, crystallographic molecular structure, as XVII: 211 sandwich-type tetrapyrrole rare earth

homoleptic complex Mn(3-MeBPI)3, complexes, XIV: 275–287 XVII: 196 heteroleptic

Mo2(BPI)(OAc)3, XVII: 197 sandwich-type tetrapyrrole rare earth Ni(BPI)(2-chlorocyanamide), XVII: 198 complexes, XIV: 260–268 ruthenium BPI complexes, XVII: 214 schematic structure, XIV: 253–254 trimeric Zn(II) BPI assembly, XVII: 199 homoleptic Bis(arylimino)isoindoline complexes sandwich-type tetrapyrrole rare earth coordination chemistry of open-chain complexes, XIV: 255–260 oligopyrroles and, VIII: 389–404 schematic structure, XIV: 253–254 [H(bai)] and preparation of open-chain Bis(pinacolato)diborane, in synthesis of oligopyrrole systems, VIII: 356–360 meso-borylporphyrin, II: 60 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 30 FA

30 Cumulative Index to Volumes 1–25

Bis(porphyrinato) complexes (crystallographic thermal decomposition of monomer, molecular structure), as sandwich-type XVII: 148 tetrapyrrole rare earth complexes, spectrum in DMF, XVII: 124 XIV: 291–293 spectrum of, XVII: 118 Bis-porphyrin cofacial systems, XXI: 39–70 structures of, XVII: 118 anthracene and biphenylene pillars, Ge(IV)Hp complexes with trans-axial XXI: 52–58 alkoxides, XVII: 133 β-tethered strapped dyads, XXI: 45–52 Li(HHp)py complex, XVII: 132 Gable porphyrins, XXI: 69–70 synthesis, XVII: 122 meso-tethered strapped dyads, XXI: 39–45 tin chemistry of, XVII: 131 pillared porphyrins, XXI: 67–68 vs. phthalocyanine, XVII: 120 xanthene and dibenzofuran pillars, Bismetalated XXI: 58–67 biscorroles, X-ray characteristics of, Bisporphyrins XXIII XI: 48–50 metathesis to give, XXIII: 187 bisporphyrins, X-ray characteristics of, formed by metal-catalyzed cross-coupling XI: 42–44 of porphyrinylboronate and 3,6- porphyrin-corroles, X-ray characteristics dibromocarbazole, XXIII: 14 of, XI: 48 Bis-pyrochlorophyllide a/d (PChlide a/d), Bis-metallo-radical, methane activation with, XX: 50–51 XVIII: 316 fluorescence emission spectra of, Bismuth, unsubstituted Pcs (UV-vis absorption XX: 50–51 data) and, IX: 134 Bisindolizine, electrochemically triggered Bisnaphthohexaphyrin, II: 248, II: 249 cyclization of, XVII: 329 Bisphthalonitriles, III: 173

Bis-pyridyl hemiporphyrazine (H2Hp), Bisporphyrins XVII: 115, XVII: 118–127 classes, VII: 234–235 anhydrous and monohydrated forms of, cofacial bis(etioporphyrins), XI: 98–99 XVII: 121 cofacial bisporphyrins held by cyclic votammograms, XVII: 134 calix[4]arene spacer, XI: 91–97 EPR spectroscopy of Cu(II) adduct, and flexible chains, XI: 57–66 electrical conductivity, XVII: 133 rigid spacers, XI: 67–91

[Fe(butyloxy)2Hp]2O, XVII: 137 cofacial bisporphyrins in germanium inserted into, XVII: 130 singlet-singlet studies, XI: 97–103 HOMO–LUMO gap, XVII: 122 triplet-triplet studies, XI: 98–103 magnetic susceptibility measurements, cofacial system, XI: 56–57 XVII: 135 DFT and transfer rates, XI: 100 metal binding chemistry of, XVII: 130 synthesis of metal chemistry of, XVII: 128–141 β, meso-1,2,3-triazole-linked, II: 273, monomeric macrocycles II: 274 AA-type monomeric macrocycle, meso–meso-1,2,3-triazole-linked, XVII: 147 II: 273–274, II: 275 AB-type monomeric unit undergoing (TPP)Rh, XI: 99–101 polymerization, XVII: 147 X-ray characteristics produced as Ni(II) adducts, polymerized of bismetalated biscorroles, XI: 48–50 via Diels-Alder reaction, of bismetalated bisporphyrins, XVII: 145–146 XI: 42–44 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 31 FA

Cumulative Index to Volumes 1–25 31

of bismetalated porphyrin-corroles, GFP-chromophore analogs and, XI: 48 VIII: 134–137 of monometalated bisporphyrins, with heteroatom substituents from XI: 41–42 electrophilic substitution reaction, of monometalated porphyrin-corroles, VIII: 24–28 XI: 46–48 with heteroatom substituents from Bis-substituted bacteriochlorins, XVII: 25 metal mediated C–H functionalization, Bis-xanthene Hangman porphyrin, 116 VIII: 32–36 Bis-zwitterions, guanidinocarbonyl-based nucleophilic attack on halogenated anion receptors and, VIII: 171–172, BODIPYs, VIII: 28–32 VIII: 174 nucleophilic attack on meso-position,

BKCa, XV: 444 VIII: 36–39 BODIPY dyes/derivatives Knoevenagel reactions with benzaldehyde 2-ketopyrrole complexes as analogs, derivatives, VIII: 52–61 VIII: 143–144 meso aryl-, alkenyl-, alkynyl-substituted, 3,5-aryl-substituted from arylpyrroles, VIII: 42–48 VIII: 48–52 miscellaneous metals (aza-BODIPY dyes), analogs with extended aromatic conjugation VIII: 133–134 benz[c,d]indole-based dyes, and miscellaneous N,N-bidentate diphenyl VIII: 112–114 boron chelates as analogs, bis-BODIPY systems, VIII: 117–119 VIII: 145–148 di(iso)indomethene dyes, VIII: 112 and modifications to meso-aromatic phenanthrene-fused systems, substituents on core, VIII: 15–18 VIII: 114–116 from palladium-catalyzed coupling porphyrin-fused systems, VIII: 116 reactions at 3-/5-positions, restricted systems, VIII: 104–112 VIII: 61–65 azobenzene derivatives as analogs, poly(aryleneethynylene)s (PAEs) VIII: 144–145 co-containing (2,6-positions) benz[c,d]indole-based (extended polymers, VIII: 86–89 aza-BODIPY dyes), VIII: 130–131 pyridine-based systems as analogs,

biimidazol-2-yl-BF2 complexes as analogs, VIII: 142–143 VIII: 141–142 restricted systems (extended aza-BODIPY BODIPY-based organoboron polymer, dyes), VIII: 126–130 VIII: 89–90 and substitution of fluoride atoms in

boryl-substituted thienylthiazoles as BF2-group analogs, VIII: 148–150 with alkoxide groups, VIII: 98–100 cyclized aza-BODIPY dyes, VIII: 131–133 with alkyl groups, VIII: 90 and fluorescence control via photoinduced with alkyne groups, VIII: 92–98 electron transfer, VIII: 18–24 with aryl groups, VIII: 91–92 fluorescent boron derivatives with boronium/borenium cations, (oligoBODIPYs) and, VIII: 456–461 VIII: 100–101 fundamental properties of, VIII: 4–6 syntheses from fused perylene tetracarboxylic diimides ketopyrroles (unsymmetrical), and, VIII: 138–140 VIII: 12–13 future research of, VIII: 153 pyrrole-2-carbaldehyde (symmetrical), general characteristics of, VIII: 3 VIII: 12–15 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 32 FA

32 Cumulative Index to Volumes 1–25

pyrroles/acid chlorides/anhydrides bis-ammine/amino ester/phosphine (substituted), VIII: 7–8 complexes and, VI: 159–160 pyrroles/aldehydes (unsubstituted), bridged dimeric complexes [six-coordinate VIII: 8–12 monomeric Fe(III) porphyrin syntheses of unsubstituted, VIII: 6–7 complexes] and, VI: 125–128 tetra-aryl systems (aza-BODIPY dyes), chromium porphyrins, VI: 298–299 VIII: 119–126 cobalt porphyrins, VI: 268–275 and through-bond energy transfer cassettes, Cu(II) and Ag(II) porphyrins, VI: 294–297 VIII: 70–86 cytochrome oxidase/NO reductase and, and through-space energy transfer VI: 96–102 cassettes, VIII: 65–70 cytochrome P450/chloroperoxidase and, VI: 96 and use of metals other than boron, deoxyhemoglobin/deoxymyoglobin and, VIII: 102–104 VI: 93–96 water-soluble from coupling/substitution (dxz,dyz)4 (dxy)1 ground state of low-spin reaction, VIII: 40–42 Fe(III) porphyrins and, VI: 161–164 electrophilic substitution reaction, and effect of porphyrin substituents on VIII: 39–40 pattern of spin delocalization, BODIPYs VI: 147–150 substituted Fe(I)

fluoride atom substitution in BF2-group porphyrins and, VI: 83–84 with alkoxide groups, VIII: 98–100 Fe(II) alkyl groups, VIII: 90 porphyrin π-cation radicals and, alkyne groups, VIII: 92–98 VI: 106–107 aryl groups, VIII: 91–92 Fe(III) boronium/borenium cations, complex of tetraphenyl-21-oxaporphyrin VIII: 100–101 [six-coordinate monomeric Fe(III) with heteroatom substituents, VIII: 24–39 porphyrin complexes] and, from pyrroles/acid chlorides/anhydrides, VI: 123–124 VIII: 7–8 complexes of mono-meso-octaethyloxa- from pyrroles/aldehydes, VIII: 8–12 porphyrin/mono-meso- water-soluble BODIPYs from, octaethylazaporphyrin VIII: 40–42 [six-coordinate monomeric Body radioprotection, medical effects of Fe(III) porphyrin complexes] water-soluble metalloporphyrins, and, VI: 124–125 XI: 375–376 corrole π-radicals, VI: 256–258 Bombesin, IV: 144, IV: 279–280 dioxooctaethylisobacteriochlorin Bombesin-conjugated phthalocyanine, complexes [six-coordinate structure of, XVIII: 284 monomeric Fe(III) porphyrin Bond dissociation energy (BDE), complexes] and, VI: 123 manganese-oxo complexes (corrole high-spin Fe(III) synthesis/reactivity) and, XIV: 549–551 π-cation radicals, VI: 251–252 Bond length alternation (BLA), I: 509 porphyrins and, VI: 107–128 Bonding, metal ion/spin state effects hydroxide/fluoride complexes and, 1H/13C NMR spectroscopy of high-/ VI: 103 low-spin ferriheme proteins and, imidazolate ligands and, VI: 152 VI: 190–251. See also Ferriheme and imidazole plane orientation, proteins VI: 152–159 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 33 FA

Cumulative Index to Volumes 1–25 33

intermediate-spin octaethyl-/tetraphenylchlorin [six- Fe(II) porphyrins and, VI: 85, coordinate monomeric Fe(III) VI: 88–93 porphyrin complexes] and, Fe(III) porphyrins and, VI: 128–132 VI: 117–121 and kinetics of axial ligand exchange, π-cation radicals of oxophlorins, VI: 187–188 VI: 254–256 lanthanide porphyrins, VI: 292–294 paramagnetic shift summary and, low-spin Fe(III) VI: 299–303 complexes of rhodium porphyrins, VI: 275–278 meso–meso-linked 5,5′- ruthenium/osmium porphyrins, bis(10,15,20-triphenyl- VI: 266–268 porphyrin), VI: 178–179 six-coordinate diamagnetic Fe(II) N-alkylporphyrins, VI: 186 porphyrins and, VI: 84–87 reduced hemes, VI: 182–185 six-coordinate monomeric Fe(III) π-cation radicals, VI: 254 porphyrin complexes and, porphyrins. See Low-spin Fe(III) VI: 112–116 porphyrins spin-admixed/intermediate-spin Fe(III) low-spin Fe(III)/low-spin Fe(II) π-cation radicals, VI: 253–254 porphyrin electron exchanges, spin delocalization and, VI: 39–41 VI: 188–190 and spin delocalization mechanism manganese porphyrins, VI: 278–284 summary, VI: 299–303 and mixed ground state behavior of sulfhemins [six-coordinate monomeric bis-cyanide complexes, Fe(III) porphyrin complexes] VI: 164–167 and, VI: 117 and mixed ground state behavior of and thermodynamics of axial ligation of bis-(pyridine) complexes of Fe(III) porphyrins, VI: 186–187 low-spin ferrihemes, VI: 167–174 two Fe(III) octaethylisobacteriochlorin and mixed ground state behavior of isomers [six-coordinate bis-(pyridine) complexes of monomeric Fe(III) porphyrin oxophlorins/meso-amino complexes] and, VI: 121–122 porphyrins, VI: 174–178 V(IV) porphyrins, VI: 297–298 mixed-ligand complexes and, verdoheme analogs (OEOP) and, VI: 160–161 VI: 104–105 monooxochlorin complex Fe(IV) [six-coordinate monomeric porphyrin π-radicals, VI: 261–266 Fe(III) porphyrin complexes] porphyrins, VI: 258–261 and, VI: 122–123 five-coordinate N-alkyl/aryl porphyrin complexes and, diamagnetic Fe(II) porphyrins and, VI: 85 VI: 103–104 high-spin Fe(II) porphyrins and, N-modified macrocycle complexes and, VI: 93–106 VI: 105–106 low-spin Fe(III) porphyrins/porphycene, neutral imidazole ligands and, VI: 179–182 VI: 150–152 monomeric Fe(III) porphyrin complexes nickel porphyrins, VI: 284–292 and, VI: 107–112 and NMR studies of low-spin Fe(III) and g-values of low-spin Fe(III) porphyrins with (dxy)2(dxz,dyz)3 porphyrins/ferriheme proteins, ground state, VI: 147–161 VI: 135–138 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 34 FA

34 Cumulative Index to Volumes 1–25

and Griffith’s three-orbital theory/data for from boronated porphyrins, IV: 231–232 low-spin Fe(III) porphyrins, from chlorophyll a derivatives, VI: 134, VI: 139–147 IV: 233–236 Bonella viridis, XIII: 257 dual PDT and BNCT sensitizers, Boophilus microplus, and heme uptake/ IV: 192–193 detoxification in insects, XV: 23 from methyl pheophorbide a, IV: 233–236 Bordetella pertussis from pyropheophorbide a (Ppa), IV: 236, and diguanylate cyclase-containing globin IV: 237 coupled sensors, XV: 142–143 See also Chlorins (2,3-dihydroporphyrins) extracellular signaling mechanisms and, Boronated corroles, IV: 198, IV: 207–208 XV: 386–387 Boronated meso-tetraphenylporphyrin (TPP), Boric acid, synthesis of TBPs and Pcs and, IV: 193 II: 3 Boronated phthalocyanines Boron chlorosubphthalocyanine derivative boronated Zn(II) phthalocyanines, (SubPcCl), as absorbing donor material IV: 237–242

for C60-based solar cells, X: 148–149 boron subphthalocyanine (subPc), IV: 59–60 Boron derivatives (oligoBODIPYs), dual PDT and BNCT sensitizers, IV: 192–193 open-chain oligopyrrole systems and, synthesis, IV: 193, IV: 194, IV: 200, VIII: 456–461 IV: 236–242 Boron dipyrromethene (BODIPY), XX: 81 See also Phthalocyanines (Pc) Boron neutron capture therapy (BNCT) Boronated porphyrins, IV: 191–192 basis of BNCT, IV: 192–194 BOPP, IV: 194, IV: 195, IV: 222 boronated porphyrins, advantages, CuTCPH, IV: 194, IV: 196–197, IV: 192–193 IV: 209–210, IV: 215 p-boronophenylalanine (BPA), IV: 192 H DCP, IV: 194, IV: 196–197, IV: 206 2 comparison of BNCT and PDT, IV: 193 history, IV: 194–198, IV: 199 dual PDT and BNCT sensitizers, IV: 146, synthesis, IV: 198–200 IV: 192–193 VCDP, IV: 194–195 high-linear energy transfer (high-LET) synthesis, IV: 198–200 alpha-particles, IV: 192 from carboranyl-aldehydes, IV: 204–215 history of porphyrin-mediated BNCT, β-carboranylporphyrins, IV: 226–230 IV: 194–198 from carboranylpyrroles, IV: 216–220 PPIX derivatives, IV: 146 cobaltacarboranylporphyrins,

sulfhydryl boron hydride (Na2B12H11SH or IV: 220–224, IV: 225, IV: 226, BSH), IV: 192 IV: 227, IV: 228 tetra-/octachloromethylphthalocyanine “2 + 2” condensations of carboranyl- precursors and, III: 62 benzaldehydes, IV: 210–213 Boron units CuTCPH, IV: 196–197, IV: 209–210 and aryl-substituted anion receptors, dicarboranylbenzaldehyde condensation VIII: 211–219 with pyrrole, IV: 213–215 pyrrole-based π-conjugated acyclic anion from functionalization of preformed receptors and, VIII: 225–227 porphyrins, IV: 220–230 synthesis/properties of boron complexes of H2TBP, IV: 206–207 dipyrrolyldiketones, VIII: 205–211 H2TCP, IV: 204–206 B(III) complex of NFTPP, X-ray structure of, history, IV: 194–198, IV: 199 II: 347, II: 349 porphyrins of high boron content, Boronated chlorins IV: 213–215 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 35 FA

Cumulative Index to Volumes 1–25 35

porphyrins with up to four boron Bromide complex, and crystallographical clusters, IV: 204–213 structures using pyrrole β-CH site, protoporphyrin-IX (PPIX), IV: 194 VIII: 184–185 tetracarboranylporphyrin, IV: 197–198, Bromoethanesulfonate (BES), XIX: 5 IV: 210–212, IV: 217, IV: 226, Brominated IV: 228 naphthalocyanine, IV: 90 Boronated protoporphyrin-IX (PPIX), porphyrins as radiosensitizers, IV: 98 IV: 192–193, IV: 194 Bromoiron(II) m-benziporphyrin, crystal Boronated TPP, heterodimer from reaction of structure of, II: 144 2-bromoTPP with, II: 220, II: 223 Bromoporphyrins Boron-doped diamond (BDD) as electrode allylation of, II: 58–59 substrate, V: 222 metal-catalyzed reactions of, II: 58–65 Boronium/borenium cations, fluoride atom Bromotetradehydrocorrin, XVII: 31

substitution in BF2-group of BODIPYs Brunauer-Emmet-Teller (BET), mass with, VIII: 100–101 transducers and, XII: 158 Borylation Brust method and metal nanoparticles, β-borylation (C–B coupling), III: 377–378 XII: 359–360 meso-borylation (C–B coupling), BSubPcCl, XVIII: 62, XVIII: 67–68 III: 374–377 B-subPc/AlPc/GaPc/InPc/TlPc absorption Boryl-substituted thienylthiazoles as analogs, spectra, IX: 78–86 BODIPYs and, VIII: 148–150 B-substituted isomeric Mn(III) Bovine serum albumin (BSA) N-alkylpyridylporphyrins, SOD mimics chlorin e6 conjugates, IV: 142–143, and, XI: 319–321 IV: 152–154, IV: 344 BtuB, transmembrane protein, XXV: 217 hematoporphyrin (Hp) conjugates, IV: 150, upon TonB-binding, XXV: 221 IV: 156, IV: 343–344 BtuCD, inner membrane permease, XXV: 220

metallophthalocyanine conjugates, BtuC2D2, XXV: 223

IV: 83–84, IV: 343–344 BtuC2D2F, XXV: 223 noncovalent bioconjugates, IV: 62, IV: 78, BtuC subunits, XXV: 223 IV: 125, IV: 127–128, IV: 343 BtuD subunits, XXV: 223 BpeGReg, XV: 142–143 BtuF, periplasmatic transporter, XXV: 222 BPI metal complexes, XVII: 190–206 Buchwald–Hartwig as catalysts, XVII: 206–215 cross-coupling, III: 385–386 B-perfluororalkylated porphyrins, Suzuki-type reaction C–C coupling reactions and, III: 340 2-arylaminoporphyrins and, II: 241 Bradyrhizobium japonicum formation of C–C and C-heteroatom transcriptional heme regulation and, through, II: 194 XV: 384 Bulk heterojunction (BHJ) solar cell UROGEN conversion to heme (CPDH) configurations, XVIII: 62 and, XV: 196–197 Butadiene porphyrins, Stille C–C coupling Breast cancer resistance protein (BCRP) reactions and, III: 346 and heme export in mammals, XV: 28 Butadiyne–bridged porphyrin dimers, and transport of CPgenIII into/PPgenIX XXIII: 245 within mitochondria, XV: 13 Butadiyne–linked porphyrin dimer, B-ring reduced chlorins (semisynthetic Pd-catalyzed synthesis of, XXIII: 237 chlorophylls), XI: 277–280 BxRcoM-2, XV: 444 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 36 FA

36 Cumulative Index to Volumes 1–25

C C–H bond insertion, XXI: 346–352 1*Chlide a, XX: 87 ruthenium-catalyzed intramolecular 1-Cyano-4-dimethylaminopyridinium carbene, XXI: 351 tetrafluoroborate (CDAP), IV: 153, C–H hydroxylation, XXI: 390–392 IV: 154 hydroxylation of cyclophosphamide, 1-Cyano-octamethylisobacteriochlorin, XXI: 391 XVII: 14 mechanisms of hydroxylation, 2-Cyano-tetraphenylporphyrin (2-cyanoTPP), XXI: 392–394 from 2-bromoTPP, II: 210 CN-Cbl based imaging agents, XXV: 114 3-Carbonyl/related substituents (semisynthetic C–N coupling. See Palladium-catalyzed chlorophylls), XI: 246–250 C–N coupling 5-(4-Carboxyphenyl)-10,15,20- C–O coupling. See Palladium-catalyzed tri(phenyl)porphyrin cobalt(II). C–O coupling see CoCTPP CO sensor proteins 5-Cyano-octamethylisobacteriochlorin, BKCa, XV: 444 XVII: 15 BxRcoM-2, XV: 444 9-Capronyloxytetrakis (methoxyethyl) circadian rhythms porphycene (CPO), IV: 408–409, (NPAS2/CLOCK/E75/DHR52/ IV: 410 Rev-erbα/Rev-erbβ), XV: 444–445 21-Chlorobenzocarbaporphyrin, ORTEP III CooA, XV: 443 drawing, XVI: 42 cystathionine β-synthase, XV: 443–444 22-Carbaazuliporphyrins systems modulating CO response, XV: 445

dication, in TFA-CDCl3, 500 MHz proton CO2 reduction to CO, self-assembled NMR spectrum of, XVI: 260 porphyrin nanostructures and, synthesis, protonation and oxidation of, XI: 211–212 XVI: 258 Caenorhabditis elegans 23-Carbaazuliporphyrin, synthesis and heme biosynthesis and, XV: 163 protonation of, XVI: 247 and heme transport in helminths, 23-Carbabenziporphyrin, oxidation with silver XV: 24–25 acetate, XVI: 263 iron -related disorders and, 24-Carbaoxybenziporphyrins, synthesis of, XV: 105 XVI: 248 and transport of PPIX to FECH, XV: 15 C -pathway to ALA formation Calamitic liquid crystals, defined, XII: 2 5 general discussion/history of, Calcium binding sites and peroxidases XV: 164–165, XV: 170 heme pocket maintenance and, glutamate-1-semialdehyde-2,1-aminomutase VI: 398–399 (GSAM) and, XV: 173–175 role of calcium, VI: 400 glutamyl-tRNA reductase (GluTR) and, Calcium phosphate nanoparticles, XV: 170–173 XVIII: 203 C-alkylation product of carbaporphyrin, Calculated density functional theory, I: 314 mechanism for formation of observed, Caldariomyces fumago XVI: 48 freeze-quench EPR experiments and C- and N-glycoconjugated pyrrolidine-fused Compounds I/ES, V: 308–310 chlorins, II: 260, II: 261–262 generation/characterization of C-fused corrole, synthesis from doubly chloroperoxidase Compound I N-confused bilane, XVI: 311 in state of, V: 303–304, V: 323 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 37 FA

Cumulative Index to Volumes 1–25 37

Calixarenes substituted, XVIII: 145–146 and 2D/3D supramolecular architectures, structure of, XVIII: 146 XIII: 184–188 supramolecules with, XVIII: 150 Au/Zn-porphyrin hetero-aggregates energy molecular model of hydrogen-bonded transfers and, XIII: 182 capsule, XVIII: 152 and continuous variation method, structure of CsF complex, XVIII: 151 XIII: 180–181 Calixarene platform arrangement, cofacial crystals and, XIII: 183–184 porphyrin dimers and, I: 56, I: 60 general structure, XIII: 173–174 Calixazulenes, XVI: 270 and hierarchical control of noncovalent Calix[4]-2-methoxyazulene [(1,1,1,1)(1,3)- syntheses, XIII: 183 2-methoxyazulenophane], II: 174 modular synthetic approach, XIII: 182 Cambridge Crystallographic Database, I: 235, photoinduced electron transfer and, I: 241 XIII: 176–177 cAMP receptor protein (CRP), CooA and, and stoichiometric ratio/molecularity XV: 145–146 relationship, XIII: 183 Cancer structures of trans-DMPyP4 porphyrin antioxidative mechanism of action for, 37–39, XIII: 186 XI: 365–368 sulfonato derivatives, XIII: 173–178 MnP in brain cancer model, XI: 369 Calix[4]arene spacer, cofacial bisporphyrins MnP in breast cancer model, XI: 369 held together by, XI: 91–97 MnP in prostate cancer model, XI: 369 Calix[4]azulenes [(1,1,1,1)(1,3)- MnP in skin cancer model, XI: 368–370 azulenophane], II: 174 pro-oxidative mechanism of action for Calix[4]azulenes cancer, XI: 370–371 synthesis from azulenes/paraformaldehyde Cancer phototherapy, heme biosynthesis and, in presence of Florisil, XVI: 271 XV: 162–163 synthesis with four appended ferrocene Cancer therapy. See also Photodynamic units, XVI: 272 therapy of cancer (PDT) 1,8(11), Calix[5]azulenes, XVI: 270 15(18),22(25)-tetraphenyl- Calixphyrins, XVIII: 143 thiophthalocyanines and, III: 176 Calix[n]phyrins, XVIII: 143–144 alkylation and terminal functional groups, Calix[n]pyrroles, XVIII: 141–142. III: 169 see also and phthalocyanine sulfoacids and anion binding in, XVIII: 144 derivatives, III: 83, III: 88–89 expanded, XVIII: 146–148 theraphthal and, III: 105–106 benzoate complex, XVIII: 148 and water-soluble carboxyphthalocyanine chloride anion complex, XVIII: 148 derivatives, III: 106–107 heteroatom substituted porphyrinogenic Candida albicans, IV: 74, IV: 392–393 , XVIII: 147 and heme uptake in yeast, XV: 20–21 pentapyrrolic porphyrinogenic CaPc absorption spectra, IX: 21–24 compound, XVIII: 146 Capped porphyrins with shortened polyether N-confused, XVIII: 144–145 chain, XXIV: 257 crystal structure of, XVIII: 145 Capped tetraphenylporphyrin, XXIII: 91 with peripheral fused rings, XVIII: 148–149 Capping molecules, Glaser–Hay coupling crystal structure of, XVIII: 149 reaction and, I: 11 2,3,5,6-tetrachlorobenzoquinone Carbachlorins, II: 162 complex of, XVIII: 150 synthesis and protonation of, XVI: 50 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 38 FA

38 Cumulative Index to Volumes 1–25

Carbahemiporphyrazines, II: 162, II: 163, phosphanyl and phosphoryl derivatives of, XVII: 148–155 XVI: 230 “agostic” type bonds, XVII: 157, 159 synthesis and related silver(III) derivative, alternate, XVII: 167–173 XVI: 227

spectra of free base H3bzpc(OH), Carbaporphyrinoids XVII: 171 aromaticity and NMR chemical shifts of

spectra of free base H2dchp(OH)2, inner vs. perimeter hydrogens of, XVII: 171 II: 108–109 + structure of [Ag(I)(dchp(OH)4)py] , as heteroporphyrin with CNNN for a XVII: 170 XNNN cavity, II: 106 structures of anti bis-phenol and macrocyclic and local aromaticity of resorcinol modified dchp benzene in, II: 110 macrocycles, XVII: 168 magnetic properties as criteria for direct M–C bonds, formation of stable aromaticity of, II: 108–109 metal complex, XVII: 162 nomenclature and numbering system of, effects of peripheral substitution on II: 107 properties of, XVII: 167 organometallic compounds and, II: 106 internal C–H positions, XVII: 157 and related systems with expanded or activation of, XVII: 161 contracted cores structure of Ag(I)(dchp)py, XVII: 157 contracted carbaporphyrinoids, metal binding chemistry of, XVII: 156 XVI: 304–314 metal chemistry of, XVII: 155–166 expanded carbaporphyrinoids, structural characterization, XVII: 156 XVI: 284–304 metal-macrocycle Ag–N bonds, XVII: vinylogous porphyrins, XVI: 279–283 157–158 systems structurally characterized metal complex examples of, XVI: 4 of, XVII: 157 expanded, XVI: 284–304 structures of systems, with external heteroatoms Ag(I)(dchp)py, XVII: 157 N-confused porphyrins, XVI: 197–221

Co(III)(bzpcOH)py2, XVII: 166 O- and S-confused heteroporphyrins,

Co(III)(bzpc)py2, XVII: 166 XVI: 221–230 Cu(I)(dchp-py)py complex, XVII: 161 pyrazoloporphyrins, XVI: 231–241

H2dchp free base with DMSO, Carbaporphyrinoid systems, XVIII: 328 XVII: 151 transformations of, XVIII: 329

Li(H2bzpc)H2O, XVII: 166 Carbaporphyrin, electron impact mass Li(Hdchp)py, XVII: 160 spectrum of silver(III), XVI: 45 macrocycles, XVII: 150 Carbaporphyrin ketals Ni(II)(dchp), XVII: 163 in chloroform and 5% TFA-chloroform, Ni(II)(Odchp), XVII: 164 UV-vis spectra of, XVI: 39 Zn(dchp)py, XVII: 160 proposed mechanism for formation of, Carbahexaphyrins, II: 179 XVI: 41 Carbaphthalocyanine, XVII: 152–153 synthesis with fused acenaphthylene rings, Carbaporpholactams, proposed mechanism for XVI: 40 formation of, XVI: 215 Carbaporphyrins and related systems, Carbaporpholactones XVI: 3 bridged, synthesis, XVI: 229 azuliporphyrins, XVI: 59–91 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 39 FA

Cumulative Index to Volumes 1–25 39

background Carbazoles aromaticity in porphyrinoid systems, dimerization reaction of, XVII: 272 XVI: 18–26 monoelectronic oxidation of, general synthetic methods, XVI: 10–18 XVII: 346–349 historical perspective, XVI: 3–8 Carbene additions, XVII: 96–98 nomenclature, XVI: 8–10 glycoporphyrin derivatives prepared by carbaporphyrinoids and related systems addition of carbohydratesubstituted with expanded or contracted cores α-diazoacetates, XVII: 96 contracted carbaporphyrinoids, reaction of nitrochlorins, XVII: 96 XVI: 304–314 tetra-functionalized bacteriochlorin expanded carbaporphyrinoids systems, obtained as diastereomeric mixture XVI: 284–304 from nitrochlorin, XVII: 97 vinylogous porphyrins, XVI: 279–283 Carbene Ru-porphyrins, XVIII: 308 carbaporphyrinoid systems with external alcohol adducts, XVIII: 307 heteroatoms Carbene transfer reactions, XXI: 324–325 N-confused porphyrins, XVI: 197–221 C–H bond insertion, XXI: 346–352 O- and S-confused heteroporphyrins, cyclopropanation reactions, XXI: 325–345 XVI: 221–230 olefination, XXI: 361–365 pyrazoloporphyrins, XVI: 231–241 of aldehydes, XXI: 362–364 deaza- and dideazaporphyrins, XVI: 275–279 coupling of diazo compounds, neo-confused porphyrins, XVI: 241–244 XXI: 361–362 porphyrin analogs with six-membered rings Ylide formation and subsequent reactions, benziporphyrins, XVI: 98–161 XXI: 353–361 naphthalene-containing porphyrinoid azomethine ylide formation/1,3-dipolar systems, XVI: 161–177 cycloaddition, XXI: 356–359 pyriporphyrins, XVI: 177–197 azomethine ylide intermediate, systems with two or more internal carbons XXI: 356 adj-dicarbaporphyrinoids, carbonyl ylide formation/1,3-dipolar XVI: 252–275 cycloaddition, XXI: 353–356 opp-dicarbaporphyrinoids, transition state conformation of XVI: 245–252 carbonyl ylide, XXI: 356 tropiporphyrins, XVI: 91–98 ylide formation/2,3-sigmatropic Carbaporphyrins, XVI: 4, XVI: 27–59 rearrangement, XXI: 359–361 and potential tautomeric equilibria, core Carbinols (semisynthetic chlorophylls), modified, XVI: 51 XI: 253–255 protonation of, XVI: 33 Carbocyclic CNNN-core porphyrins, II: 137 synthesis Carbohydrate recognition domain (CRD), by “3 + 1” approach, XVI: 27 IV: 267–268 with fused aromatic rings, XVI: 28 Carbohydrate–photosensitizer conjugates. tautomerization in, XVI: 29 See Sugar–photosensitizer conjugates Carbaporphyrins. See carbaporphyrinoids Carbon Carbasapphyrin , synthesis and 14C-labeled phthalocyanines, IV: 90–91 protonation of, XVI: 285 14C-labeled porphyrins, IV: 90 Carbasapphyrins, synthesis, properties and Carbon-based nanocomposites, XVIII: 178 reactivities of, II: 176, II: 177 carbon nanodiamond, XVIII: 185 Carbazates, meso-amination and, III: 382–383 carbon nanohorns, XVIII: 182–183 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 40 FA

40 Cumulative Index to Volumes 1–25

carbon nanotubes, XVIII: 178–182 Carbon nanostructures and porphyrins graphene sheets, XVIII: 183–185 carbon nanoparticles and, XII: 381–384 Carbon–carbon bond cleavage, as catalyzed by graphene and, XII: 378–381 cytochromes P450, V: 189 introduction, XII: 378 Carbon–hydrogen bond functionalization Carbon nanotubes (CNT), XVIII: 173, and aliphatic C–H activation by Compound I XVIII: 175, XVIII: 178–182 of CYP450, X: 108–120 biosensors and, V: 246–249 and amination of chiral picket fence for photoelectrochemistry and electro- porphyrins, X: 75–76 chemical biosensing, XVIII: 179 and aromatic C–H activation by Compound I importance of (in nanometer scale of CYP450, X: 125–127 structures), I: 134 and carbon insertion of chiral strapped noncovalent functionalization of, I: 401 porphyrins, X: 76–77 solubilization of, I: 400–401 and catalytic cycle of CYP450, X: 87–93 using surface to integrate porphyrins/ and hydroxylation of phthalocyanines as chromophores, chiral basket handle porphyrins, I: 186–190 X: 76–77 Carbon nanotubes-nanoconjugates chiral picket fence porphyrins, applying Suzuki coupling reactions, X: 73–74 I: 191–192 chiral strapped porphyrins, X: 76 functionalized with PAMAM dendrimers, and sulfoxidation by Compound I of I: 194–195 CYP450, X: 129–131 and grafting to form SWNT-PVP/ZnP and sulfoxidation of nanohybrids, I: 193–194 chiral basket handle porphyrins, placing pyridyl isoxazolino functionalities X: 77–78 along sidewalls of, I: 190 chiral picket fence porphyrins, X: 74 RuP functionalization and, I: 190–191 Carbon insertion of chiral strapped porphyrins, using surface to integrate porphyrins/ X: 76–77 phthalocyanines as chromophores, Carbon monoxide (CO), XV: 128 I: 186–190 axial ligand bands and Mn(II) porphyrins, Carbon nanotubes/surfaces functionalization VII: 446–448 covalent amide linkage with oxidized CNT, CooA and, XV: 144–148 X: 280 and heme-ligand regulation of kinase covalent C–C linkage between CNT/ activity, XV: 136–137 macrocycle, X: 281–285 heme sensor protein requirements and, covalent ester linkage with oxidized CNT, XV: 125–126 X: 280–281 mammalian heme-PAS-containing proteins covalent pyrrolidine linkage between CNT/ and, XV: 139 spacer unit, X: 285–289 sGC and H-NOX domains and, and graphene functionalization via amide XV: 128–130 linkage, X: 289–292 Carbon nanodiamond, XVIII: 185 noncovalent diamond functionalization via Carbon nanofiber (CN), amperometric sensors C–C linkage/amide coupling, and, XII: 196 X: 293–294 Carbon nanohorns (CNHs), I: 422, noncovalent linkage between CNT/ XVIII: 182–183 macrocycle: π–π interaction, schematic illustrations of, XVIII: 183 X: 289–292 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 41 FA

Cumulative Index to Volumes 1–25 41

overview, X: 278–280 Carboranyl TBP Carbon paste electrode (CPE), V: 221 as sensitizer for BNCT for tumors, II: 14 Carbon-skeleton mutases, XXV: 183, as a sensitizer for PDT, II: 14 245A–246A synthesis of, II: 12–13 Acyl-CoA-mutases, XXV: 183–187 Carboranyl TPP, II: 14 glutamate mutase, XXV: 187–190 Carboranylpyrroles, IV: 216–220 methylene glutarate mutase, XXV: 190–191 Carboxydothermus hydrogenoformans, CooA Carbons, systems with two or more, internal and, XV: 144, XV: 147 adj-dicarbaporphyrinoids, XVI: 252–275 Carboxylated derivatives opp-dicarbaporphyrinoids, XVI: 245–252 aggregation behavior in water soluble Pcs, Carbon-transfer reactions, XXI: 148–149 VII: 280

cobalt, cyclopropanation, XXI: 206–222 Φ∆ and, VII: 319 Φ iron, XXI: 149–169 F and MPc(SO3)mix, VII: 313 Φ τ cyclopropanation, XXI: 149–158 ( T)/( T) and, VII: 316–317 olefination, XXI: 164–168 Carboxylated porphyrins, Sonogashira X–H insertion, XXI: 158–164 protocol for the synthesis of, II: 232 osmium, XXI: 203–206 Carboxylic acids rhodium, XXI: 223–237 and derivatives, as electron-withdrawing cyclopropanation, XXI: 223–233 groups of phthalocyanines, X–H insertion, XXI: 233–236 III: 95–111 ruthenium, XXI: 169–203 and electrophilic substitution reactions of cyclopropanation, XXI: 169–183 BODIPYs with heteroatom X–H insertion, XXI: 183–187 substituents, VIII: 28 ylide-forming reactions, XXI: 187–200 and synthesis of extended porphyrins by Carbonyl ylide formation/1,3-dipolar template condensation, XIII: 26–27 cycloaddition, XXI: 353–356 synthesis of substituted hybrids employing, Carboplatin, IV: 437 XVI: 345 Carborane functionalized porphyrins, Carboxyphenyl-substituted porphyrins, Suzuki-type C–C coupling reactions XVIII: 16–19 and, III: 336–337 Carboxyphthalocyanine derivatives and cancer Carboranes, IV: 146 treatment, III: 106–107 meta-carborane structure, IV: 193 Carboxyphthalocyanines, structures of, nido-carborane structure, IV: 193 XVIII: 272 ortho-carborane structure, IV: 193 Cardanol, cashew industry byproduct, II: 237 β-carboranylporphyrins, IV: 226–230 Cardanol-based porphyrins, ruthenium- cobaltacarboranylporphyrins, IV: 220–224, catalyzed C–C coupling reactions and, IV: 225, IV: 226, IV: 227, IV: 228 III: 354–355 common carboranes attached to porphyrins, Carotenoids, amino acid binding and, IV: 193, IV: 200 I: 225–226 closo-dodecaborane structure, IV: 193 as light-harvesting pigments, XI: 228 protoporphyrin-IX (PPIX) conjugate Carotenoids, conjugates with, XVIII: 290–294 formation, IV: 146 electronic interactions between synthesis, IV: 200–203 phthalocyanine and, XVIII: 294 tetracarboranylporphyrin, IV: 197–198, photophysical properties of, IV: 210–212, IV: 217, IV: 226, XVIII: 293–294 IV: 228 structures of, XVIII: 290, XVIII: 293 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 42 FA

42 Cumulative Index to Volumes 1–25

Caspase-3, IV: 281, IV: 405–406, IV: 407, immobilized catalysts, X: 350–358. IV: 414 See also Bioinspired immobilized Cassava, XXV: 97 catalysts Cassettes methyl transfer reactions and, through-bond BODIPY energy transfer X: 334–338. See also Methyl cassettes, VIII: 70–86 transfer reactions through-space BODIPY energy transfer enzymic reactions, X: 315–316 cassettes, VIII: 65–70 and other bioinspired reactions and, Catalase (PDB ID: 3N3P), active site structure X: 361–364 of, XXI: 10 Catalytic 1,2-migration of functional groups Catalase, IV: 413 (electrochemical), X: 324–325 and biosensor fabrication, V: 269 Catalytic ammonolysis, trialkylsilyl- Catalase-like activity of MnP, XI: 331 substituted phthalocyanines and, III: 45 Catalase-peroxidases (KatGs) Catalytic applications classification, VI: 372 iron-oxo complexes and, XIV: 560 and multifrequency EPR spectroscopy/ manganese-oxo complexes and, reactivity of catalytic intermediates, XIV: 551–552 VI: 427 NO and. See Nitric oxide (NO) in from Mycobacterium tuberculosis, biological catalysis VI: 394–396 Catalytic C–heteroatom bond formation/ structural diagrams of KatGs, VI: 386–390 coupling, XXIII: 189–211, 258 from Synechocystis, VI: 390–394 alkoxylation. C–O bond formation, Catalysis by water-soluble metalloporphyrins. XXIII: 197–200 see under water-soluble metallo- β-arylaminoporphyrins by porphyrins XXI Buchwald–Hartwig arylation of Catalysts, XII: 280–282, XII: 404–405 β-aminogroup, XXIII: 199 and Fe release from SOD clusters, XI: 307 primary 5-aminoporphyrin, 5,5′-bis- oxidative coupling via palladium/copper, (porphyrinyl) secondary amine, I: 31–32 and 5-hydroxyporphyrin, and porphyrin array synthesis, I: 5 XXIII: 200 rhodium and metalloporphyrins, I: 97, zinc porphyrin core dendrimers formed I: 99, I: 102 via Ullmann coupling reactions and template-directed method of of meso-tetrakis(p-aminophenyl)- macrocyclization, I: 26 porphyrin, XXIII: 198 Catalysts of pincer-like palladium complexes, amination (Ullmann, Buchwald–Hartwig). open-chain oligopyrrole systems and, C–N bond formation, XXIII: 190–197 VIII: 443, VIII: 445–447 cobalt chiral porphyrin complex for

Catalysts with B12 enzyme functions highly enantioselective and artificial enzyme construction, X: 317–319 diastereoselective cyclo-

B12 model complexes, X: 315, X: 317 propanation, XXIII: 194 Bioinspired 1,2-migration reactions, palladium-catalyzed amidation of mono- X: 319–334. See also Migration and dibromoporphyrins with reactions different amides, XXIII: 193 asymmetric reactions and, X: 358–361 palladium-catalyzed multiple amination dehalogenation reactions and, reactions of brominated X: 338–350. See also diphenylporphyrin and Dehalogenation reactions tetraphenylporphyrin, XXIII: 195 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 43 FA

Cumulative Index to Volumes 1–25 43

palladium-catalyzed C–O bond formation Catalytic cycle of CYP450, X: 87–93 chiral diporphyrin via, XXIII: 258 ferric resting state/substrate binding in, heterodiporphyrin via, XXIII: 259 V: 168–172 phosphorylation. C–P bond formation, first electron transfer/ferric-ferrous XXIII: 206–211 reduction in, V: 173–174 sulfonylation. C–S Bond Formation, general information/processes/pathways XXIII: 200–206 for, V: 167–168 β-chiral porphyrins via palladium- O–O scission in, V: 179 catalyzed amidation of oxygen binding/autoxidation in, V: 174–178 β-bromo-tetraphenylporphyrin with peroxide dissociation in, V: 179 chiral amides, XXIII: 206 properties/reactivity of Compound I, V: 180 β-η1-palladio- and platinoporphyrins, second electron transfer/protonation in, XXIII: 211 V: 178–179 meso-aryloxy and alkoxy-substituted second protonation in, V: 179 porphyrins via palladium- steady-state kinetics/uncoupling in, catalyzed V: 181–182 C–O cross-coupling reactions, Catalytic intermediates of peroxidases XXIII: 201 reactions of, VI: 410–412 meso-chiral porphyrins from reactions of resonance raman (RR) characterization of 5,15-dibromo-10,20- catalytic intermediates, VI: 416–422 diarylporphyrins, XXIII: 202 X-ray structures of catalytic intermediates, meso-phosphanylporphyrins, VI: 412–414 XXIII: 211 Catalytic simulation of methylmalonyl-CoA meso-porphyrinylphosphine oxides, XXIII: mutase, electrochemical 1,2-migration 209 of functional groups and, X: 321–324 nickel-catalyzed C–C cross-coupling CaTBPP, XVIII: 16 reactions, XXIII: 203 on Au(111) surface, XVIII: 17 nickel-catalyzed C–N cross-coupling chemical structures of, XVIII: 17 reactions, XXIII: 203 Catechol, and hydroxy-/alkoxy-/ nickel-catalyzed C–O cross-coupling aryloxy-substituted phthalocyanines, reactions, XXIII: 203 III: 170 palladium-catalyzed C-heteroatom bond Catenanes formation reactions of non-covalently linked hybrids and, β-bromotetraphenylporphyrin, I: 178–179 XXIII: 205 self-assembly via rotaxanes and, palladium-catalyzed C–S bond I: 350–351 formation of monobromoporphyrin solar energy and, I: 178–179 with different thiols, XXIII: 204 Catharantine alkaloid, electrochemical palladium-catalyzed double C–S bond oxidation of, XVII: 320 formation of dibromoporphyrin with Cation radicals different thiols, XXIII: 204 oxoiron(IV), VII: 130–134 phthalocyanine–phosphonium salts, XXIII: porphyrin π-cation radicals, VII: 451–452 208 Cationic amphiphilic cyclodextrins, porphyrin cation radicals reacting with XVIII: 204 triphenylphosphine, XXIII: 207 Cationic bacteriochlorins, XVII: 28 synthesis of meso–phosphorylporphyrins, Cationic meso-substituted porphyrins. XXIII: 210 See also Calixarenes b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 44 FA

44 Cumulative Index to Volumes 1–25

syntheses with structural modifications, C–C linkage between CNT/macrocycle, and XIII: 157–160 covalent linkage of carbon nanotubes, Cationic porphyrins, electrostatic effects of, X: 281–285 XI: 323–324 CCAAT/enhancer-binding protein (C/EBP), Cationic species of pincer-like palladium IV: 430 complexes, open-chain oligopyrrole CCB proteins, interaction studies of, XIX: 395 systems and, VIII: 437–441 CCDC deposition numbers for single-crystal Cations structures of chlorophyll-related boronium/borenium, and fluoride atom hydroporphyrins, XIII: 266–271

substitution in BF2-group with, CCP-APX hybrid, XIX: 50 VIII: 100–101 CCP-Cytc complex, XIX: 73–75 for formation of pure intermediate-spin structure of complexes, VII: 60–61 CCP-cytc covalent complex, XIX: 74 Caulobacter crescentus CCP-yeast cytc, XIX: 73 and [2Fe-2S] + cluster as cofactor of CDE proteins FECH, XV: 63–66 oligomerization states/monomer interfaces FECH purification and, XV: 57 of, XIX: 244 globin coupled sensors and, XV: 141 structures for, XIX: 242 Cavitand-porphyrins, construction of, II: 90, CDE proteins superfamily, XIX: 232 II: 93, II: 94 monomers, XIX: 245 C–B coupling. See Palladium-catalyzed Cd(II)

C–B coupling complex of Z-dimer of 5,20-Ph2-NCP, CbiA, XXV: 62 II: 333, II: 335 CbiB, XXV: 64 optical sensors and, XII: 184–185 CbiD, XXV: 60 unsubstituted Pcs (UV-vis absorption data) CbiE, XXV: 61 and, IX: 130

CbiF, XXV: 59 cd1 NIR CbiH, XXV: 58 crystal structures and, XIV: 28–30 reaction and mechanism, XXV: 57 redox chemistry and, XIV: 30–32 ring contraction and methylation at C-17, spectroscopic data interpretations and, XXV: 56–58 XIV: 27–28

CbiK, XXV: 51 Cd2Pc3 absorption spectra, IX: 74–78 CbiL, XXV: 54 CdPc absorption spectra, IX: 74–78 C-20 methylation, XXV: 54–56 CdPc complexes, quantum yields for, reaction and structure, XXV: 55 VII: 335–337 CbiP, XXV: 62 CdSe-porphyrin nanoparticles, XVIII: 191

CbiT, XXV: 61 “CdSe-ZnS QD–H2P(m-Pyr)4” nanocomposites, CbiXL (CbiX), XXV: 51 ET process in, XXII: 134 CbiXS, XXV: 53 “CdSe/ZnS QD–porphyrin” nanocomposites, CblC protein, XXV: 203 XXII: 132 mechanistic scheme of dual reactivity Celecoxib, IV: 431–432 performed by, XXV: 204–205 Cell organelle targeting, IV: 329, IV: 331, C–C coupling, as catalyzed by cytochromes IV: 385–386 P450, V: 189 Candida albicans cell membrane targeting, C–C coupling reactions. See Organometallic IV: 393 C–C coupling reactions (porphyrins) photosensitizer localization sites, IV: 408, “C-clamp” motif, XXI: 115 IV: 409, IV: 410, IV: 411 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 45 FA

Cumulative Index to Volumes 1–25 45

See also Cellular targeting; Photodynamic porphyrin/phthalocyanines and carbon therapy (PDT); specific organelles nanostructures. See also Covalently Cell penetrating peptide (CPP), IV: 144–145, linked conjugates, fullerenes; IV: 147, IV: 220, IV: 278 Non-covalently linked hybrids, Cellobiose dehydrogenase (CDH) and fullerenes biosensor fabrication, V: 270 cocrystallates, I: 137–138 Cellular signaling, XI: 297–299 covalently linked nanoconjugates- Cellular targeting, IV: 329–331 carbon nanotubes, I: 186–195 lipoproteins as carrier systems, IV: 330 nanometer scale structures and, I: 133 liposomes as carrier systems, IV: 124, non-covalently linked IV: 329 nanoconjugates-carbon macrophages as PDT targets, IV: 73, nanotubes, I: 196–206 IV: 153, IV: 343 and parabolic dependence of electron micelles as carrier systems, IV: 329 transfer reactions, I: 138–139 See also Active targeting; Passive Charge-coupled device (CCD), optical sensors targeting; Photodynamic therapy and, XII: 169, XII: 178 (PDT) Charge-separated state, electron/energy Cellulose derivatives, optical sensors and, transfer and, XI: 11 XII: 315 Chelatase evolution, XXV: 53 Central metals Chelatases, XIX: 149 oxidative coupling and, II: 67 Chemical bonds, spin delocalization and, semisynthetic chlorophylls, XI: 276–279 VI: 55–57 of unsubstituted Pcs (UV-vis absorption Chemical catalysis, in polypyrrole data), IX: 102–136 electrochemistry, XVII: 257 Central Nervous System (CNS), medical Chemical exchange line broadening, effects of water-soluble linewidths and, VI: 33 metalloporphyrins and, XI: 358–362 Chemical models Ceramic superconductors, III: 487 cofacial bis-etioporphyrins, XI: 98–99 Cerebral palsy, medical effects of cofacial bisporphyrins held by water-soluble metalloporphyrins and, calix[4]arene spacer, XI: 91–97 XI: 361 flexible chains, XI: 57–66 CGP55847, IV: 256, IV: 262 rigid spacers, XI: 67–91 Chaetomium, and fungal NO reductase, cofacial bisporphyrins in V: 143 singlet-singlet studies, XI: 97–103 Chain-fluorinated substituted compounds, triplet-triplet studies, XI: 98–103 halogen-substituted phthalocyanines cofacial system, XI: 56–57 and, III: 72–76 DFT and transfer rates, XI: 100 Charge separation. See Chlorophyll analogs purple photosynthetic bacteria vs. charge recombination, I: 138–139 cyclic chemical models, XI: 140–146 Charge separation reactions (long-range), supramolecular structures of LH I/LH II, ferrocene-porphyrin-fullerene XI: 132–136 composites and, I: 11–12 reaction center structures and, XI: 50–56 and ideal electron transfer scenario, I: 148 (TPP)Rh, XI: 99–101 Charge transfer (CT) trisporphyrin, XI: 100–103 complexes, and binding affinities of Chemical sensors dipyrromethanes, VIII: 184 amperometric electrochemical sensors, transitions, IX: 6 XII: 195–199 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 46 FA

46 Cumulative Index to Volumes 1–25

analyte optical sensors, XII: 191–192 Chemically modified electrodes (CMEs) anion optical sensors, XII: 189–191 defined, V: 296 arrays, XII: 207–213. See also Arrays of PFV and, V: 214–215 chemical sensors Chemiluminescence. See Oxygen sensors, based on conductance changes, porphyrins/related compounds as optical XII: 151–156 Chemistry effects of water-soluble contact potential transducers and, metalloporphyrins XII: 160–162 β-substituted isomeric Mn(III) and deposition of self-assembled N-alkylpyridylporphyrins, porphyrins on solid substrates, XI: 319–321 XII: 138–141 catalase-like activity, XI: 331 and deposition on ITO/related surfaces, and electrostatic effects/structure-activity XII: 141–143 relationships and deposition on SWCNTs, XII: 143–144 anionic porphyrins, XI: 324–327 and electropolymerization of porphyrins on cationic porphyrins, XI: 323–324 carbon electrodes, XII: 138 neutral porphyrins, XI: 327–328 and functionalization of metal surfaces by and inhibition of activation of transcription SAM, XII: 148–151 factors, XI: 332–334 heavy metal ion optical sensors, metalloporphyrins (historical), XI: 298, XII: 180–189 XI: 300–304 hybrid porphyrin-mesoporous materials Mn(III) N,N ′-dialkylimidazolylporphyrins, and, XII: 146–148 XI: 321 importance of, XII: 124–125 Mn(III) N,N ′-dialkylpyramidazolyl Langmuir-Blodgett (LB)/ porphyrins, XI: 321 Langmuir-Schaefer (LS) films and, nitrosation and, XI: 331 XII: 127–136 ortho cationic layer-by-layer (LBL) deposition and, Fe(III) N-substituted pyridylporphyrins, XII: 136–138 XI: 318–319 mass transducers and, XII: 156–160 Mn(III) N-alkylpyridylporphyrins, nitrogen oxide (NOx) sensors, XII: 173–174 XI: 310–317 optical pH sensors, XII: 177–180 oxygen-derivatized porphyrins, optical sensors XI: 317–318 and consumer electronics, XII: 192–194 para/meta Mn(III) N-alkylpyridyl general information, XII: 162–164 porphyrins, XI: 321–323 other gases, XII: 174–176 peroxynitrite-reducing ability and, oxygen optical sensors, XII: 164–173 XI: 329–331 parameters for, XII: 125–126 pro-oxidative action and, XI: 334 polymeric matrices and, XII: 143, purity/characterization of Mn porphyrins, XII: 145–146 XI: 337–344 potentiometric electrochemical sensors, and reactions with reactive species (general XII: 200–207 overview), XI: 328–329 reflectance anisotropy spectroscopy (RAS) reactive oxygen species (ROS) and, and, XII: 192 XI: 304 voltammetric electrochemical sensors, reactive species/cellular signaling/oxidative XII: 199–200 stress (historically), XI: 297–299 Chemical shift perturbation mapping, 1H-15N and reactivity towards NMR spectra and, VI: 356–357 cellular reductants, XI: 332 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 47 FA

Cumulative Index to Volumes 1–25 47

HClO, XI: 332 trimeric and oligomeric systems, lipid-based reactive species, XI: 332 XXIII: 433–437 and SOD mimicking vs. Mn-transporting Chiral picket fence porphyrins mechanisms (stability), XI: 345–347 amination of, X: 75–76 superoxide and atropisomers of glycoconjugated dismutases (SODs) and, XI: 305 porphyrins, X: 19–20 reactivity/targets and, XI: 306–308 aziridination and, X: 69–72 reducing ability and, XI: 329 and binaphthyl group for catalytic stability, sources in E. coli, XI: 305–306 X: 8–9 synthesis of Mn porphyrins, XI: 334–336 chiroporphyrin development, X: 21–22

and thermodynamic effects of SOD mimics and D4-symmetric Halterman porphyrin, (Mn porphyrin-based), XI: 308–309 X: 15–18

Chemoautotrophic methanogens, XXV: 176 and D4-symmetric porphyrin, X: 10 Chemometrics. See Arrays of chemical sensors and electron-withdrawing trifluoromethyl CHENO, coadsorbents and, X: 168–169 group, X: 14–15 Chicken embryo chorioallantoic membrane hydroxylation of, X: 73–74 (CAM), IV: 384 and iron/manganese glycosylated Chimeric monoclonal antibody (cMAb), porphyrins, X: 18–19 IV: 160, IV: 164, IV: 333, IV: 338 and molybdenum complex with TBHP, Chiral basket handle porphyrins, X: 40–43 X: 15 hydroxylation of, X: 76–77 and ortho-aryl position attachment of ether structural example of, X: 3 groups, X: 24 ® sulfoxidation of, X: 77–78 and Oxone (KHSO5) and cis Chiral diporphyrins, III: 411 β-methylstyrene, X: 11 Chiral fortress, X: 46–47 and peptide chain attachment to Chiral phthalocyanines synthesis/ meso-positions, X: 25 characterization, XXIII: 374–375 and porphyrin on ortho-position of dimeric systems meso-aryl groups, X: 7–8 hetero-dimer systems, XXIII: 431–433 reactions of aromatic alkenes catalyzed by homo-dimer systems, XXIII: 428–431 [MnCl] complexes, X: 10–12 phthalocyanines with chiral carbons in side [RuCO] complexes, X: 12–13 chains reactions of olefins catalyzed by alkyl chain–substituted species, [MnCl] complexes, X: 8–9, X: 20–21 XXIII: 375–383 reactions of olefins catalyzed by small aliphatic ring–substituted species, [FeBr] complexes, X: 18–19 XXIII: 390–400 [MnCl] complexes, X: 15, X: 17 thioether-substituted species, [RuCO] complexes, X: 15–16

XXIII: 383–389 [RuCl2] complexes, X: 14 phthalocyanines with geometric asymmetry reactions of 1,2-dihydronaphthalene, XXIII X: 22–23

phthalocyanines, XXIII: 420–425 [Ru(O)2]5 and, X: 11 subnaphthalocyanines, XXIII: 426–427 structural example of, X: 3 subphthalocyanines, XXIII: 425 styrene reactions with PhIO and, X: 25–26 phthalocyanines with optically active sulfoxidation of, X: 74 aromatic substituents Chiral porphyrins, palladium-catalyzed C–C axial substitution, XXIII: 419–420 reactions and, III: 368, III: 373 peripheral substitution, XXIII: 401–418 synthesis of, II: 240 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 48 FA

48 Cumulative Index to Volumes 1–25

Chiral porphyrins, XXIII: 194 as dipolarophile, XVII: 78 Chiral strapped porphyrins derivatives, metalloporphyrin structure/ and 1,2-dihydronaphthalene reactions electron configurations and, catalyzed by [MnCl] complexes, VI: 14–16 X: 35–36 incorporation with porphyrin analogs, 2-nitrostyrene and, X: 27–28 V: 28–30 and binaphthyl-derived catalysts, X: 30–31 Soret band, XVII: 7 carbon insertion of, X: 76 systems. See Chlorophyll/ and catalytic oxidation with PhIO, X: 30–32 bacteriochlorophyll/chlorin/ cyclopropanation and, X: 64–68 bacteriochlorin systems development of, X: 26–27 UV-vis spectra, XVII: 6 and homochiral-strapped porphyrin with Chlorins, DSSCs, XVIII: 102–104 chiral cyclohexane auxiliaries, solar cell performances of, XVIII: 103 X: 36–37 structures for, XVIII: 103

and homochiral threitol-strapped Chlorin e6 porphyrins, X: 33–34 alkyl esters and derivatives, IV: 36–37

hydroxylation of, X: 76 bacteriophage–chlorin e6 conjugates, and olefins catalyzed by [FeCl] complexes, IV: 388–389 X: 38, X: 40 bovine serum albumin (BSA) conjugates, and picket fence/basket handle porphyrins IV: 142–143, IV: 152–154, IV: 344

with amino acids, X: 40 chlorin e6 (Ce6), alkyl esters and and proline-derived ligands, X: 38–39 derivatives, IV: 36–37 and reactions of aromatic olefins epidermal growth factor conjugates, catalyzed by IV: 347–348 [FeCl] complexes, X: 27–31, X: 33 estrogen conjugates, IV: 353–354 iron/ruthenium complexes, X: 34–35 ethylene diamine-appended tin(IV) chlorin

[Ru(O)2] complexes, X: 35 e6 [SnCe6(ED)], IV: 348

and reactions of olefins catalyzed by immunoglobulin G–tin(IV) chlorin e6

[MnCl] complexes, X: 38–39 conjugate (IgG–SnCe6), IV: 388

[Ru(O)2] complexes, X: 37–38 L19 fragment conjugate with chlorin e6, structural example of, X: 3 IV: 342 and styrenes with PhIO, X: 27–28 low density lipoprotein (LDL) conjugates, and threitol-strapped porphyrins, X: 37–38 IV: 345

Chiral wall, X: 8–9, X: 45–46 mesochlorin e6–MAb–linker conjugate, Chirality, LB/LS films and, XII: 134–136 IV: 339–340

Chiraphos, III: 373 mono-L-aspartyl chlorin e6 (NPe6), Chironomidae, FECH activity and, XV: 54 IV: 386, IV: 410 Chiroporphyrins, defined, X: 21–22 monoclonal antibody–linker conjugates, Chiroptical sensing, of asymmetric IV: 166–169, IV: 337–339 hydrocarbons, I: 24 monoclonal antibody (MAb) conjugates, Chitosan, as optode membrane material in IV: 159, IV: 160, IV: 330, IV: 335 polymeric matrices, XII: 145 peptide conjugates, IV: 141–143, Chlamydomonas reinhardtii IV: 151–155, IV: 280–281

GluTR/GSAM and coordination of heme photolon (chlorin e6–polyvinylpyrrolidone), biosynthesis in cell, XV: 203–204 IV: 37–38, IV: 387 GSAMs and, XV: 175 polystyrene microsphere conjugates with

Chlorins, XVII: 4, XVII: 19 chlorin e6, IV: 366–367 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 49 FA

Cumulative Index to Volumes 1–25 49

protein conjugates, IV: 151–155, cycloimide derivatives of chlorin p6 IV: 280–281, IV: 346 (CICD), IV: 38–39

structure, IV: 33, IV: 329 3-devinyl-3-formylchlorin p6 (FCp6), transferrin conjugates, IV: 346 IV: 37 See also Chlorins (2,3-dihydroporphyrins) dihydroxychlorins, IV: 41 Chlorin-carbohydrate conjugate, XXIII: 172 fluorinated chlorin conjugated to four Chlorinated copper phthalocyanine β-cyclodextrins (CDFC), IV: 43 preparation, halogen-substituted folic acid-chlorin conjugates, IV: 173–174 phthalocyanines and, III: 69–70 formylated chlorins (semisynthetic Chlorinated phthalocyanines, XVIII: 250 chlorophylls), XI: 261 Chlorin-diene derivatives, as building blocks frontier molecular orbitals of, VI: 48 in cycloadditions, II: 235 fully synthetic self-assembling BChl Chlorine-sensitive porphyrin-based mimic, I: 276–279 membranes, optical sensors and, metallochlorins, IV: 43–44 XII: 175 metalloporphyrin structure/electron Chlorins and tetraazachlorins, XXIII: 308–312 configurations and, VI: 10–11 electronic absorption/MCD spectra of molecular structures of, XI: 227

Cu(II)MAP/H2MAP/Cu(II)oppDAP/ with oxy-functionalized methyl group

H2oppDAP (in CHCl3), XXIII: 309 (CHOR), XI: 257, XI: 259

electronic absorption/ MCD spectra of PEGylated chlorin e6, IV: 37 π Pz/TAC/TAB/TAiB in CHCl3, -skeletons of semisynthetic chlorophylls XXIII: 312 and, XI: 236–237 molecular structures of pyrazole analogs, IV: 34–35 porphyrazine/tetraazachlorin/tetraaza- semisynthetic BChl mimics, I: 280–285, bacteriochlorin/tetraaza- I: 295–298 isobacteriochlorin, XXIII: 309 in stable anionic liposomes, IV: 34

partial MO energy diagram for H2Pz, structure, IV: 30–31

H2TAC, H2TAB and H2TAiB, structural chemistry of, XIII: 284–286 XXIII: 311 synthesis, IV: 5, IV: 30–31 tetraaza-analogs, XXIII: 310 m-tetrahydroxyphenylchlorin (Foscan, Chlorins (2,3-dihydroporphyrins), I: 256, Temoporfin), IV: 40–42, IV: 147, II: 194, IV: 30–44 IV: 160, IV: 254 absorption spectra, IV: 4–5 tetraphenylchlorin (TPC), IV: 145, IV: 146, 3-acetylbacteriochlorins (semisynthetic IV: 148, IV: 372–373 chlorophylls), XI: 263–265 meso-tetraphenylporphyrin (TPP) analogs, basic structure, XIII: 255 IV: 40–41 benzochlorins, IV: 27–28, IV: 32, Visudyne, IV: 30, IV: 254 IV: 131–134, IV: 135, IV: 136 See also Bacteriochlorins; boronated

carbohydrate conjugates, IV: 32–33, chlorins; chlorin e6 (Ce6); IV: 129, IV: 267–269, IV: 352 pheophorbides; tetra(meta- 5-[4-carboxyphenyl]-10,15,20-triphenyl- hydroxyphenyl)chlorin (m-THPC); 2,3-dihydroxychlorin (TPC), IV: 41 bacteriochlorophylls (BChl) chemical reduction of pyrrole ring and Chlorite dismutases (Clds), XIX: 232–233, symmetry of, VI: 47 XIX: 260 cycloaddition of meso-tetraarylporphyrin in irreversible inactivation of D. aromatica, synthesis of, II: 243–247 XIX: 264 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 50 FA

50 Cumulative Index to Volumes 1–25

kinetic constants for steady state reaction Chl a, XX: 5, XX: 147, XX: 215, XX: 223, of, XIX: 261 XX: 228, XX: 232, XX: 236 Michaelis–Menten parameters, XIX: 262 breakdown of, XX: 232 ′ O-atoms of O2 evolved from, XIX: 262 Chl a , XX: 215 reaction curves showing disappearance of, Chl a biosynthesis XIX: 263 from chlorophyllide a resonance Raman spectra of D. aromatica alcohol reduction and esterification, Cld, XIX: 267 XX: 128–129 spectra of, XIX: 265–266 enzymes involved in, XX: 116 Chlorite dismutation, XXI: 398–399 in cyanobacteria and plants, XX: 216–219, catalytic generation of chlorine dioxide XX: 221–222 from, XXI: 399 ALA formation, XX: 219–220 Chlorobaculum tepidum, I: 226, chlorophyll branch, XX: 224–226 XIII: 263–264 enzymes involved in chlorophyll and spectra of BChl c, VII: 184–186 metabolism in Synechocystis PCC. Chlorobiaceae, I: 223–224, I: 245, XIII: 257 6803 and Arabidopsis thaliana Chlorobium thiosulfatophilum, photosystems (Arabidopsis), XX: 216–219 of, XI: 7 synthesis of protoporphyrinogen IX, Chlorobium vibrioforme, photosystems of, XX: 220–224 XI: 7 Chl b, XX: 147, XX: 215, XX: 227–228 Chloroflexaceae, I: 223, I: 245, XIII: 257 synthesis from Chl a, XX: 227 Chloroflexus aurantiacus, and diastereomeric Chl b reductase (CBR), XX: 164 ligation of BChls, I: 231–232 Chl d, XX: 215, XX: 236 Chloroheme, V: 3 biosynthesis, XX: 230–231 Chloromaleonitrile, Diels-Alder reaction and, Chl f, XX: 146, XX: 215–216, XX: 235 III: 70 biosynthesis, XX: 230–231 Chloromethylation of phthalocyanine core, CHLG gene, XX: 164 preparation of phthalocyanines with CHLH (MgCh subunits), XX: 157, substituents connected to core via, XX: 190–191 III: 45, III: 61 multiple functions of, XX: 196–197 Chloronickel(II) dimethoxy-m-benziporphyrin, Chlide a, XX: 50, XX: 86, XX: 111, XX: 120, crystal structure of, II: 143 XX: 127, XX: 133, XX: 226 Chloronickel(II) p-benziporphyrin, crystal chromophores, XX: 89 structure of, II: 147 dyads, XX: 85 Chloropalladium(II) vacataporphyrin, crystal fluorescence emission spectra of, XX: 52 structure of, II: 150 models, XX: 87 Chloroperoxidase (CPO), XIX: 54–56 molecular trefoils, XX: 82–83 proposed mechanism of Compound I tetramer, XX: 87 formation in, XIX: 56 “Chlide a ,” XX: 165 structure of, XIX: 55 ChlL proteins, XX: 29 See Compound I Chlorins, 4, 48 Chlorophins, synthesis and UV-vis spectrum Chlorophylls (Chls), XII: 302, XX: 2, of, II: 208–209 XX: 48, XX: 146, XX: 214 Chlorophyll a, XXIII: 70 biosynthesis, XX: 4 Chlorophylls, XXIII: 70–72 biosynthesis of chlorophyll d and Chl. see Chlorophylls (Chls) chlorophyll f, XX: 230–231 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 51 FA

Cumulative Index to Volumes 1–25 51

chlorophyll b biosynthesis and “common” steps of tetrapyrrole chlorophyll cycle, XX: 227–230 biosynthesis, XX: 7–8 conversion of protoporphyrin IX BChl a, isocyclic ring formation, XX: 12–13 XX: 5 organisms containing both types of breakdown, XX: 231–232 cyclases, XX: 20–21 de-chelation and pheophorbide oxygen-dependent isocyclic ring formation, XX: 233 formation, XX: 13–17 toward formation of colorless products, oxygen-independent isocyclic ring XX: 233–235 formation, XX: 17–20 and chlorophyll-binding protein, potential additional functions of cyclase co-evolution of, XX: 237 genes, XX: 21 chlorophyll species magnesium insertion developed by genetic engineering of identification of magnesium chelatase Acaryochloris marina, XX: 236 genes, XX: 10 found in cyanobacteria and photosynthetic occurrence, XX: 9–10 eukaryotes, XX: 215 subunit function and catalytic dimer mimics, photophysics of, XX: 48–63 mechanism, XX: 10–11 diversity of pigments, XX: 216 methylation of propionate side-chain, found in bacteria, XX: 134 XX: 11–12 new species acquisition, XX: 235–237 reduction of 8-vinyl group, XX: 21 quality control of metabolism, esterification, XX: 35–36 XX: 191–192 identification of genes encoding 8-vinyl self-assembly capabilities of, XX: 89 reductases, XX: 24–25 self-association of, XX: 49 reduction of pyrrole ring B, XX: 33–35 sensing of free Chls and intermediates, reduction of pyrrole ring D, XX: 25–33 XX: 193–194 8-vinyl reduction step and its early light-inducible proteins (ELIP), localization in pathway, XX: 194 XX: 22–24 small cab-like proteins (SCP), XX: 194 Chlorophyll branch, XX: 155 stress-enhanced proteins (SEP), XX: 194 chlorophyll a biosynthesis in cyanobacteria specialized Chls, XX: 3 and plants, XX: 224–226 structural orientation of, XX: 56 Chl synthase attaches phytol tail to form Chlorophyll a, IV: 33, IV: 35, IV: 233–236 Chl a, XX: 163–164 Chlorophyll b, IV: 33 formation of isocyclic ring to form PChlide

Chlorophyll c1, XX: 215 by Mg-proto IX ME cyclase,

Chlorophyll c2, XX: 215 XX: 159–160

Chlorophyll c3, XX: 215 insertion of central magnesium ion by Chlorophyll analogs MgCh, XX: 155–159 absorption spectra of, X: 197–198, X: 202 biochemistry and reaction mechanism chlorin pigment and, X: 196 of MgCh, XX: 156–157 oxidation potentials and, X: 196–197 MgCh, multi-subunit complex, XX: 156 Chlorophyllase, XX: 233 plant mutants deficient in MgCh Chlorophyll biosynthesis, key enzymes of, subunits, XX: 157–159 XX: 2–3 methylation of Mg-Proto IX by Mg-proto biosynthesis of core ring structures of Chls IX methyltransferase, XX: 159 and BChls, XX: 8–9 Pchlide reduces PChlide a chlorophylls, types — reason, XX: 3–7 to form chlide a, XX: 160–163 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 52 FA

52 Cumulative Index to Volumes 1–25

DPOR, XX: 162–163 chlorophyll branch, XX: 224–226 POR, XX: 160–162 synthesis of protoporphyrinogen IX, reduction of 8-vinyl group by DV-chlide XX: 220–224 8-vinyl reductase, XX: 163 chlorophyll breakdown, XX: 218, Chlorophyll cycle, XX: 164–165 XX: 231–232 conversion of Chl a to Chl b by chlide a de-chelation and pheophorbide oxygenase, XX: 165 formation, XX: 233 conversion of Chl b to 7-hydroxymethyl toward formation of colorless products, Chl a by Chl b reductase, XX: 233–235 XX: 165–166 chlorophyll cycle, XX: 218 conversion of 7-hydroxymethyl Chl a to chlorophyll pathway, XX: 217–218 Chl a by HCAR, XX: 166 co-evolution of chlorophyll and chlorophyll- Chlorophyll derivatives, incorporation with binding protein, XX: 237 porphyrin analogs, V: 30 common pathway, XX: 217 structural chemistry diversified branches of chlorophyll dimers/reaction center models, biosynthesis XIII: 281–284 biosynthesis of chlorophyll d and metallopheophorbides, XIII: 265 chlorophyll f, XX: 230–231 pheophorbides, XIII: 274–278 chlorophyll b biosynthesis and phytochlorins/related compounds, chlorophyll cycle, XX: 227–230 XIII: 279–281 new chlorophyll species acquisition, Chlorophyll hetero-dyads XX: 235–237 CD spectra/absorption of, VII: 196–197 Chlorophylls, photophysics of, XVII: 11 structures of, VII: 196–197 Chlorophyll synthesis, and transport of PPIX Chlorophyllide, XX: 5 to FECH, XV: 14 Chlorophyllide a, XX: 222 Chlorophyll/bacteriochlorophyll/chlorin/ Chlorophyllide a biosynthesis bacteriochlorin systems C-8 vinyl reduction, XX: 118–120 comparison of experimental/calculated bchJ mutant, XX: 118 anisotropy factors, VII: 182 BciA homologs, XX: 119 Kirkwood model and, VII: 180 DV-Pchlide a, XX: 118 and natural BChl c, d, e and g, Gun4, XX: 118–119 VII: 184–185 D ring reduction, XX: 120–121 and natural chlorophyll a/ Chlide a, XX: 120 bacteriochlorophyll a and enzymes involved in, XX: 115 derivatives, VII: 173–184 isocyclic ring formation, XX: 117–118 and natural light harvesting complex 2 bchE gene, XX: 118 (LH2), VII: 185–191 Mg-Proto monomethyl ester, XX: 117 optical activity/absorption spectra and magnesium chelation, XX: 113 ether, VII: 179–180 methylation of C-13 propionate, XX: 117 rotational strengths/absorption and ether, Chlorophyllide a oxygenase (CAO), XX: 165, VII: 181 XX: 177, XX: 192, XX: 227 and synthetic chlorins/bacteriochlorins and Chlorophyll metabolism in photosynthetic dimeric/aggregated systems, organisms, XX: 214–216 VII: 191–196 chlorophyll a biosynthesis in cyanobacteria Chlorophylls (Chls) and plants, XX: 216–219 3-acetylbacteriochlorins (semisynthetic ALA formation, XX: 219–220 chlorophylls), XI: 263–265 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 53 FA

Cumulative Index to Volumes 1–25 53

amino acid binding and, I: 225–226 modified 6-membered E-rings bacteriochlorins (as synthetic (semisynthetic chlorophylls), hydroporphyrins), XIII: 287–288 XI: 267–271 basic structure of, XIII: 255–257 molecular structures of, XI: 52–55 benzochlorins (as synthetic 3-monosubstituted-methyl substituents hydroporphyrins), XIII: 288–289 (semisynthetic chlorophylls), XI: 250 and biological relevance of tetrapyrrole 31-monosubstituted-alkyl substituents conformations, XIII: 258–259 (semisynthetic chlorophylls), B-ring reduced chlorins (semisynthetic XI: 250–253 chlorophylls), XI: 277–280 peri-interactions (specifically designed carbinols (semisynthetic chlorophylls), hydroporphyrins), XIII: 289 XI: 253–255 peripheral effect (natural 3-carbonyl/related substituents chlorophylls), XI: 231–234 (semisynthetic chlorophylls), π-skeletal effect XI: 246–250 in organic solvents (natural central metals (semisynthetic chlorophylls), chlorophylls), XI: 229–231 XI: 276–279 semisynthetic chlorophylls, chlorins (as synthetic hydroporphyrins), XI: 236–240 XIII: 284–286 π-systems (semisynthetic chlorophylls), and conformational analysis of porphyrins, XI: 277–283 XIII: 259–262 photosynthetic antennas (natural dimers/reaction center models (as Chl chlorophylls), XI: 226, XI: 228–229 derivatives), XIII: 281–284 pheophorbides (as Chl derivative), 3-ethenyl substituents (semisynthetic XIII: 274–278 chlorophylls), XI: 240–245 photosynthetic Chl complexes, 3-ethynyl substituents (semisynthetic XIII: 262–265 chlorophylls), XI: 245–246 phytochlorins/related compounds (as Chl E-ring-opening substituents (semisynthetic derivatives), XIII: 279–281 chlorophylls), XI: 271–284 reactivity of, XIII: 255–257 formylated chlorins (semisynthetic solvent effects (natural chlorophylls), chlorophylls), XI: 261 XI: 234–236 fully synthetic chlorophylls, XI: 282–284 stereoselectively D-ring reduced chlorins hexahydroporphyrins (specifically designed (semisynthetic chlorophylls), hydroporphyrins), XIII: 289 XI: 280–282 historically, XIII: 254–255 structure of, XIV: 469–470 isobacteriochlorins structures/nomenclature and, XI: 225–227 as synthetic hydroporphyrins, 3-substituted bacteriochlorins/porphyrins XIII: 287–288 (semisynthetic chlorophylls), semisynthetic chlorophylls, XI: 282–283 XI: 255–257 light absorption and, XI: 226 7-substituents (semisynthetic chlorophylls), meso/β-interactions (specifically designed XI: 255, XI: 257–259 hydroporphyrins), XIII: 289–290 8-substituents (semisynthetic chlorophylls), metallopheophorbides (as Chl derivative), XI: 259–262 XIII: 265, XIII: 272–274 13-substituents (semisynthetic modified 5-membered E-rings chlorophylls), XI: 265–266 (semisynthetic chlorophylls), 20-substituents (semisynthetic XI: 266–267 chlorophylls), XI: 274–276 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 54 FA

54 Cumulative Index to Volumes 1–25

Chlorophyll-type pigments, use of treatment with DEPC, XIX: 349–350 20-brominated methyl pheophorbide electronic spectrum of, XIX: 345 and Sonogashira reaction, I: 22 electron transfer to MDA, XIX: 349 Chloroplasts, and exchanging materials expression and purification, XIX: 346 between plant organelles, XV: 36 and its homolog in neuroendocrine tissues, Chlorosomal bacteriochlorophylls (BChl) XIX: 345 diastereomeric ligation of BChls, I: 231–238 kinetics analysis of CGCytb reduction by early models for supramolecular interaction AsA, XIX: 351 of, I: 229–231 Nernst plot for oxidative and reductive properties of, I: 228–229 titration of, XIX: 348 Chlorosome mimics, self-assembled rod-like, physiological role, XIX: 345–346 XX: 93–94 reductive titration with AsA, XIX: 352 application of water-soluble (B)Chl spectra of CGCytb as function of derivatives, XX: 96 temperature, XIX: 348 long-term aggregate stability, XX: 96 stopped-flow kinetics of, XIX: 351 model for chlorosome-like self-aggregation X-band EPR spectra in sodium phosphate through hydrogen-bond interactions, buffer, XIX: 349 XX: 93 Chromaffin granules, XIX: 345 role of 3-position in self-assembly, Chromium XX: 98–100 unsubstituted Pcs (UV-vis absorption data) role of 13-position in self-assembly, and, IX: 114–115 XX: 94–95 imido complexes, corrolazines and, role of 17-position in self-assembly, XIV: 581–583 XX: 95–98 nitrido complexes, corroles and, Chlorosomes, XX: 109, XX: 129 XIV: 581–582 BChl in, XX: 99 oxo complexes defined, I: 223 aerobic oxidation of, XIV: 563–564 green sulfur photosynthetic bacteria and, resonance Raman (RR) spectroscopy XI: 229 for, XIV: 564–565 role in photosynthesis, I: 223–228 unsymmetrical, meso-substituted organization of BChls in, XX: 130 derivatives of, XIV: 565–567 Cholesterols, conjugates with, XVIII: 287–290 substituted hemoproteins, V: 27 structures of, XVIII: 288 Chromoionophore, XXV: 89 Chorioallantoic membrane (CAM), chick Chromophores, circular dichroism (CD) and, embryo, PDT and, XII: 402 VII: 149–150 Choroidal neovascularization (CNV), IV: 143 Chromophore frontier orbitals, idealized

Chromaffin granule cytochrome b561 relative positions of, XVII: 8 (CGCytb), XIX: 345 Chronoamperometry (CA), V: 252–254 biochemical analysis, XIX: 347–353 ChrS, heme sensor proteins and, XV: 426 chemical modification of CGCytb, Cibacron Blue-based column chromatography, XIX: 349–352 FECH purification and, XV: 55 proton-coupled electron transfer from CID ascorbic acid to, XIX: 350 supramolecular aggregation of, I: 109 role of two heme groups in cytochrome X-ray diffraction analysis of isomers of,

b561, XIX: 347–349 I: 108–109 site-directed mutagenesis study of Cinnamaldehyde, and CGCytb, XIX: 352–353 tetraaminophthalocyanines, III: 119 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 55 FA

Cumulative Index to Volumes 1–25 55

Circadian rhythms (NPAS2/ trimer space filling model from MM+, CLOCK/E75/DHR52/ XX: 92 α β Rev-erb /Rev-erb ), heme-regulated Cis-A2BC-porphyrin, XXIII: 64

transcriptional factors and, XV: 444–445 Cis-A2B2-porphyrin, XXIII: 37 Circular dichroism (CD) Cis-BCaTBPP, XVIII: 16–17 chromophore fundamentals and, chemical structures of, XVIII: 17 VII: 149–150 Cis-B4CTBPP, XVIII: 8–9 Cotton effects and, VII: 152–153 Cis-BECTBPP, XVIII: 12 defined, VII: 148 chemical structures of, XVIII: 14 and determination of absolute Cis-BPyP, XVIII: 27–28 configurations of natural products, chemical structures of, XVIII: 29 VII: 232–239, VII: 232–239 on Cu(111), XVIII: 29 and determination of helicity of Cis-bis-isoxazolidinebacteriochlorin, structure polyisocyanides, VII: 230–232 of, XVII: 86 diastereomeric ligation of BChls, Cis-chlorovinyl-cobalamin, XXV: 146 I: 232–234 Cis-DCPP, XVIII: 19 exciton coupling fundamentals and, monolayers of, XVIII: 20

VII: 150–153 Cis-diacid (C2R2) derivatives, XVIII: 19 of hemopexins, XV: 235, XV: 238 on HOPG, 21 and natural BChl c, d, e and g, VII: 184–185 Cis-diisothiocyanato-bis(2,2′-bipyridyl-4,4′- and natural chlorophyll a/ dicarboxylato)ruthenium(II) bacteriochlorophyll a and bis(tetrabutylammonium) (N719), derivatives, VII: 173–184 XVIII: 90, XVIII: 97, XVIII: 104, natural heme systems, VII: 153–165 XVIII: 107–108 and natural light harvesting complex 2 Cis-doubly NCPs (LH2), VII: 185–191 protonation and deprotonation of, phenomenological/theoretical fundamentals XVI: 253 of, VII: 148–149 synthesis and metalation of, XVI: 252 and semisynthetic BChl mimics, I: 289–290 synthesis of palladium(II) derivatives of, and synthetic chlorins/bacteriochlorins and XVI: 254 dimeric/aggregated systems, Cis-(doubly N-confused porphyrin)

VII: 191–196 (cis-N2CP), synthesis and X-ray and synthetic dimeric porphyrins without structure of Cu(III) complex of, II: 349, optically active substituents, II: 351

VII: 208–219 Cis isomers of (t-Bu)2–H2TBDAP, structures synthetic heme systems, VII: 165–173 of, XVI: 361 synthetic monomer systems, VII: 196–205 Cis-tetrabenzodiazaporphyrin (cis-TBDAP), and synthetic naphthalene units linked with XVI: 334 bis-porphyrins, VII: 205–208 derivatives in devices, proposed structures synthetic oligomeric porphyrin systems, for applications of, XVI: 399 VII: 219–230 selected photophysical data for Pt and Pd Circular light-harvesting mimics, metalated derivatives of meso- self-assembled, XX: 89–92 phenyl substituted, XVI: 370 MM+ optimized space-filling model Cis-tetraolbacteriochlorin, XVII: 48 structures, XX: 91 Cis- and trans-substituted diacid porphyrins. MM+ optimized space-filling see cis-DCPP; trans-DCPP self-assembled model, XX: 90 Cis/trans-bacteriochlorins, XVII: 52 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 56 FA

56 Cumulative Index to Volumes 1–25

Cis-trans tautomerism. See also Tautomerism “click” silica immobilization of porphyrin polarized spectroscopy and, VII: 417–418 complexes, XXIII: 181 and relative changes of fluorescence copper carbene complex with SIMes quantum yield with temperature, ligand, catalyst for reaction of VII: 404–405 meso-(4-azidophenyl)porphyrin with structure, VII: 373–380, VII: 397 meso-(4-acetylenylphenyl)porphyrin, triplet state studies and, VII: 409 XXIII: 261 Citrate reduction and metal nanoparticles, di-glycoporphyrins by microwave– XII: 360 mediated, XXIII: 174 Clar’s localized sextets Huisgen reaction of azidoporphyrin with aromaticity and, XIII: 4–5 zinc and nickel ethynylporphyrins, incompletely annelated extended XXIII: 260 porphyrins and, XIII: 9 mono- and di-glycoporphyrins by Class III cytochrome family, XIX: 167–196 microwave–mediated, XXIII: 173 Classical plant peroxidases (class III), as opp-dibenzoporphyrins through Heck classification, VI: 372 reaction, XXIII: 171 Click chemistry, XVIII: 177 palladium-catalyzed coupling “Click chemistry” reaction, II: 270, II: 272–273 of mono-bromoporphyrin with meso-4-(prop-2-yn-1-yloxy)phenyl- monovinylporphyrin, XXIII: 171 porphyrin and microwave-assisted, of vinylporphyrins with p-iodobenzene, II: 203, II: 281 XXIII: 170 synthesis of, peptide porphyrin conjugates via an aminoporphyrin via microwave- microwave assisted, XXIII: 175 assisted, II: 279, II: 281 tri- and tetra-glycosylated porphyrins by β -D-lactose-chlorin e6 conjugate, microwave–mediated, XXIII: 174 II: 277, II: 279 Cloning, of FECH, XV: 56–57 fullerene-porphyrin conjugate, Clostridium botulinum, and bacterial NO- II: 275–276, II: 278 binding hemoprotein structures, V: 154 tetrakis(quinolone-1,2,3-triazole)- Clotrimazole-heme complex, heme sensor porphyrin, II: 278, II: 280 proteins and, XV: 428 triazole bisporphyrin, II: 274, II: 276 Co(II) porphyrin/Co(III) corrole XXI Zanamivir-porphyrin conjugate, II: 279 complexes, XXI: 73

“Click” coupling, X: 265–267 [Co(III)(Hp)(N-MeIm)2] cation, structure of, “Click”-derived mono-glycosylated zinc(II) XVII: 139 phthalocyanines, structures of, XVIII: 259 Co(III)-corrins XXV “Click” reaction, XXIII: 169–181, 258–264 reversible one-electron reduction, anchoring of nickel(II) β-azido-meso- XXV: 164 tetraphenylporphyrin, XXIII: 180 Coadsorbates, XVIII: 39 application C -porphyrin structures, XVIII: 42–45 60 to form triazole-bridged porphyrin mixed phthalocyanine-porphyrin structures, dyad, XXIII: 263 XVIII: 39–42 to form triazole-bridged thia- or NO gas coadsorption, XVIII: 45–46 oxaporphyrins, XXIII: 264 Coadsorbents, dye-sensitized solar cells and, β-azido-meso-tetraphenylporphyrin and X: 167–169 meso-acetylenyldiphenylporphyrin Coadsorption for anchoring porphyrin/ 1,3-dipolar cycloaddition reaction, phthalocyanine on gold, X: 251 XXIII: 262 Cob(I)alamin, XXV: 155 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 57 FA

Cumulative Index to Volumes 1–25 57

methylation of, XXV: 160 of styrene and EDA, XXI: 210 protonation of, XXV: 165 bridging and terminal cobalt carbene Cob(I)yrinic acid a,c-diamide, XXV: 33 complexes, XXI: 221 Cob(II)alamin, XXV: 159 carbon-transfer reactions, structural formula of, XXV: 142 cyclopropanation, XXI: 206–222 superpositions, XXV: 158 asymmetric cobalt(II) porphyrins, Cob(II)ester perchlorate, structural formula XXI: 208 and crystal structure of, XXV: 142 cyclopropanation of alkenes and EDA, Cob(II)yrinic acid a,c-diamide, XXV: 33 XXI: 207 synthesis, XXV: 42–43 density functional theory (DFT), XXI: 220 Cobalamin biosynthetic methyltransferases, intramolecular asymmetric XXV: 32 cyclopropenation catalyzed, Cobalamins, XXV: 236 XXI: 219 biosynthesis, aerobic and anaerobic olefination of carbonyl compounds and pathways for, XXV: 48 EDA catalyzed by Co(TTP), with different β (“upper”) axially bound XXI: 223 ligands, XXV: 86 olefins, asymmetric cyclopropanation of organometallic and redox transformations and α-cyanodiazoacetates, XXI: 216 of, XXV: 169 and diazosulfones catalyzed, XXI: 214

processing enzymes, XXV: 203–206 and EDA with C2-symmetric catalysts, structural formula of, XXV: 136 XXI: 220 with functional moieties, XXV: 225 and α-nitrodiazoacetates, XXI: 215 Cobalt and succinimidyl diazoacetate, XXI: 213 C–C coupling reactions, III: 358–359 porphyrin-catalyzed intramolecular Co(II) porphyrin, self-assembling cyclopropanation reactions, XXI: 218 metalloporphyrins and, I: 93, I: 96–97 Cobalt chelatases (CbiX), XX: 172, complexes XIX: 149–151 as catalyst for oxidative C=P bond biochemical and structural data, XIX: 150 formation, III: 7 structure of D. vulgaris Hildenborough, corrolazines and, XIV: 588–590 XIX: 150

corrole-porphyrin dyads and, Cobalt-chelating corrin cofactor in vitamin B12, XIV: 591–592 XIV: 529 corroles and, XIV: 586–588 Cobalt corrole/free-base porphyrin dyads XXI diphenylporphyrin, III: 444–445 electrochemical data for, XXI: 102 hemoproteins, reconstituted hemoproteins Cobalt corroles, XXI: 35 and, V: 24–25 electrochemical potentials, XXI: 35 porphyrin films, XII: 282–283 Koutecky–Levich analysis of, XXI: 36 unsubstituted Pcs (UV-vis absorption data) ORR activity of, XXI: 35 and, IX: 119–120 Cobalt factor II (cobalt sirohydrochlorin), Cobalt XXI XXV: 50, 55 asymmetric cyclopropanation Cobalt factor III, XXV: 55, 57 of alkynes and α-cyanodiazo Cobalt factor IV, XXV: 57 compounds, XXI: 216 Cobalt Hangman porphyrins, XXI: 131 of aryl olefins, iron comparision, Cobalt(II) hexadecafluorophthalocyanine. See

XXI: 211 F16CoPc of α,β-unsaturated carbonyl compounds Cobalt-methylating MtaBC-segment, and diazoacetates with, XXI: 212 XXV: 177 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 58 FA

58 Cumulative Index to Volumes 1–25

Cobalt methylations, diastereoselective, Cobalt precorrin-5A, XXV: 58 XXV: 144 Cobalt precorrin-5B, XXV: 58, 60 Cobalt, nitrogen-group transfers, to cobyrinic acid, XXV: 60 XXI: 292–312 Cobalt precorrin-6A, XXV: 60 amidation/amination, XXI: 300–312 Cobalt precorrin-6B, XXV: 60 cobalt-mediated intramolecular, Cobalt precorrin-7, XXV: 60 XXI: 304–307 Cobalt precorrin-8, XXV: 60 cobalt porphyrin-catalyzed benzylic Cobalt reductase (CobR), reaction mechanism amination, XXI: 310 and crystal structure of, XXV: 43 intermolecular benzylic amidation, Cobalt reduction, XXV: 43–44 XXI: 308 Cobalt-sirohydrochlorin (Co-SHC), XIX: 146, mechanism for cobalt-mediated XIX: 148 amidation/amination, XXI: 310 Coβ-cyano-cobyric acid, XXV: 143 phosphoryl azides, XXI: 303 Coβ-cyano-imidazolylcobamide, XXV: 149 β reaction of tetralin with TrocN3 Co -cyano-neo-cobyric acid, XXV: 143, 150 (trichloroethoxycarbonyl azide), CobD, XXV: 63–64 XXI: 307 CobG, catalytic cycle of, XXV: 35 substrate radical rebounded, XXI: 311 CobH with product of reaction (HBA) bound using aryl azides and cobalt porphyrin in active site, XXV: 41 catalysts, XXI: 302 CobL, XXV: 61 aziridination, XXI: 292–299 CobP, XXV: 65 cobalt-catalyzed aziridination of olefins CoBSH, XIX: 6, XIX: 9 with DPPA, XXI: 294–295 CobT, XXV: 67 mechanism for cobalt-catalyzed CobU, XXV: 66 aziridination, XXI: 298 CobV, XXV: 68–69

of olefins with TcesN3 (trichloroethoxy- Cobyrinic acid a,c-diamide, XXV: 62 sulfonyl azide) and cobalt Cobyrinic acid, XXV: 60 porphyrin catalysts, XXI: 296 cobalt precorrin-5B to, XXV: 60 reaction coordinate for, XXI: 300 to cobyric acid, XXV: 62 using aryl azide nitrene sources, CobZ, catalytic cycle of, XXV: 35 XXI: 292 Co-cobalamin, XXV: 107–108 using aryl sulfonyl azides, XXI: 297 Cocrystallates, charge transfer (porphyrin/ various alkenes, XXI: 293 phthalocyanines and carbon benzylic amidation/amination, XXI: 301 nanostructures) and, I: 137–138 using bromamine-T and cobalt porphyrin CoCTPP, XVIII: 18 catalysts, XXI: 309 monolayers of, XVIII: 20

Cobaltochelatases CbiK and CbiX, structures Coenzyme B12, XXV: 144, 182 of, XXV: 51 intermediates and enzymes comparison of Cobalt Pacman porphyrins, XXI: 65 aerobic and anaerobic pathways to, Cobalt porphyrin complexes, 112, 399 XXV: 45 Cobalt porphyrins, crowned (metallo)porphyrins structures of, XXV: 267 with, XXIV: 204–208 superpositions, XXV: 158

Cobalt(II) porphyrins, XXI: 208 Coenzyme B12, enzymes dependent on, Cobalt precorrin-3, XXV: 57 XXV: 181–200

Cobalt precorrin-4, XXV: 57–59 B12-dependent dehalogenases, Cobalt-precorrin-5 and role of CbiF and CbiG, XXV: 201–203 XXV: 58–59 carbon-skeleton mutases, XXV: 183 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 59 FA

Cumulative Index to Volumes 1–25 59

Acyl-CoA-mutases, XXV: 183–187 Cofacial macrocycle dimers. see Pacman glutamate mutase, XXV: 187–190 macrocycle dimers XXI methylene glutarate mutase, Cofacial manganese corroles, XXI: 110 XXV: 190–191 Cofacial porphyrin dimers

coenzyme B12-dependent , calixarene platform arrangement, I: 56, XXV: 191 I: 60 AdoCbl-dependent aminomutases, diporphyrins/triporphyrins, I: 57–58 XXV: 195–197 fullerene and, I: 49–50, I: 52, I: 55 AdoCbl-dependent dioldehydratases and intramolecular energy studies/electron ethanolamine , transfer reactions and, I: 54 XXV: 192–194 metal-bridged porphyrin arrays and,

coenzyme B12-dependent ribonucleotide I: 117–118 reductases, XXV: 197–200 Cofacial porphyrin dimers/fullerene, generalized reaction cycle in, XXV: 182 tetrapyrrole-nanocarbon hybrids, reactions catalyzed by coenzyme I: 389–391

B12-dependent carbon skeleton Cofacial porphyrin ferrocene dyad, III: 439–440 mutases, XXV: 184 Cofacial porphyrins, XXI: 67–68

Coenzyme B12-dependent isomerases, with dibenzothiophene spacer, XXI: 67 XXV: 191 dimers, XXI: 45, 86 AdoCbl-dependent aminomutases, synthesis, XXI: 48 XXV: 195–197 synthesis, XXI: 46–47 AdoCbl-dependent dioldehydratases and Cofacial porphyrin system, XXI: 83 ethanolamine ammonia lyase, pH-dependence of activity of, XXI: 83 XXV: 192–194 redox properties of, XXI: 85

coenzyme B12-dependent ribonucleotide Cofacial system, chemical models, XI: 56–57 reductases, XXV: 197–200 Cofactors in FESH, XV: 61–67 reactions catalyzed by, XXV: 191 color plot of Photosystem II in Rps.viridis,

Coenzyme B12-dependent ribonucleotide XI: 6 reductases, XXV: 197–200 Cofactors methylcobalamin (MeCbl), Cofacial bis[porphyrinato]Zn(II) compounds, XXV: 203 Sonogashira protocol in synthesis of, CoFeSP from bacterium Carboxydothermus II: 232, II: 233 hydrogenoformans, XXV: 179 Cofacial bis-etioporphyrins, chemical models, Coffee-stain mechanism, explaining ring XI: 98–99 formation in porphyrins, XVIII: 33 Cofacial bis-porphyrin, XXI: 49, 57–58 Colloids, XII: 358–359 Cofacial bisporphyrins Co(OEP) monomer, XXI: 100 held by calix[4]arene spacer Combinatorial chemistry of porphyrins chemical models, XI: 91–97 and Adler-type reactions, III: 493–498 X-ray characteristics of, XI: 44–46 corrole libraries of, III: 517–519 held by flexible chains, chemical models, and dynamic libraries based on H-bonds, XI: 57–66 III: 498–502 held by rigid spacers, chemical models, equilibrium reactions and, III: 508–509 XI: 67–91 hexaphyrin libraries of, III: 519 in singlet-singlet studies, chemical models, and importance of mixed reactant XI: 97–103 approaches, III: 489–491 in triplet-triplet studies, chemical models, large solution phase libraries of, XI: 98–103 III: 506–508 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 60 FA

60 Cumulative Index to Volumes 1–25

mixed pyrroles and, III: 491–493 P450BM3 and, V: 322–323 and modification of porphyrin macrocycle, P450cam and, V: 314–322, V: 325 III: 509–513 Compound I overview of, III: 486–488 commonality of mechanism due to peptide libraries, III: 519–523 reactions catalyzed by, V: 189 phthalocyanine libraries of, III: 516–517 freeze-quench EPR experiments and, porphyrin synthesis and, III: 488–489 V: 308–310 six-member libraries using two different generation/characterization of Caldario- aldehydes, III: 525–529 myces fumago chloroperoxidase, and small libraries for therapeutic V: 303–304 discovery, III: 502–506 properties/reactivity in catalytic cycle of, solid phase library synthesis, III: 513–515 V: 180 Combinatorial olefin metathesis, covalently rapid-mixing/freeze-quench methodologies linked porphyrin arrays and, I: 47–50 and, V: 311, V: 313 “Combustible air” from marshy soils, XIX: 3 rapid-scanning stopped-flow studies of Competition of energy and electron transfer in Cyp119 Compound I, V: 313–314 porphyrin triads, XXII: 77–91 P450BM3 and, V: 322–323 pathways and mechanisms of excitation P450cam and, V: 314–322, V: 325 energy relaxation, XXII: 84–91 reaction of ferric P450cam with peracids, spectral and kinetic data, XXII: 77–84 V: 301, V: 305 energy levels of ion pair states in Compound O, and second electron toluene, XXII: 84 transfer/protonation in catalytic cycle, Complementary V: 178–179 base-paired hydrogen bonding, I: 329–335 Compounds I/II. See Catalytic intermediates of DNA (cDNA), and oligomeric structure of peroxidases FECH, XV: 61 Computational models NO binding, Complementary organic inverters, XXII: 245, 246, 280, 281 XVIII: 231–235 biomimetic studies, first NO binding XXII Complementary OTFT inverter, circuit model A, XXII: 280–281

configuration of, XVIII: 233 model A, mononitrosyl FeB(NO) species dynamic response characteristics of, in, XXII: 281 XVIII: 235 model B, XXII: 281

transfer characteristics of, XVIII: 234 model B, mononitrosyl FeB(NO) species Complex wavefunctions, XXIII: 293 in, XXII: 282 “Complete” corrinoids, XXV: 139–140, biomimetic studies, second NO binding,

143–152 NO reduction and N2O formation, Complete Active Space Second Order XXII: 283–285 Perturbation Theory (CASPT2), Cis: b3 mechanism, XXII: 284–285

XXII: 172 Cis: FeB mechanism, XXII: 285 Compound ES hyponitrite dianion intermediate binds

freeze-quench EPR experiments and, to both FeB and FeH [FeH(N2O2)

V: 308–310 FeB], XXII: 286 generation/Soret band of, V: 302 trans mechanism, XXII: 285 rapid-mixing/freeze-quench methodologies nitric oxide reductase, XXII: 246–247 and, V: 311 addressing octahedral and tetrahedral

rapid-scanning stopped-flow studies of coordination of non-heme FeB, Cyp119 Compound I, V: 313–314 XXII: 246 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 61 FA

Cumulative Index to Volumes 1–25 61

modeling of NOR active site, molecular capacitor memory cell as XXII: 246 innovative technology, X: 300–302 Computer screen photoassisted technique need for innovative technologies/concepts, (CSPT), XII: 193–194, XII: 209–210, X: 299–300 XII: 213 need for porphyrin/phthalocyanines for Concanavalin A (Con A), IV: 153–154 anchoring, X: 248–249 Condensation noncovalent diamond functionalization via annelation of aromatic rings by, XIII: C–C linkage/amide coupling (CNT 86–88 functionalization), X: 293–294 and synthesis by template condensation noncovalent linkage between CNT/ (cross-condensations), XIII: 31–34 macrocycle: π–π interaction (CNT synthesis of extended porphyrins by functionalization), X: 289–292 template condensation, XIII: 12–15 Overview Condensation of 1,19-unsubstituted biladienes- CNT functionalization, X: 278–280 a,c with aldehydes, XXIII: 112 oxide surfaces functionalization, Conductance changes and sensors, XII: X: 294–295 151–156 phosphonate linkage (oxide surfaces Conductivity functionalization) and, X: 297–298 of films, XII: 256 sequential grafting and, X: 276–278 nickel/copper complexes and, III: 70–71 sequential immobilization of macrocycle Conductors/semiconductors for hybrid “click” coupling, X: 265–267 electronics coordination bond coupling, X: 264–265 covalent amide linkage with oxidized CNT and Si–C bonding of macrocycle, (CNT functionalization), X: 280 X: 274–276 covalent C–C linkage between and Si–O bonding of macrocycle, CNT/macrocycle (CNT X: 272–274 functionalization), X: 281–285 silanization (oxide surfaces covalent ester linkage with oxidized CNT functionalization) and, X: 295–297 (CNT functionalization), X: 280–281 and surface functionalization of gold covalent pyrrolidine linkage between (overview), X: 249–253 CNT/spacer unit (CNT Confocal laser scanning microscopy (CLSM), functionalization), X: 285–289 IV: 342, IV: 379, IV: 386 direct immobilization of macrocycle Conformational analysis complex porphyrin system bis-porphyrin classes and, VII: 234–235 immobilization and, X: 260–263 and determination of absolute modulation of surface/macrocycle linker configurations of natural products, and, X: 256–259 VII: 232–239 multi-linkage of surface/macrocycle and determination of helicity of and, X: 259–260 polyisocyanides, VII: 230–232 TPP derivatives and, X: 253–256 Conformational heterogeneity. See Dihedral hybrid CMOS transistor memory as angle control arrays, I: 458 innovative technology, X: 302 Conformational solvatochromism, I: 25 hybrid nanowire transistor memory as Confused pyrrole, structural difference innovative technology, X: 302–303 between pyrrole and, II: 296–297 molecular break-junction device as Congenital erythropoietic porphyria (CEP), innovative technology, X: 303–304 XV: 186 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 62 FA

62 Cumulative Index to Volumes 1–25

Conjugated acyclic anion receptors. See Conjugated copolymers, XVIII: 84 Pyrrole-based π-conjugated acyclic Conjugates formed by noncovalent anion receptors interactions, IV: 124–128, IV: 343 Conjugated polymers (macromolecules), C–C isothiocyanate-porphyrin and -chlorin coupling reactions and, III: 348–352 derivatives, IV: 155–156 Conjugates phthalocyanines (Pc) and bovine serum activatable photosensitizer conjugates, albumin (BSA), IV: 62, IV: 78, IV: IV: 281–284 83–84, IV: 127–128 covalent conjugation interactions, polymeric micelles, IV: 366, IV: 380–382, overview, IV: 128 IV: 384 estradiol conjugation with photosensitizers, porphyrins and bovine serum albumin IV: 174, IV: 176 (BSA), IV: 125 estrogen–photosensitizer conjugates, porphyrins and low density lipoprotein IV: 353–354 (LDL), IV: 125–127, IV: 343 folic acid conjugation with zinc phthalocyanine (ZnPc) and serum photosensitizers, IV: 171–174 components, IV: 126–127 for fluorescence imaging and PDT, Constants IV: 289–293 amidopyrrole-based receptors and, hormones, nucleic acids, and cellular VIII: 178, VIII: 180, VIII: 183, signaling species, IV: 171–175, VIII: 186, VIII: 192, IV: 186 VIII: 194–195 HPPH conjugates for MRI and PDT, anion-binding, VIII: 218–219 IV: 294–297 Consumer electronics and optical sensors, for magnetic resonance (MR) imaging and XII: 192–194 PDT, IV: 294–297 Contact potential transducers and sensors, for nuclear imaging and PDT, IV: 297–302 XII: 160–162 in photodynamic therapy, overview, IV: Contact shifts, VI: 20–23 124, IV: 175–176 effect of axial ligand plane orientation on, photosensitizer conjugates for active VI: 50–55 targeting, overview, IV: 355–362 Continuous wave EPR for experiments, VI: 8 retinoic acid conjugation with Contracted carbaporphyrinoids, XVI: 304–314 photosensitizers, IV: 174–175, CooA IV: 176 as CO sensor protein, XV: 443 See also Antibody conjugation with general discussion of, XV: 144 photosensitizers; linkers in structural basis for activation upon CO bin, conjugates; peptide–photosensitizer XV: 145–146 conjugates; protein–photosensitizer structural characterization of, XV: 145–146 conjugates; sugar–photosensitizer Coordination conjugates dihedral angle control and, I: 463–464 with amino acids, XVIII: 280 Coordination bonds for porphyrin-based with peptides, XVIII: 280–284 tectons with proteins, XVIII: 284 2D networks, XIII: 312–315 with carbohydrates, XVIII: 242 3D networks, XIII: 315–317 cyclodextrins, XVIII: 261 double component systems made of monosaccharides and disaccharides, two complementary tectons, XVIII: 242 XIII: 316–354 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 63 FA

Cumulative Index to Volumes 1–25 63

double-zigzag geometry of 1D networks, crowned porphyrin complexing paraquat XIII: 310–311 dications, XXIV: 255 general information, XIII: 307–308, crown ether-porphyrin conjugate, XIII: 316 XXIV: 264 ladder geometry of 1D networks, diphenylglycoluril-based strapped XIII: 311–312 porphyrins with ethylene glycol and molecular tectonics and, XIII: 305 diethylene glycol chains, XXIV: 260 single component systems made of four-fold cyclam-conjugated self-complementary tecton, tetraphenylporphyrin, XXIV: 261 XIII: 307–317 manganese(III) porphyrin supported on triple component systems made of chloromethylated polystyrene resin three complementary tectons, bearing crown ether groups, XIII: 353–360 XXIV: 258 uses/history of, XIII: 306 polyether-strapped and -capped porphyrins, zigzag geometry of 1D networks, XXIV: 259 XIII: 308–310 rotoxanes based on polyether-strapped Coordination chemistry of crown porphyrins, XXIV: 262 ether-porphyrin conjugates, strapped porphyrin and its atropisomer, XXIV: 183–186, 254–264 XXIV: 257 attachment of crown ether to porphyrin, strapped porphyrins and forming catenanes XXIV: 185 with a bis-bipyridinium cyclophane, bis-15-crown-5-appended porphyrin, XXIV: 256 XXIV: 256 strapped zinc porphyrin with two capped porphyrins with shortened electron-rich bis(para-phenylene)- polyether chain, XXIV: 257 34- crown-10 units as receptors and catalytic cycle of cytochrome c oxidase, guest molecules, XXIV: 262 XXIV: 184 Coordination chemistry of open-chain and its coupling to proton pumping oligopyrroles by electrostatic repulsion, bilirubin/biliverdin behavior toward metal XXIV: 183 ions and, VIII: 406–410 crowned (metallo)porphyrins with crown bis(arylimino)isoindoline complexes and, ether-dominated coordination VIII: 389–404 chemistry, XXIV: 224 bis(oxazolinyl)pyrroles and, VIII: 404–406 + metal ions including NH4 , dinuclear tetrapyrrole L2M2 complexes and, XXIV: 224–242 VIII: 428–432 organic ammonium ions, interaction of prodigiosenes with metal XXIV: 242–254 ions, VIII: 377–378

crowned (metallo)porphyrins with mononuclear tetrapyrrole L1M1 porphyrin-governed coordination complexes/associates and, VIII: chemistry, XXIV: 186 410–428 cobalt porphyrins, XXIV: 204–208 oligonuclear noble metal species and, copper porphyrins, XXIV: 221–222 VIII: 432–437, VIII: 432–437 iron porphyrins, XXIV: 188–204 tripyrrinone/tripyrrin metal chelates and, manganese porphyrins, XXIV: 186–188 VIII: 378–389 nickel porphyrins, XXIV: 208 Coordination chemistry of verdohemes. See zinc porphyrins, XXIV: 208–221 Verdohemes b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 64 FA

64 Cumulative Index to Volumes 1–25

Coordination complexes Coproporphyrin I, XXIII: 25 available sites for, III: 430–431 Coproporphyrin III (CPIII) early uses of, III: 430 and heme synthesis intermediate transport, Coordination coupling, X: 252, X: 264–265, XV: 7 X: 289–290 and transport of CPgenIII into/PPgenIX Coordination numbers, metalloporphyrin within mitochondria, XV: 14 structure/electron configurations and, Coproporphyrinogen III (COPROGEN) VI: 18 heme biosynthesis and, XV: 163–164 Coordination polymerization, for synthesis of and heme synthesis intermediate transport, self-assembled porphyrin XV: 7–8 nanostructures, XI: 188–190 transport into/PPgenIX within Coordination process of chlorophylls, XI: mitochondria, XV: 12–14 234–235 Coproporphyrinogen III (COPROGEN III), COP1, XX: 183, XX: 187 XIX: 146, XIX: 314, XX: 221, CoPc/RhPc/IrPc absorption spectra, IX: 65–68 XX: 223 CoPc Coproporphyrinogen III dehydrogenase arrays on Au(111), XVIII: 41 (CPDH), and UROGEN conversion to on Au(111) and Au(100) surfaces, heme, XV: 194–197 XVIII: 41 Coproporphyrinogen III oxidase (CPO) Copper complexes, halogen-substituted and heme synthesis intermediate transport, phthalocyanines and, III: 69–71 XV: 7–9 Copper phthalocyanine (CuPc), XVIII: 62 and transport of heme precursors between Copper porphyrins, crowned cytosolic enzymes, XV: 11–12 (metallo)porphyrins with, XXIV: and UROGEN conversion to heme, 221–222 XV: 191–194 Copper protoporphyrin, myoglobin/ Coproporphyrinogen III, XXIII: 8 hemoglobin/HRP and, V: 28 Coproporphyrinogen oxidase (CPOX), Copper/nickel/cobalt/rhodium C–C coupling XIX: 313–315 reactions, III: 354–360 active site, conserved residues in, XIX: 319 Copper-TBTAP (CuTBTAP) alignment of S. cerevisiae CPOX proteins, four-probe single-crystal conductivity XIX: 317 measurements of, XVI: 395 chemistry, XIX: 321–323 normalized conductivity, XVI: 395 decarboxylation by, XIX: 322 synthesis employing mixed cyclizations, molecular dynamic simulation, XVI: 337 XIX: 323 Copper tetra-(3,5-di-tert-butylphenyl)- conversion of COPROGEN III to porphyrins on Cu(100) surface, PROTOGEN IX, XIX: 314 XVIII: 3 CPOX assay, XIX: 327–328 Copper(II) tetraphenylporphyrin. see CuTPP conditions, XIX: 329 Coprinus cinereus peroxidase (CIP), XIX: 235 materials and method, XIX: 328–329 plant peroxidases and, VI: 373 gene for human CPOX, XIX: 316 Coprinus macrorhizus peroxidase (CMP), human diseases plant peroxidases and, VI: 373 clinical manifestations, XIX: 325 Coprogen III oxidase (CPO), XX: 154 frequency, XIX: 324–325

Coproporphyrin (A4B4), XXIII: 25 Hereditary Coproporphyria (HCP), “theoretical” isomers of, XXIII: 26 XIX: 324 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 65 FA

Cumulative Index to Volumes 1–25 65

laboratory diagnosis, XIX: 327 with aquahydroxo-cobinamide, pathogenesis, XIX: 326 XXV: 100 treatment, XIX: 327 enzymatic liberation of cyanide from molecular biology, 315–317 cell bound linamarin, XXV: 97 and PcyA, structural similarity of, heme distortion in wild-type Tt H-NOX, XIX: 320 XXV: 101 proposed active site cavity, geometry, heme prostethic group, XXV: 101 XIX: 320 “incomplete” aquacyanocorrinoids, structural features of, XIX: 321 selectivity and sensitivity of, structure, XIX: 317–321 XXV: 93 Hem13p, XIX: 318–319 interaction of side chains of corrins with surface mapping of CPOX, XIX: 324 incoming, XXV: 96 Copolymers, organic polymer solar cells, liberation of endogenous biological XVIII: 82–84 cyanide after cell disruption, Core modified N-confused sapphyrin, XXV: 98 synthesis of, XVI: 288 optical detection, XXV: 95 Core-modified macrocycles, XXIII: 57–58 sulfite, XXV: 102 combinatorial libraries of, XXIII: 58 sulfite detection with diaqua-cobester to formation, XXIII: 58 sulfite-cobester, XXV: 103 Core-modified porphyrins, IV: 51–55 Corrin-chromoionophore, coordination of absorption spectra, IV: 51, IV: 56 analyte to, XXV: 89 chalcogen heteroatoms, IV: 51 Corrin ligand, “folding” of, 1 XXV: 49–150 structure, IV: 52–55 Corrin macrocycle Core nonplanarity, XXIV: 15 formation Correlation spectroscopy for experiments, by different A–D ring closure reactions, VI: 8 XXV: 282–286 Corrins by electrochemical reductive macrocyclization reactions to give, A–D-cyclization, XXV: 285 VIII: 467–470 by electrochemical reductive-oxidative moiety, VII: 361 A–D-cyclization, XXV: 284 Corrins XXV isoxazole structure representing a protected biomimetic formations of, XXV: 287 vinylogous amidine system, at different oxidation levels, XXV: 289 XXV: 294 on different oxidation levels by acid potential biomimetic A–D ring closure induced cyclization, XXV: 291 reactions forming, XXV: 287–288 formation by decarboxylative and synthesis from A–D and B–C deformylative cyclizations, intermediates, different approaches, XXV: 286 XXV: 269–278 from seco-corrin, efficiency of alternative synthesis of A–D formation, XXV: 284 component, XXV: 272 Stevens’ isoxazole approach leading to, corrin by iminoester condensation, XXV: 293–297 XXV: 275 Corrin-based chemosensors, preparation of monocyclic building optical/colorimetric detection with XXV block, XXV: 273–274 comparison with detection of cyanide using stereoselective synthesis of A–D porphyrins, XXV: 100–102 component, XXV: 271 cyanide, XXV: 92–100 synthesis of B-C component, XXV: 274 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 66 FA

66 Cumulative Index to Volumes 1–25

synthesis of bicyclic A–D intermediates, structure, constitution and nomenclature XXV: 270–272 of corrinoids, XXV: 86–88 synthesis of bicyclic B–C intermediate, “incomplete,” XXV: 142–143 XXV: 274–275 structural formulas of, XXV: 88 synthesis of corrin by combination of Corrins synthesis XXV iminoester condensation-sulfide by combination of iminoester contraction, XXV: 276–278 condensation-sulfide contraction, synthesis of corrin by iminoester XXV: 276–278 condensation, XXV: 275–276 sulfide contraction sequence, XXV: 278 synthesis of monocyclic building block at different oxidation levels by A–D for different corrin rings, cyclization, XXV: 288–293 XXV: 273 octadehydrocorrin oxidation level Woodward–Hoffmann rules, XXV: 268 adjustment, XXV: 292 synthetic concepts/strategies tautomerization-cyclization of Eschenmoser’s different synthetic seco- yielding strategies for construction of, nickel-tetradehydrocorrin XXV: 270 stereoisomers, XXV: 292 Jacobi’s Sonogashira coupling–sulfide by iminoester condensation, XXV: 275–276 contraction approach leading to corrin synthesis by iminoester corrins, XXV: 298–300 condensation and sulfide Mulzer’s synthesis of monocyclic contraction, XXV: 277

building blocks for vitamin B12, Corrolazines (Cz). See also High-valent XXV: 300–301 transition metal corroles/corrolazines Stevens’ clockwise and counter structure of, XIV: 528 clockwise, XXV: 295 Corrolazines, XXIII: 338–341 Stevens’ isoxazole approach leading to Corrole, XVI: 305 corrins, XXV: 293–297 Corrole–corrole dyads, 100–103 synthesis of corrins at different Corrole dyads, XXI: 74–79 oxidation levels by A–D Corroles, IV: 56–59. See also High-valent cyclization, XXV: 288–293 transition metal corroles/corrolazines synthesis of seco-corrins and photo- boronated corroles, IV: 198, IV: 207–208 chemical A–D cyclization, combinatorial libraries, III: 517–519

XXV: 278–288 corrole–C60 dyad structures, X: 202–203 tetradehydrocorrin and octadehydrocorrin cycloaddition reactions of, II: 251, II: 252 with angular alkyl substituents, definition, XIV: 528 XXV: 293 derivatives, metalloporphyrin “Corrinoid–iron–sulfur” proteins (CoFeSP), structure/electron configurations XXV: 178 and, VI: 14–16 structure of, XXV: 179 historical aspects of, XIV: 529–530 Corrinoids, XXV: 218, 231 macrocyclization reactions with direct absorption spectra, XXV: 90 pyrrole–pyrrole bond to give, “complete,” XXV: 143–152 VIII: 463–467 coordination chemistry of, XXV: 85–86 meso-alkylidenyl, and porphyrins with

mechanism of B12 based cyanide sensor, double bonds at meso positions, XXV: 90 XIII: 247–248 spectroscopic properties of corrinoids, metalloporphyrin structure/electron XXV: 89–92 configurations and, VI: 10–11 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 67 FA

Cumulative Index to Volumes 1–25 67

optimum synthetic conditions for and heme uptake in gram-positive bacteria, preparation of, II: 111 XV: 20 peroxidase function regulation and, V: 35 transcriptional heme regulation and, XV: 383 structure, IV: 56–57, IV: 58, XIV: 528 Corynebacterium ulcerans, bacterial HOs and, tetrabenzotriazacorrole (TBC), IV: 80, XV: 376 IV: 81 Cosensitization strategy, dye-sensitized solar tris(pentafluorophenyl)corrole, IV: 57 cells and, X: 169–173 Corroles, DSSCs, XVIII: 108–109 CoTBPP on a Ag(111) surface, different solar cell performances of, XVIII: 108 molecular arrangements of, XVIII: 4–5 Corroles, XXI: 33–39 CoTCPP, XVIII: 18

H2O2 dismutation chemistry, XXI: 38–38 monolayers of, XVIII: 20 oxygen evolving reaction (OER) chemistry, CoTPP XXI: 37–38 on Ag(111) with NO dosages, ordered oxygen reduction reaction (ORR) arrays of, XVIII: 46 chemistry, XXI: 35–37 NO gas coadsorption, monolayer on synthesis and structure, XXI: 33–35 Ag(111), XVIII: 45 Corroles, XXIII: 338–341 Cotton effects frontier MO energy diagram for zinc circular dichroism (CD) and, VII: 156 porphyrin, XXIII: 341 and determination of absolute molecular structures and MCD and configurations of natural products, UV-visible absorption spectra, VII: 232–233 XXIII: 339 exciton coupling and, VII: 152–153 Corroles, Hangman scaffolds XXI and spectra of synthetic bacteriochlorins/ catalysis, XXI: 132–135 dimeric systems, VII: 203 oxygen evolving reaction (OER) Coulomb blockade, XII: 359 chemistry, XXI: 133–135 Coulomb complexes, non-covalently linked oxygen reduction reaction (ORR) hybrids and, I: 172–175 chemistry, XXI: 132–133 Coulometric biosensors, V: 255–256 synthesis and structure, XXI: 123 Coupled oxidation. See also Verdohemes Corrphycene, XVI: 25 verdohemes and, VIII: 296 Corrphycene, as skeletal isomer of porphyrin, Coupling (stepwise) of pyrrolic precursors II: 296–297 (tetrapyrroles), and preparation of cis/trans tautomeric forms of, VII: 376 open-chain oligopyrrole systems, electronic absorption data of, VII: 383 VIII: 376–377 electronic absorption spectra of, VII: Coupling methods 390–392 “click” coupling, X: 252, X: 265–267 formulas of most stable tautomeric form of, coordination bond coupling, X: 252, VII: 362 X: 265–267, X: 289–290 myoglobin function regulation and, V: 33 crown ether-cation, X: 290–292 Corynebacterium diphtheria electrostatic, X: 290–291 bacterial HOs and, XV: 376 Coupling of dipyrrolic building blocks extracellular signaling mechanisms and, (tetrapyrroles), and preparation of XV: 387 open-chain oligopyrrole systems, and gram-positive cell wall during bacterial VIII: 365–373 heme uptake, XV: 360 Coupling reaction and gram-positive lipoprotein network in palladium-catalyzed at 3-/5-positions, heme uptake, XV: 369 VIII: 61–65 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 68 FA

68 Cumulative Index to Volumes 1–25

water-soluble BODIPYs from, VIII: 40–42 and three-dimensional compared with Coupling reaction pathways. See also two-dimensional acceptors of Organometallic C–C coupling reactions electron transfer, I: 144–145

(porphyrins); Palladium-catalyzed (ZnP)3 -ZnP system and, I: 163–166

carbon-heteroatom C–C reactions ZnP-thiophene-C60 system and, I: 158 palladium-catalyzed alkenyl/alkynyl Covalently linked dimers, and boron phthalocyanine substituents and, substitution by vicinal hydroxyl groups III: 35, III: 41 (acyclic anion receptors), VIII: trialkylsilyl-substituted phthalocyanines 226–227 and, III: 45 Covalently linked nanoconjugates — carbon Coupling two pyrrole units with dipyrrole nanotubes (tetrapyrroles), and preparation of applying Suzuki coupling reactions, open-chain oligopyrrole systems, I: 191–192 VIII: 371, VIII: 373–376 functionalized with PAMAM dendrimers, Covalent albumin-phthalocyanine conjugates, I: 194–195 XVIII: 286 and grafting to form SWNT-PVP/ZnP Covalent bonds, semisynthetic chlorosomal nanohybrids, I: 193–194 mimics and, I: 295–298 placing pyridyl isoxazolino functionalities Covalently-bound porphyrins, XVIII: 31–33 along sidewalls of, I: 190 Covalent light-harvesting arrays, energy and RuP functionalization and, I: 190–191 electron transfer in, XX: 82–89 using surface to integrate porphyrins/ Covalent linkage of carbon nanotubes phthalocyanines as chromophores, amide linkage with oxidized CNT, X: 280 I: 186–190 C–C linkage between CNT/macrocycle, Covalently linked porphyrin arrays X: 281–285 benzene-centered porphyrin hexamers and, ester linkage with oxidized CNT, I: 41, I: 43–44 X: 280–281 cyclic multi-porphyrin arrays and, I: 25 pyrrolidine linkage between CNT/spacer oxacalixarene-bridged porphyrin dimer, unit, X: 285–289 I: 45, I: 47, I: 49 Covalent links/heme structure, peroxidases perylene-bisimide-centered porphyrin (animal superfamily) and, VI: 430–431 tetramer and, I: 44, I: 47 Covalent/noncovalent metalloporphyrin arrays, porphyrin oligomers and, I: 44–45, I: 48 I: 4 using dynamic combinatorial olefin Covalently linked conjugates, fullerenes, metathesis, I: 47–50 I: 149–150 Covalent PPhide a dimers, XX: 55–56

comparing ZnP-C60 or H2P-C60, I: 148–150 Covalent phthalocyanine–protein conjugates, face-to-edge/face-to-face arrangements XVIII: 284

and, I: 146 C60-porphyrin structures, XVIII: 42–45 and ideal electron transfer scenario, I: 148 on Au(111), XVIII: 44–45 photoexcited ZnP and, I: 141–143 C–P coupling. See Palladium-catalyzed C–P p-phenylenebutadiynylenes/ coupling

p-phenylenevinylene and, I: 154–157 C4-pathway. see Shemin pathway

and relay concept using redox building C5-pathway, XIX: 145, XX: 8 blocks, I: 151–154 CP motif (heme-regulatory motif), heme

and synthesis of C60-based donor-acceptor sensor proteins and, XV: 410–412 ensembles, I: 141–143 CPOX assay, XIX: 327–328 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 69 FA

Cumulative Index to Volumes 1–25 69

conditions, XIX: 329 diaza 15-crown-5 capped zinc materials and method, XIX: 328–329 porphyrin, XXIV: 229 CPP. See Cell penetrating peptide (CPP) diaza-18-crown-6 linked bis zinc Cross peaks porphyrin, XXIV: 231 EXSY, VI: 33 dibenzo-diaza-30-crown-10-zinc HMQC spectra and, VI: 59–62 porphyrin conjugate, XXIV: 236 Cross-correlated relaxation-enhanced formation of tetrad, XXIV: 239 polarization transfer (CRINEPT), and fourfold [15]-crown-5 appended HasA–HasR interaction, VI: 355 iron(III) tetraphenylporphyrin, Crown ether-alkly ammonium XXIV: 224 dipole-ion bonding motif, I: 351–352 iron(III) and zinc(II) complexes of interactions, tetrapyrrole-nanocarbon tetrakis(benzo-9-crown-3) hybrids and, I: 417–419 porphyrin, XXIV: 237 Crown ether-cation coupling, X: 290–292 K(I)-induced dimer formation of Crown ether-porphyrin conjugates, 15-crown-5 appended zinc coordination chemistry of, tetraphenylporphyrin, XXIV: 226 XXIV: 183–186, 254–264 Langmuir films, XXIV: 238 crowned (metallo)porphyrins with crown photophysics of bis-crown zinc ether-dominated coordination porphyrin, XXIV: 230 chemistry, XXIV: 224 red-shift of Soret band, XXIV: 233 + metal ions including NH4 , tetrakis aza-15-crown-5-substituted zinc XXIV: 224–242 porphyrin, XXIV: 242 organic ammonium ions, XXIV: 242–254 “two-point” assembling of Zn(II), crowned (metallo)porphyrins with XXIV: 238 porphyrin-governed coordination with crown ether-dominated coordination chemistry, XXIV: 186 chemistry, organic ammonium ions, cobalt porphyrins, XXIV: 204–208 XXIV: 242–254 copper porphyrins, XXIV: 221–222 benzo-18-crown-6 ether-appended iron porphyrins, XXIV: 188–204 porphyrins, XXIV: 244 manganese porphyrins, XXIV: 186–188 benzo-18-crown-6 ether-appended zinc nickel porphyrins, XXIV: 208 porphyrin, XXIV: 251 zinc porphyrins, XXIV: 208–221 benzo-24-crown-8-substituted zinc Crowned (metallo)porphyrins XXIV porphyrin and its rotaxane with with crown ether-dominated coordination ammonium-functionalized chemistry, metal ions including fullerene, XXIV: 245 + NH4 , XXIV: 224–242 diaza crown ether-porphyrin conjugates, acetylenic crown ether-appended zinc XXIV: 243 porphyrin, XXIV: 241 dibenzo crown ether-linked bis-meso free bis-18-crown-5 bisporphyrins, XXIV: 244 + + substituted porphyrins, H3N –[CH2]9–NH3 di-picrate XXIV: 234 complexes of diaza crown cationic mono 18-crown-6-appended ether-zinc porphyrin conjugates, metalloporphyrins, XXIV: 235 XXIV: 243 15-crown-5 appended rotaxanes, metal-free porphyrin and (metallo)tetraphenylporphyrins, zinc porphyrin with XXIV: 225 triphenylamine-fullerene system crowned porphyrins, XXIV: 233 as stopper, XXIV: 247 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 70 FA

70 Cumulative Index to Volumes 1–25

rotaxanes with ammonium-modified aggregation of low-symmetry fullerene as stopper and with crown-substituted benzoic amide-modified fullerene phthalocyanines, XXIV: 350–354 as stopper, XXIV: 248 cation-induced aggregation of rotaxane with a triphenylamine- symmetrical crown-substituted fullerene derivative as stopper, phthalocyanines, XXIV: 331–337 XXIV: 250 influence of anion on cation-induced rotaxane with ferrocene-fullerene aggregation of crown- system as stopper, XXIV: 246 phthalocyanines, XXIV: 337–343 supramolecular assembly of crowned supramolecular assemblies of crown- zinc porphyrin to WNCTs via phthalocyanines and ammonium π–π and ammonium ion-crown cations, XXIV: 343–350 ether interactions, XXIV: 247 supramolecular assembly, examples, supramolecular construction of logical XXIV: 373–377 gates, XXIV: 253 concentration and solvent-induced supramolecular triad, consisting of a aggregation, XXIV: 323–330 fullerene, BODIPY, and zinc self-assembly of crown-phthalocyanines porphyrin, XXIV: 253 into nano- and micro-structures supramolecular triad consisting of in solution, XXIV: 324–330 BODIPY dye, zinc porphyrin and Crown-substituted phthalocyanines, synthesis fullerene, XXIV: 249 and properties of, XXIV: 276–277 tetrakis(benzo-18-crown-6) appended complexes of p- and d-metals, 277–295

porphyrinatozinc, XXIV: 252 [(15C5)4Pc]Ru(DABCO)2 with crystal with porphyrin-governed coordination packing and distances between chemistry, XXIV: 186 molecules, XXIV: 290 cobalt porphyrins, XXIV: 204–208 crown-substituted boron copper porphyrins, XXIV: 221–222 subphthalocyanines, XXIV: 284 iron porphyrins, XXIV: 188–204 crown-substituted phthalonitriles, manganese porphyrins, XXIV: 186–188 XXIV: 280 nickel porphyrins, XXIV: 208 crown-substituted precursors: zinc porphyrins, XXIV: 208–221 phthalonitriles and metal-free Crowned (metallo)porphyrins with ligands, XXIV: 277–282 porphyrin-governed coordination, cycloalkylation of bifunctional aromatic XXIV: 186 compounds, XXIV: 279 Crown-ether units of Pc derivatives, UV-vis decarbonylation of ruthenium tetra- absorption data, IX: 449–479 15-crown-5-phthalocyaninate Crown-phthalocyanines, supramolecular with simultaneous introduction of chemistry of, XXIV: 323 N-donor ligands, XXIV: 288 cation-induced aggregation, XXIV: 330–377 design of compounds with ionic aggregation of heteroleptic sandwich channels, XXIV: 291–295 REE crown-phthalocyaninates, dibromobenzo- and dicyanobenzo- XXIV: 354–360 crown-ethers, XXIV: 277 aggregation of homoleptic ionic conductivity, XXIV: 295 double-decker REE polymeric phthalocyanines, prepared crown-phthalocyaninates, from TCDB18C6, XXIV: 282 XXIV: 361–373 “reactive” DCB15C5, XXIV: 279 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 71 FA

Cumulative Index to Volumes 1–25 71

Rosenmund-Braun cyanation of [(crown)4Pc]2Eu2[(C8H17O)8Pc], UV-vis DBB15C5, XXIV: 278 spectra of solutions and LB films ruthenium crown-phthalocyaninate, of, XXIV: 317 XXIV: 287 Cyclic voltammograms of

ruthenium(II) crown-phthalocyaninates, Ce[(15C5)Pc]2 and

XXIV: 286–291 Gd2[(15C5)4Pc]3, XXIV: 305

ruthenium(II) crown-porphyrinates, Cyclic voltammograms of Ce[(15C5)Pc]2 synthesis of, XXIV: 291 LB films, XXIV: 306 steric hindrance precludes formation of Cyclic voltammograms of

[(15C5)4Pc]Ru(qnl)2, XXIV: 289 Lu[(15C5)4Pc]2 spin-coated on

sub-Pc ring expansion reaction, applied SnO2 electrode, XXIV: 304 to prepare CRPcs, bearing single dilutetium tris(tetra-15-crown-5-

macrocyclic substituent, phthalocyaninate), Lu2-

XXIV: 281 [(15C5)4Pc]3, XXIV: 297

synthesis of binuclear phthalocyanine direct metalation of H2[(15C5)4Pc], sharing one crown ether ring, XXIV: 300 XXIV: 281 heteroleptic double-decker complex

synthesis of 15-crown-5-substituted [(15C5)4Pc]La(Pc), synthesis of,

tribenzotetraazachlorin-C60 XXIV: 312 conjugate, XXIV: 285 heteroleptic double-decker complexes, synthesis of mono-24-crown-8- synthesis of, XXIV: 310 phthalocyaninates M[(B24C8)- heteroleptic double-decker complexes

(OctO)6Pc] reaction conditions, (An4Por)Ln[(15C5)4Pc], XXIV: 284 spectrophotometric titration of, synthesis of polysiloxane crown- XXIV: 321 phthalocyanines, XXIV: 292–293 heteroleptic double-decker crown- synthesized CRPcs, XXIV: 291 phthalocyaninates, synthesis of, template condensation of TCDB18C6, XXIV: 309 XXIV: 282 heteroleptic europium complexes, template reaction used to prepare Pb(II) XXIV: 311 complex, XXIV: 283 heteroleptic lanthanum “template” vs. “direct” synthesis of bisphthalocyaninate,

crown-phthalocyaninates, [(15C5)4Pc]La(Pc), XXIV: 310 XXIV: 282–286 heteroleptic porphyrinato-crown- two-dimensional lattices formed by phthalocyaninato complexes,

M[(15C5)4Pc], XXIV: 292 XXIV: 320 “unreactive” DCB15C5, XXIV: 279 heteroleptic sandwich phthalocyaninato- UV-vis spectra of crown-substituted crown-phthalocyaninates, oligosiloxanes, XXIV: 294 XXIV: 308–318 UV-vis spectra of ruthenium heteroleptic sandwich porphyrinato- crown-pthalocyaninates in crown-phthalocyaninates, chloroform, XXIV: 288 XXIV: 319–322 complexes of rare-earth metals, heteroleptic triple-decker complexes

XXIV: 295–322 [(crown)4Pc]Eu[(crown)4Pc]Eu

Ce[(15C5)4Pc]2 with N-bromosuccinimide, [(RO)8Pc] prepared for spectrophotometric titration of, application in OFET devices, XXIV: 302 XXIV: 316 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 72 FA

72 Cumulative Index to Volumes 1–25

heteroleptic triple-decker complexes cation-induced aggregation of,

(Pc)M[(15C5)4Pc]M(Pc) and XXIV: 330–377

[(15C5)4Pc]M[(15C5)4Pc]-M(Pc), concentration and solvent-induced XXIV: 313 aggregation, XXIV: 323–330 heteronuclear triple-decker complexes, synthesis and properties of crown- synthesis of, XXIV: 318 substituted phthalocyanines, homoleptic complexes, XXIV: 296–307 XXIV: 276–277

La2[(15C5)4Pc]3 in CHCl3, XXIV: 301 complexes of p- and d-metals, lanthanide(III) bisphthalocyaninates, XXIV: 277–295 redox-transitions in, XXIV: 303 complexes of rare-earth metals, ligand-centered redox transitions for XXIV: 295–322 Pr(III), Tb and Lu(III) DD CrPc/MoPc/WPc absorption spectra, IX: 45–49 complexes plotted vs. ionic radii, Cryoelectron microscopy, chlorosomes and, XXIV: 306–307 I: 224

Ln(Pc)2, [(15C5)4Pc]Ln(Pc) and Cryo-transmission electron microscopy

Ln[(15C5)4Pc]2, UV-vis spectra (TEM), BChls and, I: 244–245 of, XXIV: 312 Cryptophyte algae, XXII: 9 molecular electrochemical device, based Cryptophyte biliproteins, biosynthesis, on contraction and extension of XXII: 9 linear stack, formed by cerium Crystal structure of double-decker complex, Ag(III) benzocarboporphyrin, II: 159 XXIV: 307 Ag(III) complex of tropoporphyrin, II: 161,

(Pc)Sm[(15C5)4Pc]Sm(Pc) and II: 162

[(15C5)4Pc]Sm(Pc)Sm(Pc), Ag(III)pyrrole appended O-confused XXIV: 315 oxaporphyrin, II: 121–122 Por-CRPc heteroleptic complexes, bis(phthalocyaninato) complexes, XXIV: 319 XIV: 275–287

synthesis of [(15C5)4Pc]La(Pc), bis(porphyrinato) complexes, XXIV: 313 XIV: 291–293 synthesis of heteroleptic triple-decker bromoiron(II) m-benziporphyrin, II: 144 complexes with terminal CRPc cd1 NIR and, XIV: 28–30 ligand, XXIV: 314 chlorocadmium(II) complex of S-confused triple-decker rare earth complexes, thiacarbaporphyrin, II: 128 XXIV: 298 chloronickel(II) complex of dimethoxy- tetra-15-crown-5-phthalocyanine, direct m-benziporphyrin, II: 143 metelation of, XXIV: 298 chloronickel(II) complex of

UV-vis spectra of (An4Por)- p-benziporphyrin, II: 147

Ln[(15C5)4Pc]Ln(An4Por), chloropalladium(II) vacataporphyrin, XXIV: 322 II: 143

Yb[(15C5)4Pc]2, structures of, Cu(II) 21-diphenylphosphoryl- XXIV: 303 carbaporpholactone, II: 125–126 Crown-substituted phthalocyanines (CRPc), Cu(II) 21-hydroxyazuliporphyrin, II: 159 XXIV: 275–276 Cu(II) N-confused calix[4]phyrin, II: 126 generic structural formulas, XXIV: 274 Cu(I) 22-pyridiumyl-dicarbahemi- periodic table of, XXIV: 276 porphyrazine, II: 165 supramolecular chemistry of dioxadiazuli-porphyrin and crown-phthalocyanines, XXIV: 323 -porphyrinogen, II: 170, II: 171 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 73 FA

Cumulative Index to Volumes 1–25 73

di-p-benzilhexaphyrin, II: 180 free-base Pacman bisporphyrins and 21-diphenylphophoryl-carbapropholactone, modulation of, XI: 35–37 II: 125–126 and geometrical data of 35 X-ray structures dithiadiazuli-porphyrin and of Pacman bisporphyrins, XI: 35–41 -porphyrinogen, II: 170, II: 171 c-Type heme-containing redox-and/or

FECH, XV: 67–71 O2-sensing proteins hemopexin, XV: 228–234 DcrA, XV: 445–446 Fe(III) complex of p-N-confused GSU0935/GSU0582, XV: 445 pyriporphyrin, II: 132 64Cu and 61Cu-labeled phthalocyanines, Li(I) monobenziphthalocyanine, II: 165 IV: 94–95 mixed (phthalocyaninato) (porphyrinato) Cu double-decker complexes, nitrogen cycle and, V: 129 XIV: 287–290 optical sensors and, XII: 183–184 mixed porphyrinato/phthalocyaninato unsubstituted Pcs (UV-vis absorption data) triple-decker complexes, and, IX: 120–121 XIV: 295–300 Cu(I) N-confused sapphyrins, II: 178 22-pyridiniumyl-dicarbahemiporphyrazine, Ni(II) azuliporphyrin, II: 159 crystal structure of, II: 165 Ni(II) monobenziphthalocyanine, II: 165 Cu(II) Pd(II) expanded porphyrins, II: 183 21-diphenylphosphoryl- p-benziporphyrin, II: 141–142 carbaporpholactone, crystal structure P-confused porphyrinoid, II: 132–133 of paramagnetic, II: 125–126 phosphorus(V) N-fused phlorin, II: 152 21-hydroxyazuliporphyrin, crystal structure porphyrinato/phthalocyaninato of, II: 159 triple-decker complexes, XIV: 291 benzoiminium derivatives, IV: 28 Re(I) and Re(II) complexes of carbaporphyrins, EPR spectra and tribenzotriphyrin, II: 34–35, II: 41 parameters of, II: 125 tetracarbatetraazuliporphyrin tetracation, N-confused calix[4]phyrin, II: 174, II: 175 crystal structure of, II: 126 22-thiaazuliporphyrin, II: 152, II: 154 stabilization of Cu(II) in, II: 124–125 tris(phthalocyaninato) complexes, Cultured cells and solution phase libraries, XIV: 291–295 III: 524 vacataporphyrin, II: 142 Cumene autoxidation reaction, copper See also X-ray structures of 2,9(10),16(17),23(24)- Crystallography tetrabromophthalocyanine and, III: 71 BChl mimics and, I: 262–265, I: 267–271 CuOEP arrays on Au(111), XVIII: 41 photosynthetic RCs of cyanobacterial CuPc/AgPc/AuPc absorption spectra, IX: 72–74 photosystems, I: 2–3 Cup-stacked carbon nanotubes (CSCNTs), Crystals porphyrin–nanocarbon composites and, of calixarene-porphyrins, XIII: 183–184 X: 224–226 as tectonic networks, XIII: 304 Curie plots, and electronic ground states in C–S/C–Se coupling. See Palladium-catalyzed low-spin complexes C–S/C–Se coupling temperature range of measurement, CsmA, XX: 129 VI: 79–80 CTBPP, XVIII: 8–9 Curvature in Curie plot over temperature range Ct–Ct distance by choice of appropriate spacer of measurement b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 74 FA

74 Cumulative Index to Volumes 1–25

and nonzero intercepts of the Curie plot, Cyclic adenosine monophosphate (cAMP), VI: 79–80 CooA and, XV: 145 zero-field splitting contributions to Cyclic AMP response element 2 (CRE-2), pseudocontact shift, VI: 79 IV: 430 CXXCH motif, XIX: 372, XIX: 384–387, 390 Cyclic arrays and porphyrin boxes Cysteine residue, Cys48, XXV: 12 and EET process, I: 495–499 Cyanide (CN-), axial ligand bands and M(II) and excitation energy hopping, I: 474–475 porphyrins, VII: 448 and excitation energy migration, Cyanide, XXV: 92–100 I: 475–476 binding to “incomplete” and exciton coupling, I: 472–474, aquacyanocorrinoids, XXV: 93 I: 479–480, I: 492–495 detection of using porphyrins, comparison and SMFS, I: 476–479, I: 485–491 with, XXV: 100–102 and supramolecular self-assembled Cyano-8-epi-cobalamin, XXV: 143 porphyrin boxes, I: 491–492 Cyanobacteria. See also Antenna effect Cyclic multi-porphyrin arrays background information, XI: 5 self-assembling metalloporphyrins and, dendrimers (photonic devices for antenna I: 93–94 effect), XI: 106–131 shape/geometries of, I: 32–34 photosystems of, XI: 7 synthesis of oligophenyleneacetylenes, structure/dynamics (photonic devices for I: 29–30 antenna effect), XI: 103–106 template-directed method of Cyanobacteria, bacterial phytochromes/ macrocyclization, I: 25–26, I: 29–31 holo-cyanobacteriochromes/ Cyclic porphyrin arrays, excitation energy photochromic GAF domains from, transfer (EET) and, I: 3 XXII: 18–19 Cyclic tetrapyrroles, XI: 225. See also Cyanobacterial biliproteins, XXII: 10 Chlorophylls Cyanobacterial photosystems, I: 2 Cyclic tetrapyrrole formation by urogen III Cyanobacterial Phy, chromophore, XXII: 13 synthase, XX: 153–154 Cyanobacteriochromes (CBCR) XXII Cyclic voltammetry (CV) diverse phototypes, XXII: 22 diverse electrodeposition processes and, features adding complexity to, XII: 267–270, XII: 272–276 XXII: 22–23 and EQCM films, XII: 257–258 phycobiliproteins versus, XXII: 3 Fe films and, XII: 259–260 spectral coverage of phytochromes and, and gold nanoparticles, XII: 359, XII: 363 XXII: 17 metallotetrapyrrole-fullerene dyads and, types of CBCR, XXII: 20–22 I: 316–318, V: 252–254 Cyano-imidazolyl-cobamide, XXV: 139 nickel porphyrins in alkaline solution and, Cyanophenyl groups XII: 263–266 binding modes of, XVIII: 9 polymeric films and, XII: 251 and 3,5-dialkoxyphenyl group, hydrogen of nanocomposite-coated electrode, bonds between, XVIII: 13 XII: 282–283 Cyanophenyl-substituted porphyrins, and surface coverage of electropolymerized XVIII: 8–15 film-coated electrodes, XII: Cyanoporphyrins, non-Stille C–C coupling 247–251 reactions and, III: 347–348 of electrode in benzoic anhydride and Cyanopyrrolidine, XVII: 14 1-methylimidazole, XII: 279–280 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 75 FA

Cumulative Index to Volumes 1–25 75

Cyclization, XVII: 322–330 diagram for, XVII: 173

coupled electrochemical/chemical Cycloimide derivatives of chlorin p6 (CICD), processes leading to isoamethyrin, IV: 38–39 XVII: 326 Cyclooligopyrrole anion receptors, electrochemically triggered cyclization of VIII: 167–168 bisindolizine, XVII: 329 -1 (COX-1), IV: 427, IV: 428

electrochemical synthesis of H2TPP, Cyclooxygenase-2 (COX-2), IV: 427, XVII: 323 IV: 428–429 porphyrin and homoporphyrin Cyclooxygenase-2 (COX-2) inhibitors, electrosynthesized, XVII: 325 IV: 427–432 of secocorrin into corresponding corrin, celecoxib, IV: 428, IV: 431–432 XVII: 323 N-(2-cyclohexyloxy-4-nitrophenyl)- Cyclization reactions and annelation of methane sulfonamide (NS-398), aromatic rings IV: 428–429 and condensation of carbonyl group, Cyclopentadiene ring, properties of XIII: 86–88 carbaporphyrinoids containing, cycloaddition reactions, XIII: 75–79 II: 161–162 electrocyclic reactions, XIII: 73–75 Cyclopentadiene-fused porphyrins, II: 64, free-radical cyclizations, XIII: 88–90 II: 66 and modification of extended porphyrins, Cyclopentadienyl (Cp) ligands, N-fused XIII: 90–94 porphyrinato ligands and, II: 347, olefin metathesis, XIII: 85–86 II: 348 pericyclic reactions, XIII: 73 Cyclopentene-fused porphyrins, use of sulfolenopyrroles/sulfolenoporphyrins, nitrochlorin in synthesis of, II: 74–75 XIII: 79–85 Cyclophanes, XX: 57–60 Cyclized aza-BODIPY dyes, VIII: 131–133 Cyclophosphamide, hydroxylation of, Cyclo[n]pyrroles, IV: 50–51 XXI: 391 Cyclodextrins, conjugates with carbohydrates, Cyclopropanation of alkenes with methyl XVIII: 261–265 diazoacetate, XVIII: 308 Cycloaddition reactions, annelation of Cyclopropanation aromatic rings by, XIII: 75–79 of aromatic olefins catalyzed by [FeCl] chlorin using, II: 251 chiral picket fence porphyrins, X: 51 functionalization of porphyrins through, and binaphthyl-strapped porphyrins, X: 66 II: 242 and chiral cobalt porphyrin complexes microwave irradiation and improvement of, (chiral picket fence porphyrins), II: 251 X: 57–58 porphyrin derivatives using, II: 195 chiral picket fence porphyrins and, with tetraazaporphyrins, corroles X: 45–64. See also Chiral picket and sapphyrins as dienophiles, fence porphyrins II: 251–253 chiral strapped porphyrins and, X: 64–68 Cycloadditions to porphyrins for, cobalt-catalyzed, X: 58–60 bacteriochlorins, XVII: 98–99 and D -symmetric chiral porphyrins (chiral 2 Cycloadditions, XXI: 365–367 picket fence porphyrins), X: 57, Cyclobutane-fused porphyrins, II: 22, II: 23 X: 59–60 Cyclohexene, porphyrin fused with, II: 9 and diazo substrate (chiral picket fence Cyclohexylcyanine, XVII: 172 porphyrins), X: 54–55 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 76 FA

76 Cumulative Index to Volumes 1–25

diisopropyl diazomethylphosphonate Cyclopropanation reactions, XXI: 401–402 (DAMP) and, X: 54–55 Cyclopropane-fused porphyrins, II: 22, II: 23 and Fe(II)-catalyzed asymmetric Cyclopropyl carboxamide derivatives, cyclopropanation of styrene with cyclopropyl succinimidyl esters as EDA, X: 66–68 intermediates for, X: 60–61 Halterman porphyrins and, X: 45 Cyclopropylphosphonates, XXI: 338 and intramolecular rhodium/ruthenium Cyclotetramerization complexes, X: 50 and hydroxy-/alkoxy-/aryloxy-substituted and metal-mediated decomposition of diazo phthalocyanines, III: 121, III: 169, reagents, X: 43, X: 45 III: 172–173 of olefins catalyzed by and phthalocyanine functionalized with [Rh] chiral picket fence porphyrins, phosphoric acid derivatives, III: 111, X: 46–47 III: 113 [Ru(CO)] complexes, X: 48, X: 64, phthalonitriles as precursors in, III: 70 X: 66 preparation of [Ru(O) ] chiral picket fence porphyrins, phthalocyanines with substituents 2 X: 47 connected to core via, III: 45, [Ru(CPh )] chiral picket fence III: 61 2 porphyrins, X: 48–49 trimethylsilylphthalonitrile, III: 42, of olefins with III: 44 α-nitrodiazoacetate catalyzed by [Co] of pyromellitic anhydride/imide, III: 95, complexes, X: 63, X: 65 III: 104–106 succinimidyl diazoacetate catalyzed by symmetrical phthalocyanines and, III: 190, [Co] chiral picket fence III: 196 porphyrins, X: 60, X: 64 transition-metal 1,8(11),15(18),22(25)- and rhodium metal/ruthenium exchange in tetrabromophthalocyanines and, chiral picket fence porphyrin for, III: 70–71 X: 49–50 Cylindrocarpon, and fungal NO reductase, of styrene catalyzed by V: 143–144 [FeL] chiral picket fence porphyrins, CYP nomenclature, V: 167 X: 51–52 and ferric resting state/substrate binding, [Ru(CO)] complexes chiral picket fence V: 170–172 porphyrins, X: 51–52 O–O scission in, V: 179 of styrene with and oxygen binding/autoxidation, DAMP catalyzed by [Ru(CO)] chiral V: 174–178 picket fence porphyrins, X: 54–55 peroxide dissociation in, V: 179 DAMP/EDA catalyzed by [Ru(CO)] properties/reactivity of Compound I, chiral picket fence porphyrins, V: 180 X: 55–56 second electron transfer/protonation in, EDA chiral picket fence porphyrins, V: 178–179 X: 53 second protonation in, V: 179 ENDA, X: 64–65 CYP proteins and biosensor fabrication, and trifluorodiazoethane chiral picket fence V: 269–270 porphyrins, X: 53–54 CYP3A4, XIX: 82 use of metalloporphyrin-based ligand complexes and substrates, XIX: 83 designs for, X: 45 CYP2B4, XIX: 81–82 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 77 FA

Cumulative Index to Volumes 1–25 77

Cyprinus carpio, hemopexin and, XV: 234 biochemical analysis of CGCytb, Cystathionine β-synthase (CBS), XV: 443–444 XIX: 347–353 Cysteine thiolate, as ligand in fungal NOR, expression and purification of CGCytb, V: 145 XIX: 346 Cysteines physiological role, XIX: 345–346 + and [2Fe-2S] cluster as cofactor of duodenal cytochrome b561 (DCytb), FECH, XV: 64–66 XIX: 353–354 and metal-ion-binding sites of FECH, biochemical analysis of DCytb, XV: 72 XIX: 356–358 Cytidine-substituted analog, XVIII: 265 expression and purification of Cytidine-substituted phthalocyanine, recombinant, XIX: 355–356 XVIII: 266 physiological role, XIX: 354–355

Cytochrome c, assembly of, XX: 170 lysosomal cytochrome b561 (LCytb), Cytochrome c oxidase (CcO), XXI: 7 XIX: 358–359 active site of, XXI: 6 stromal cell-derived receptor 2 (SDR2), CcO functional mimics, XXI: 23 XIX: 360

O2 reduction cycle by, XXI: 7 structure of, XIX: 342–344

Cytochrome c oxidase (CcO), XXII: 291 tumor suppressor cytochrome b561 homology of, XXII: 292 (TSCytb), XIX: 360–361 Cytochrome c oxidase, XXIV: 183. Cytochrome c peroxidase (CcP), XIX: 48–49, Cytochrome c synthase (CCS) proteins, XIX: 235 XX: 170 active site of, XIX: 237

Cytochrome bc1 complex, and respiratory conserved helical core, XIX: 50 chain enzyme studies, VII: 472–474 electron transfer cycle of yeast, XIX: 75

Cytochrome b561, XIX: 340 mechanism illustrating internal electron amino acid sequence alignment analysis, transfer process, XIX: 66 XIX: 342 monomeric yeast, XIX: 236 electronic absorption spectra of, XIX: 342 structure of, XIX: 64 oxidized and reduced, XIX: 347 active site, XIX: 49 oxidation states of ascorbic acid and, vs. APX, XIX: 65, 69 XIX: 341 Cytochromes — electron transfer and transmembrane structure of bovine, respiration, XIX: 159–160 XIX: 343 dissimilatory sulfite reductase, 200–204

Cytochrome b561 in plants, XIX: 362 membrane complexes, XIX: 205–207 biochemical analysis, XIX: 364–365 cytochrome c-associated membrane kinetics analysis of electron transfer complexes, XIX: 209–213 from AsA, XIX: 365 Qmo and Dsr complexes, N-carbethoxylation of purified bean XIX: 207–209 TCytb, XIX: 364 monoheme cytochrome c, XIX: 160–163 expression and purification, XIX: 363–364 multiheme cytochromes physiological role, XIX: 362–363 class III cytochrome family, AsA, role, XIX: 363 XIX: 167–196

Cytochrome b561 , cytochrome c nitrite reductase NrfHA, XIX: 340–342 XIX: 196–199 CGCytb and its homolog in neuroendocrine dimeric diheme split-soret cytochrome c, tissues, XIX: 345 XIX: 163–167 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 78 FA

78 Cumulative Index to Volumes 1–25

Cytochrome P450cam. see P450cam Cytochrome P450, XIX: 75–78 Cytochromes c and aliphatic C–H activation by Compound associated membrane complexes, I of, X: 106–107 XIX: 209–213 and aliphatic hydroxylation mechanisms defining feature of, XIX: 372 with byproduct formation, heme covalently attached to c-type X: 120–124 cytochromes, XIX: 375–376 and aromatic C–H activation by Compound insights from spontaneous heme attachment I of, X: 125–127 to cytochromes, XIX: 376–379 and C=C epoxidation by Compound I of, structures and functions, XIX: 372–375 X: 127–129 structures of catalytic cycle of, X: 87–93 b-heme, XIX: 373 catalytic mechanism of, VII: 3–4 c-heme, XIX: 373 chiral basket handle porphyrins and, X: 40 Cytoplasmic prokaryotic peroxidases, and modeling of properties/reactivities of XIX: 235 compound I (Cpd I), X: 98–106 Cytosolic ascorbate (AsA), XIX: 340 two-state reactivity, X: 106–107 Cytochrome c, IV: 385, IV: 405–406, oxidation reactions of, X: 86–87 IV: 408–410, IV: 416, IV: 419 porphyrinoids and, III: 486 Cytochrome c and biosensor fabrication, redox properties of, VII: 361 V: 257–260 and sulfoxidation by Compound I of, Cytochrome c oxidase (CCO) X: 129–131 active site, SAM and, X: 266–268 as superfamily of cysteine thiolate-ligated and biosensor fabrication, V: 270 heme enzymes for, X: 85–86 protonation sites, and respiratory chain Cytochrome P450cam, hydrogen-bonding enzyme studies, VII: 468–472 networks of, V: 16–17 Cytochrome c peroxidase (CCP) Cytochrome P450 enzymes. See also changes upon reaction with hydrogen Enzymatic activities peroxide, VI: 412 chemical transformation catalyzed by, as classification, VI: 372 V: 189–192 electronic absorption maxima of Fe(III) CYP nomenclature and, V: 167 resting state/intermediate compounds ferric resting state/substrate binding in of, VI: 418 catalytic cycle, V: 168–172 heme pocket and, VI: 373–374 first electron transfer/ferric-ferrous reduction and multifrequency EPR in catalytic cycle, V: 173–174 spectroscopy/reactivity of catalytic general information, V: 165–166, intermediates, VI: 424–428 V: 300–303 structure of heme cavity with key residues heme conformers comparison of of resting state HRP/CCP, VI: 413 membrane-bound/soluble

Cytochrome cbb3. See FixN-type cytochrome cytochrome, V: 185 oxidase (FixN complex) impact of deficiency, V: 192

Cytochrome cd1-type, as Cu-containing O–O scission in catalytic cycle, V: 179 enzyme, V: 129 oxygen binding/autoxidation in catalytic Cytochrome oxidases. See also Bacterial nitric cycle, V: 174–178 oxide reductase (NOR) P450cam reaction cycle, V: 301 molecular phylogenesis of NOR and, peroxide dissociation in catalytic cycle, V: 142 V: 179 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 79 FA

Cumulative Index to Volumes 1–25 79

properties/reactivity of Compound I in zigzag geometry (coordination bonds for catalytic cycle, V: 180 porphyrin-based tectons), reaction pathways for, V: 324–325 XIII: 308–310 second electron transfer/protonation in 1,1-Diphenylethylene, asymmetric catalytic cycle, V: 178–179 cyclopropanation of, XVIII: 308 second protonation in catalytic cycle, 1,3-Di(pyrroyl)benzene, electrooxidation of, V: 179 XVII: 288 steady-state kinetics/uncoupling in catalytic 1,3-Dicyclohexylcarbodiimide (DCC), cycle, V: 181–182 IV: 141–142, IV: 143 structure comparison of membrane-bound/ 1,3-Diiminoisoindolines, cyclization of, soluble cytochrome, V: 184–185 XVIII: 249 structures of, V: 182–189 1,3-Diphenylisobenzofuran (DPBF), Cytochromes XVIII: 246 ferric heme-nitrosyls and catalytic 1,3-Dipolar cycloaddition of carbonyl/ mechanism of P450nor, azomethine ylides, XXI: 353 XIV: 211–215 1,3-Dipolar cycloaddition reactions, interaction of NO with XVII: 77–86 cytochrome c′, XIV: 72–73 azomethine ylides, XVII: 78–82 cytochrome P450 monooxygenases, chlorin as dipolarophile, XVII: 78 XIV: 117–118 oxides, XVII: 85–86 mechanism of NO reduction by sugar-based nitrones, XVII: 82–85 cytochrome P450nor, XIV: 114–117 1,4-Diaminobutane (DAB) dendrimers with Cytoplasmic enzymes, V: 128 pheophorbide a, IV: 373–374 Cytoplasmic proteins, heme-binding, XV: 1,19-Disubstituted–biladienes-a,c, XXIII: 111 30–31 [2+2] Dipyrromethane–carbinol Cytoplasmic Translocation Sequence (CTS), self-condensation, XXIII: 100 IV: 141, IV: 142 2,3-Diaryl-5,10,15,20-tetraphenylporphyrins, Cytoprotection. See Hemopexin and II: 216 cytoprotection 2,3-Dibromo-tetraphenylporphyrin(2,3- Cytosolic enzymes, transport of heme dibromo-TPP), preparation of, II: 207 precursors between, XV: 11–12 2-3′ Dimer of 4,5-diphenyl-2-mesitylpyrrole, C=C epoxidation by Compound I of CYP450, XVII: 280 X: 127–129 2,3-Diphenyl-5,10,15,21-tetra(p-tolyl)- carbacorrole (iso-carbacorrole), D synthesis and metal complexes of, 1D coordination polymer, structure of II: 133–134 polymorphs in MTTDPz series, 2,4-Dimethyl-3-ethylpyrrole. see kryptopyrrole XVIII: 220 2′,7′-Dichlorodihydrofluorescein diacetate 1D networks (DCFDA), XVIII: 251 and crystals as networks, XIII: 304 2-Dihydroxyboryl-5,10,15,20- double-zigzag geometry (coordination tetraphenylporphyrin, synthesis of, bonds for porphyrin-based tectons), XXIII: 145 XIII: 310–311 2D networks, and crystals as networks, ladder geometry (coordination bonds for XIII: 304 porphyrin-based tectons), [3,8-Divinyl]protochlorophyllide, XX: 22 XIII: 311–312 3,4-Dihalopyrroles, XVII: 265 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 80 FA

80 Cumulative Index to Volumes 1–25

3,4-Dimethoxypyrroles, XVII: 265 D -symmetrical TBP, synthesis of, II: 5, II: 6 2h 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene. D. aespoeensis, XIX: 154 See BODIPY dyes/derivatives D. alaskensis G20, XIX: 154 4,7-Diphenyl-1,10-phenanthroline (BPhen), D. baculatum, XIX: 154 XVIII: 69 D. desulfuricans ATCC 27774, XIX: 154–155 4d Transition metals, porphyrin complexes genetic organization of, XIX: 157 with, XVIII: 305 spectra of, XIX: 156 5′-Deoxy-adenosyl-cobinamide, XXV: 143 structure of, XIX: 157, XIX: 159 5,6-Dimethylbenzimidazole (DMB) XXV D. vulgaris DP4, XIX: 154 BluB and depiction of oxygen-dependent D. vulgaris Hildenborough, XIX: 145, XIX: reaction for conversion of Flavin 147–149, XIX: 151–152, XIX: 154 mononucleotide (FMN) into, electron transfer complex between, XXV: 67 cytochrome c553 and coordination of DMB-base, XXV: 152 [FeFe]-hydrogenase, XIX: 162 “pseudo-nucleotide,” XXV: 139 structure of CbiKP, XIX: 150–151 5,10-Diphenyl-2,3,12,13- D. vulgaris Hildenborough tetrahydroxybacteriochlorin, UV-vis [FeFe]-hydrogenase, XIX: 161 data of, XVII: 53 D. vulgaris Miyazaki F, XIX: 154 5,15-Dialkynyl-porphyrin, XXIII: 97 D. vulgaris RCH1, XIX: 154 5,15-Diaryl metal porphyrins, oxidative DABCO, XVIII: 35 coupling and synthesis of porphyrin on HOPG, XVIII: 34 arrays, II: 65 Dap1p/PGRMC1p, heme sensor proteins and, 5,15-Diarylporphyrins XV: 428 direct borylation of β-pyrrolic positions of, Davydov splitting, exciton coupling and, II: 227 VII: 151, VII: 153 synthesis and selective functionalization of, Dark-operative protochlorophyllide (Pchlide) II: 55 oxidoreductase (DPOR), XX: 28, 5,15-Dibromo-10,20-diarylporphyrins, XX: 148 palladium-mediated chiral porphyrins DCFDA, IV: 412–413 from, II: 240 DcrA, XV: 445–446 5,15-Dihydroporphyrins, XXIII: 69 DDC (3,5-diethoxycarbonyl-1,4- 5,15-Diphenylbacteriochlorin, UV-vis data of, dihydrocollidine), and metal-ion- XVII: 53 binding sites of FECH, XV: 74–75 5,24-Dihydroporphyrins, XXIII: 69 Deamination, as catalyzed by cytochromes 5-Dihydroxyboryl-10,20-diphenylporphyrin, P450, V: 189 synthesis of, XXIII: 145 Deazaporphyrins, XVI: 275–279 7,17-Dimethylene-substituted octaethyl Decarboxylation by Urogen III decarboxylase, bacteriochlorin, structure of, XVII: 67 XX: 154 9,10-Dimethylanthracene (DMA), IV: 365 Dechlorination of organic halides by other 17,18-Dihydroporphyrins, XXIII: 69 cobalt complexes, X: 349–350 21,23-Dioxaporphyrins, a dicarba- Deformation of porphyrin ring porphyrinoid, II: 166 domed deformation, VII: 7, VII: 11 21-Diphenylphosphoryl-carbaporpholactone, and formation of pure synthesis and crystal structure of, intermediate-spin complexes (ruffled), II: 125–126 VII: 61–67

D2-symmetric chiral tetraphenylporphyrins, intermediate-spin complexes (saddles), 343 VII: 67–70 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 81 FA

Cumulative Index to Volumes 1–25 81

ruffled deformation, VII: 11, VII: 39–45 Dendritic light harvesting system, VIII: 65–66 saddled deformation, VII: 11, VII: 45–47 Dendritic porphyrin arrays Degree of aggregation, impact on cone-shaped systems of, I: 35–37 metalloporphyrin structures of, VI: 18 convergent growth approach of, I: 34–35, Dehalogenase TCED, XXV: 201 I: 38–41 Dehalogenation reactions Coulomb complexes and electron-donor– dechlorination of organic halides by other acceptor topology, I: 172–174 cobalt complexes, X: 349–350 energy transfer efficiency and, I: 35 electrocatalytic reduction of organic halides fullerene and, I: 43–44

by B12 derivatives, X: 344–346 hexaarylbenzene-centered ester-bridged, photocatalytic reduction of organic halides I: 37–38

by B12 derivatives, X: 346–349 metal-bridged porphyrin arrays and,

reduction of organic halides by B12 I: 112–113 derivatives, X: 339–344 poly(propylene ) dendrimers and, Dehydration of bilindione, verdoheme I: 37, I: 39 formation by, VIII: 301, VIII: 304 Dendritic porphyrins Dehydroquatyrin, II: 173 and linear polymer backbones, III: 350–352 Dendritic ruthenium porphyrin complex, poly(phenylene ethynylene) synthesis and, XXI: 181 III: 350–352 Delocalization of π-electron systems, I: 136 snowflake-shaped, III: 349–351 DELLA proteins, XX: 183 Sonogashira C–C coupling reactions and, Dendrimers, IV: 369–374 III: 348–350 dendrimer phthalocyanine (DPc), IV: 381 Dendronized non-planar porphyrin, dendrimer porphyrin (DP), IV: 371–372, XVIII: 137–138 IV: 380–381 variations in electronic absorption spectra, dendritic [60]fullerene pyropheophorbide a XVIII: 139 conjugates, IV: 374, IV: 375 variations in fluorescence emission dendritic 5-aminolevulinic acid (ALA), spectrum, XVIII: 139 IV: 369–371 Denitrification, XIX: 124 dendritic aryl ether porphyrins, IV: 371–372 and bacteria with cNOR, V: 133 1,4-diaminobutane (DAB) dendrimers with nitrogen cycle and, V: 127–130 pheophorbide a, IV: 373–374 Density functional theory (DFT), XIX: 62 in fullerene-based modular carrying calculations on ferrous heme-nitrosyls, system, IV: 340–342 XIV: 169–172 as multiplying units in MAb conjugates, and active site of bacterial NOR, V: 137 IV: 335, IV: 340–342 and catalytic cycle of CYP450, X: 87–93 polyion complex micelles (PICM), and electronic configuration of IV: 371–372, IV: 380–382 unsubstituted oxo-manganese tetraphenylchlorin-based dendritic system, corrole, XIV: 543–544 IV: 372–373 and historical aspects of porphyrinoid See also Linkers in conjugates; Passive optical spectroscopy, XIV: 467, targeting XIV: 469 Dendrimers, XI: 106–131. See also Antenna for dioxygenase reaction, V: 117–118 effect iron-oxo complexes and, XIV: 553 Dendrimers/conjugated polymers manganese-oxo complexes (corrole (macromolecules), C–C coupling synthesis/reactivity) and, reactions and, III: 348–352 XIV: 550–551 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 82 FA

82 Cumulative Index to Volumes 1–25

MCD intensity and, XIV: 475 Diabetes, medical effects of water-soluble and photophysical properties of aromatic metalloporphyrins and, XI: 364–365 rings with increasing π-electrons, Di-acroleinylporphyrins, synthesis of, II: 220 XIV: 485–486 3,5-Dialkoxyphenyl group, hydrogen bonds Deoxyribose-conjugated phthalocyanine, between cyanophenyl group and, XVIII: 255 XVIII: 13 Deposition. See Solid state deposition of Dialkylimidazolylporphyrins, SOD mimics porphyrins and, XI: 321 Deprotection reaction, and hydroxy-/alkoxy-/ Dialkylpyramidazolylporphyrins, SOD mimics aryloxy-substituted phthalocyanines, and, XI: 321 III: 172 Dialkynylporphyrinic enediynes Deprotonation, Bergman cyclization of derivative of, in 2-Me-NCP, II: 3-oxo-NCP, and II: 215 21-oxo-NCP, II: 305 preparation of, II: 211–212 in NCP ligands, II: 304 Diamond functionalization via C–C linkage/ Desaturation, cytochrome P450 enzymes and, amide coupling, and noncovalent V: 191 linkage of carbon nanotubes, Desilylation reaction, and hydroxy-/alkoxy-/ X: 293–294 aryloxy-substituted phthalocyanines, Dianions, of porphyrins, VII: 8–9 III: 172 Diastereomeric ligation of BChls, I: 231–238 Desirable “ordered BHJs,” XVIII: 75 Diazabicyclooctane (DABCO) Desulfohalobium retbaense, XIX: 154 catenanes linked systems and, I: 360–361 Desulfovibrio sp. 31 syn3, XIX: 154 self-assembling metalloporphyrins and, Desulfovibrio vularis, and UROS formation I: 93–94, I: 96–98, I: 101 from ALA, XV: 186 upon photoexcitation in non-covalently Detoxification. See Nitric oxide dioxygenation linked hybrids, I: 181 (NOD) Diazaporphyrin analogs. See TAPs and mono-/ Deuteration, 2H NMR spectra methods of di-/triaza porphyrin analogs, UV-vis assignment and, VI: 58–59 absorption data Deuteroporphyrin-III, XVI: 23 Diazo compounds reactions, water-soluble Dexter mechanism, for singlet transfer, metalloporphyrins, XXI: 400 XI: 16–17 cyclopropanation reactions, XXI: 401–402 Dextran, IV: 153–155, IV: 166–167 alkene-tethered protein modification, DFT calculations, IX: 10–11 XXI: 402 DFT-calculated reaction mechanism of myoglobin and iron corrole-conjugated trans-2-phenylmethylcyclopropane albumins, XXI: 403 activation, X: 120–121 N–H and S–H insertions, XXI: 403–404 DGCR8, heme sensor proteins and, Diazosulfones as a carbine source, XXI: 342 XV: 426–427 Diazotization reaction DHA (9,10-dihydroanthracene), and hydroxy-/alkoxy-/aryloxy-substituted manganese-oxo complexes (corrole phthalocyanines, III: 172 synthesis/reactivity) and, XIV: 549–550 and solubility of halogenated DHR51, heme sensor proteins and, XV: 422 phthalocyanines, III: 71–72 Di(iso)indomethene dyes (extended systems), Diazulidiheteroporphyrinoids, dicationic and aromatic conjugation of derivatives and aromaticity of, BODIPY-analogs, VIII: 112 II: 169–170 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 83 FA

Cumulative Index to Volumes 1–25 83

Diazuliporphyrin, ORTEP III drawing, synthesis by McMurry coupling of XVI: 265 bis-vinylogous pyrrole dialdehyde, Dibenzihexaphyrins XVI: 277 and dioxo doubly N-confused synthesis from tetraphenyl-21,23- dibenzihexaphyrins ditelluraporphyrin, XVI: 279 synthesis from p-benzitripyrranes, in TFA-CDCl3, 500 MHz proton NMR XVI: 301 spectrum of, XVI: 278

synthesis of, XVI: 300 UV-vis spectrum in 1% Et3N-CHCl3, Dibenziphthalocyanine XVI: 277 metalation and pyridination of, XVI: 154 Didecarboxysiroheme, XIX: 133 synthesis of, XVI: 153 isolation of, XIX: 132–134 Dibenzofuran (DPD) pillared cofacial structure of, XIX: 134 porphyrin, XXI: 59 Didecarboxysirohydrochlorin (DDSH), Dibenzofuran Pacman porphyrins, XXI: 64 XIX: 148 Dibenzofuran pillared porphyrins, XXI: 61 Didehydrocorrin by acid induced cyclization, Dibenzofurane porphryrins, Suzuki-type C–C formation of, XXV: 290 coupling reactions and, III: 337–338 Didehydroporphyrin, XVI: 270 Dibenzoporphyrin dimer, synthesis of β–β, Didehydroquatyrin, XVI: 270 meso–meso, β–β triply linked, II: 68, Dielectric Continuum Model, I: 317 II: 71 Diels-Alder reaction, XVII: 87–95 Dibromobacteriochlorin, Stille coupling of, β-aminoporphyrins as heterodienes in, XVII: 26–27 II: 256, II: 259 Dicarbahemiporphyrazine (dchp), II: 162, β-vinylchlorins, Diels–Alder mono-adducts XVII: 149 to, XVII: 89 1H NMR spectrum of, XVII: 151 β-vinylporphyrins as dienophiles in, incorporation of phenol and resorcinol into, II: 253 XVII: 167 benzobacteriopurpurin trans-isomer reacted Li(I) and Zn(II) adducts of, XVII: 160 with DBU, XVII: 90–91 properties of coordinated complexes of, carbene additions, XVII: 99 II: 163–164 chloromaleonitrile and, III: 70 structure of, XVII: 150 diene, porphyrins as, XVII: 87–93 Dicarbaporphyrins, structures of, XVI: 246 reaction of methyl pyropheophorbide a Dicarbaporphyrinoids, II: 166 with TCNE, XVII: 90 as tetraanionic ligands, II: 169 reaction of protoporphyrin IX dimethyl Dicationic bacteriochlorin, XVII: 28 ester with DMAD, XVII: 88–89 Dications, Fe(III) porphyrin, VII: 134 TCNE-cycloaddition to Dichlorofluorescein octadecyl ester (DCFOE), β-vinylporphyrins, XVII: 88 and coextraction principle of bulk dienophile, porphyrins as, XVII: 87, optodes, XII: 190 XVII: 93–95 Dichloromethane (DCM), electro- meso-pentafluorophenylporphyrin polymerization and, XII: 246 derivative as, XVII: 93–94 Dichroism. See Circular dichroism meso-tetraarylporphyrins reacted with Dicobalt derivatives of Pacman compounds, diene o-benzoquinodimethane, XXI: 62 XVII: 93 Dicyano-p-cresolylcobamide, XXV: 155 reaction of chlorin with pentacene, Dideazaporphyrins, XVI: 275–279 XVII: 95 ORTEP III drawing, XVI: 278 and cyclic multi-porphyrin arrays, I: 26–27 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 84 FA

84 Cumulative Index to Volumes 1–25

and hydroxy-/alkoxy-/aryloxy-substituted BpeGReg and, XV: 142–143 phthalocyanines, III: 121, III: 171 EcDosC, XV: 143–144 participation of porphyrins in, II: 81 Dihedral angle control protoporphyrin-IX dimethyl ester as diene doubly linked arrays and, I: 467–469 in, II: 253, II: 254 and nonlinear optical properties of of divinylporphyrin, XVII: 89, XVII: 91 porphyrin tapes, I: 466–467 of porphyrins with o-benzoquinodi- and resonance Raman spectra of strapped methanes, XVII: 98 diporphyrins, I: 461–463 of pyrrolo[3,4-b]porphyrins with and resonance Raman spectra of triply acetylenedicarboxylates, linked arrays, I: 469–472 II: 255–256, II: 258 strapped porphyrin dimers and, I: 459–461 reaction of methyl pyropheophorbide a via coordination, I: 463–464 with TCNE, XVII: 90, XVII: 92 via host-guest interactions, I: 464–466 regioisomeric β-vinyloxochlorins with Diheme peroxidases, XIX: 52–54 dienophiles DMAD and TCNE, Diheteroporphyrins, II: 166 XVII: 90–93 Dihydrocorphinol-corrin rearrangement, in synthesis of XXV: 288 anthraquinone-fused porphyrins, II: 84 intermediates of, XXV: 288 β-extended porphyrins, II: 81, II: 83 Dihydroporphyrins, XXIII: 68–70 monobenzoporphyrin, II: 85, II: 86 plausible sites of hydrogen addition to π-extended porphyrins, II: 81–86 give, XXIII: 69 porphyrin-fullerene dyad, III: 354 Dihydrodipyrrins, synthesis of, XVII: 19–21 quinoxaline-fused porphyrins, II: 81, Dihydroethidium (DHE), IV: 412–413 II: 83 Dihydroisoindole (DHI) derivatives tetrabenzoporphyrins, II: 84–85 and synthesis of linearly extended tetraquinonoporphyrin, II: 86, II: 89 porphyrins trialkylsilyl-substituted phthalocyanines 4,7-DHI motif, XIII: 63–68 and, III: 45 6,7-DHI motif, XIII: 60–63 Diene/dienophile, AB type macrocycle, DHI synthons, XIII: 69–73 XVII: 145 general information, XIII: 60 Diethyl pyrocarbonate (DEPC), XIX: 349 Dihydroxybenziphthalocyanine, structure of, Diethylene-triaminepentaacetate (DTPA), XVII: 170 XXV: 110 Dimeric diheme split-Soret cytochrome c, Differential pulse voltammetry (DPV) XIX: 163–167 and metal nanoparticles, XII: 359 Diimide, XVII: 36–37 metallotetrapyrrole-fullerene dyads and, reduction of porphyrins, XVII: 40 I: 316–318 Diiminoisoindoline (DII), XVII: 115 Diffusion NMR characterization of reaction with , XVII: 117 calixarene-porphyrins, XIII: 183 synthesis, XVII: 117 Diffusion of exciton, XII: 387, XII: 393–394 Diiminoporphodimethene, XIII: 225–226 Difluoro-bridged scandium dimer, XXIV: 20 Diisopropyl diazomethylphosphonate (DAMP) Diformylpyrrole, tripyrrane condensation with, chiral strapped porphyrins and, X: 64–65 XXIII: 108 cyclopropanation and, X: 54–56 Difulvene dialdehydes, synthesis of, XVI: 260 Diluent post-immobilization for anchoring Diguanylate cyclase-containing globin coupled porphyrin/phthalocyanine on gold, sensors X: 251 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 85 FA

Cumulative Index to Volumes 1–25 85

Dilutetium tris(tetra-15-crown-5- excited states of butadiyne-linked, I: 7 phthalocyaninate), XXIV: 297 hydrogen bonding and, I: 243–244 Dimer chlorin self-assemble, water induced interconversion between open/closed, closed, XX: 49 I: 239–240

Dimer (ZnOEP)2Ph and ligated triad, linked by metal ions, III: 472–477 XXII: 78 meso-phosphanylporphyrin, I: 117–118 additional non-porphyrin electron acceptor, metal-bridged porphyrin arrays and, XXII: 91 I: 110–112 dynamic competition between QD and, metallocenes linked by metal ions, XXII: 127 III: 447–451 ET rate constants, XXII: 85 Ni(II) porphyrin bridged by experimental fluorescence parameters, platinum-diacetylene unit, I: 112 XXII: 82 oxacalixarene-bridged porphyrin dimer, low-lying locally excited singlet states for, I: 45, I: 47, I: 49 XXII: 87, 97 parallel or anti-parallel and chlorosomal solvent-dependent term, XXII: 86 aggregates, I: 242 structural and photophysical parameters for perylene-bisimide-centered porphyrin triads based on, XXII: 83 tetramer forming, I: 44, I: 47 triads deactivated as result of following photophysical properties/intracellular non-radiative processes, XXII: 98 behaviors of, I: 18–19 Dimeric biliverdin complexes planar conformation and, I: 22–23 µ {Mn(III)( -OEB)}2, VIII: 310–312 porphyrin µ {Pd2( -OEB)}2, VIII: 318–321 structural chemistry of reaction center Dimeric porphyrins without optically active models, XIII: 281–284 substituents, VII: 208–219 syntheses with structural modifications, Dimeric systems, chiral phthalocyanines XIII: 157–160 synthesis/characterization XXIII porphyrin-chlorin dimer and azomethine hetero-dimer systems, XXIII: 431–433 ylide, I: 49 homo-dimer systems, XXIII: 428–431 self-assembling metalloporphyrins and, π-Dimerization, XVII: 320–322 I: 93–97 Dimers and spectra of natural chlorophyll a/ antenna pigments and, XI: 7 bacteriochlorophyll a and of BChl, I: 238–245 derivatives, VII: 182–184 bipyridylene-bridged, I: 112, I: 115 strapped porphyrin dimers (dihedral angle chlorophyll dimer preparation, I: 11 control) and, I: 459–461 cofacial porphyrin dimers, I: 49–57 synthesis of bis(dipyrrinato)metal bridged, coordination complexes linked by metal I: 114, I: 117 ions, III: 451–463 synthesis of Pt(II)-bridged, I: 110–111 covalently linked, I: 4 X-ray diffraction analysis of, I: 85–87 cross coupling reaction of α,α ′- Zn methyl bacteriopheophorbide d dimer, diethynylbithiophene/meso-ethynyl I: 242 OEP, I: 16 Zn-pheoporphyrin dimer, I: 242–243 dihedral angle control of strapped σ-Dimers, XVII: 247, XVII: 303 porphyrin, I: 459–461 Dimers/derivatives, oxo-bridged iron-oxo dioxoisobacteriochlorin dimers, I: 80–82 complexes, XIV: 552–556 and electrochemically switchable linkage Dimers/oligomers of Pcs, UV-vis absorption after synthetic route, I: 17 data, IX: 538–578 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 86 FA

86 Cumulative Index to Volumes 1–25

Dimesityl 23-heteroazuliporphyrins, synthesis dimers, I: 80–82 of, XVI: 91 metalloporphyrin structure/electron Dimethoxybenziporphyrins configurations and, VI: 10–11 reactivity and properties of, II: 139 Dioxotetraphenylchlorin, and related metalation of, XVI: 118 tetraoxoisobacteriochlorin with Dimethyl diazomalonate, XXI: 341 diazomethane, reaction of, XVI: 186 Dimethylene-substituted bacteriochlorin, Dioxygen (O ), axial ligand bands and M(II) 2 XVII: 66–67 porphyrins, VII: 444–445 Dimethoxy-23-carbabenziporphyrins, Dioxygen-generating chlorite dismutases synthesis and protonation of, XVI: 262 (C-family), XIX: 260–271 Dimethylformamide (DMF), heme electronic structure, XIX: 265–269 electropolymerization and, XII: 245 homolytic and heterolytic bond cleavage Dimethylsulfoxide (DMSO), pathways, XIX: 270 electropolymerization and, XII: 245 reaction mechanism, XIX: 268–271 Dinuclear complexes of open-chain for Cl–O bond cleavage and O–O bond tetrapyrrole ligands, VIII: 332–334 formation, XIX: 268 Dinuclear FeFe models XXII reaction with peracetic acid, XIX: 269 Collman and coworkers’ models, stoichiometry, specificity, and stability, XXII: 255–262 XIX: 260–265 Karlin and coworkers’ models, transient intermediates formed upon XXII: 249–254 reaction of D. aromatica Cld, Dinuclear µ-oxo osmium porphyrin carbene XIX: 269–270 complex, XXI: 347 Dioxygen-generating Clds and CDE protein Dinuclear tetrapyrrole L M complexes, superfamily, XIX: 232–234 2 2 coordination chemistry of open-chain biochemistry of superfamily members oligopyrroles and, VIII: 428–432 C-family: dioxygen-generating chlorite Diol dehydratase (DDH), XXV: 192 dismutases, XIX: 260–271 crystal structures from Klebsiella oxytoca, D-family: dye decoloring peroxidases, XXV: 193 XIX: 271–275 Dioxadiazuliporphyrin, crystal structure of, E-family: tat-transport and involvement II: 170, II: 171 in Fe metabolism, XIX: 275–277 Dioxadiazuliporphyrinogen, crystal structure heme peroxidases, XIX: 234 of, II: 170, II: 171 defining features of plant/fungal/ bacterial Dioxadicarbaporphyrins, synthesis from peroxidases, XIX: 236–238 diindenylmethane, XVI: 267 peroxidase classifications, IX: 234–235 Dioxane and crystal modification of BChls, sequences, structures, and genetics of I: 265, I: 267 superfamily members Dioxa-opp-diazuliporphyrins, synthesis of, sequence and structural relationships, XVI: 251 XIX: 243–258 Dioxo doubly N-confused hexaphyrin taxonomic origins and gene

(dioxo-N2CH), organization, XIX: 238–243 bis-Cu(II) complex of, II: 359, II: 361 Dioxygenase. See Heme dioxygenases synthesis of, II: 359, II: 360, II: 361 Di-p-benzilhexaphyrins, crystal structure of, Dioxoisobacteriochlorins II: 180 derivatives, metalloporphyrin structure/ Dipeptide permease (Dpp), and transport of electron configurations and, ALA out of mitochondria, XV: 11 VI: 14–16 Diphenyl-2,3-dihydrobenzofuran, XXI: 183 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 87 FA

Cumulative Index to Volumes 1–25 87

Diphenylethyne-linked porphyrin dimer, metal-organic frameworks (MOFs) and synthesis of, XXIII: 238 synthesis of, VIII: 259–268 Diphenylphosphine oxide, synthesis of properties/reactions of fluorescent porphyrins with meso-substituted, complexes, VIII: 279–281 II: 240 stereochemistry and synthesis of, Diphenylphosphoryl azide (DPPA), VIII: 275–278 aziridination and, X: 71 supramolecular complexes and synthesis Diphenylporphyrin (DPP), III: 371 of, VIII: 255–268 Diphenylporphyrins, reduction of, XVII: 39 Dipyrrin-based receptors, pyrrole-based Diphos, III: 373 π-conjugated acyclic anion receptors Dipolarophile, chlorin as, XVII: 78 and, VIII: 181–186 Dipolar shifts. See Pseudocontact dipolar Dipyrrins shifts direct metalation of 2,2′-bidipyrrins Dipole strength, HOMO/LUMO MCD spectra (biomimetic iron complexes), and, VII: 395–396 VIII: 452–456 Diporphyrins, III: 409–413 historical aspects of, VIII: 237–238 nanotube isomers and, I: 90 nomenclature of, VIII: 237 transition-metal-meditated cycloaddition properties of, VIII: 244–247 reaction for, I: 57–58 reactions of, VIII: 244–247 Diprotonated cyclo[n]pyrroles, IV: 50–51 structural numbering scheme of, VIII: 237 Diprotonated tetraphenyl tert- and synthesis as dependent on symmetry

butylbenziporphyrin in TFA-CDCl3, of, VIII: 238 500 MHz proton NMR spectrum of, and synthesis by condensation of pyrroles, XVI: 105 VIII: 239–242

Di-pyridinated dimer (ZnOEP)2Ph, XXII: 79 and synthesis by oxidation of Dipyrrinato complexes dipyrromethanes, VIII: 242–244 bis(dipyrrin) numbering scheme, Dipyrroketone preparation, XIII: 215–216 VIII: 255–256 Dipyrrolylpyrazoles derived from boron and synthesis of, VIII: 251–252 dipyrrolyldiketones, pyrrole-based chemical manipulations and synthesis of, π-conjugated acyclic anion receptors, VIII: 268–275 VIII: 203–205 complexation geometries and synthesis of, Dipyrrolylquinoxalines (DPQs) (bridged), VIII: 248–250 pyrrole-based π-conjugated acyclic demetalation of homoleptic complexes and anion receptors and, VIII: 190–200 synthesis of, VIII: 255 Dipyrromethane, XVII: 287 discrete helical complexes and synthesis of, BODIPY core and, VIII: 4 VIII: 256–258 Dipyrromethane-based receptors, electrochemical studies of, VIII: 281–283 pyrrole-based π-conjugated acyclic and formation of homoleptic complexes via anion receptors and, VIII: 186–189 heteroleptic intermediate, VIII: 278 Dipyrromethanes XXIII heteroleptic complexes and synthesis of, acidolytic scrambling of, XXIII: 14 VIII: 251–255 treatment with azafulvenium ion, importance of ligand in synthesis of, XXIII: 16 VIII: 247 Dipyrromethanes, in microwave-assisted metal ions and synthesis (homoleptic) of, synthesis of porphyrins, II: 200 VIII: 250–251 Dipyrromethenes, BODIPY core and, VIII: 4 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 88 FA

88 Cumulative Index to Volumes 1–25

Direct immobilization of macrocycle catalytic siroheme in D. vulgaris complex porphyrin system immobilization, Hildenborough DsrB, XIX: 203 X: 260–263 DsrA, XIX: 202 modulation of surface/macrocycle linker, DsrB, XIX: 202–203 X: 256–259 DsrC, XIX: 203–204 multi-linkage of surface/macrocycle, siroheme and sirohydrochlorin groups, X: 259–260 XIX: 202 TPP derivatives and, X: 253–256 spectra of isolated desulfoviridin from Directly linked porphyrin arrays D. vulgaris Hildenborough, XIX: 200 meso–meso-linked coupling reactions and, structure of, XIX: 201 I: 62–63 Dissolved oxygen (DO), XII: 299 m-phenylene-linked porphyrin wheels and, Distal cluster, XIX: 143 I: 70–77 Distortion of porphyrins, XIII: 259–260 porphyrin rings and, I: 65, I: 68–70 FECH mimetics and, XV: 81–84 synthesis of, I: 57–59, I: 61–62 future implications of, XV: 106–107 three-dimensionally arranged arrays and, nonenzymatic, XV: 80–81 I: 63–68 pictorial representation of elements of, Dirhodium(II) carboxylates and XV: 90 carboxamidates, XXI: 346 5,15-Disubstituted tetrabenzoporphyrins Dirhodium diporphyrin complexes, XVIII: 316 (TBPs) Discotic liquid crystals. See also Liquid synthesis of, II: 24–28, II: 30, II: 33 crystals of phthalocyanines synthetic yields of, II: 31

defined, XII: 2 Di-tetraheme cyrochromes c3. see octaheme

Diseases/injuries cytochrome c3 Alzheimer’s disease (AD), XV: 279–280 Dithiadiazuliporphyrin, crystal structure of, conditions with serum/plasma levels of II: 170, II: 171 hemopexin are deviant, XV: 281–282 Dithiadiazuliporphyrin dication, UV-vis erythropoietic protoporphyria, XV: 101–104 spectrum of, II: 170 feline leukemia virus subtype C receptor Dithiadiazuliporphyrinogen, crystal structure (FLVCR), XV: 319–322, of, II: 170, II: 171 XV: 325–327 Dithiaethynoporphyrin, II: 156, II: 157 and hemopexin as biomarker of disease, Dithia-N-confused porphyrin, synthesis and XV: 272 protonation of, XVI: 208 hemopexin as first line of defense, XV: 308 Dithia-N-confused porphyrin, II: 135 inflammation/cancer/infection/neurodegene- Dithiaporphyrin core of pentamer, I: 49, I: 54 ration and hemopexin, XV: 274–277 Dithia-opp-diazuliporphyrins, synthesis of, iron deficiency, XV: 271 XVI: 251 iron metabolism-related disorders, Divalent metal transporter (DMT1), XIX: 354 XV: 104–106 Diverse elctrodepostion processes, proteinuria/biomarkers/kidney disease and XII: 267–278 hemopexins, XV: 280–281 Divinylchlorophyll a, XX: 215 role of hemopexin in, XV: 271 Divinylchlorophyll b, XX: 215 sepsis and hemopexin, XV: 324–325 Divinylchlorophyllide a, XX: 222 vitamin A deficiency, XV: 271 Divinylprotochlorophyllide a, XX: 222 Dismutation selectivity, XXI: 33 D-lysine/L-β-lysine 5,6-aminomutase Dissimilatory sulfite reductase (DsrAB), (5,6-LAM) XXV XIX: 200–204, XIX: 207–208 active site section of, XXV: 196 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 89 FA

Cumulative Index to Volumes 1–25 89

mechanism for isomerization of D-lysine Dodecaphyrins, II: 181–182 by, XXV: 195 Dodecasubstituted compounds, and hydroxy-/ structure of, XXV: 196 alkoxy-/aryloxy-substituted DMSO phthalocyanines, III: 121 amidopyrrole-based receptors and, Doming, of five-coordinate iron porphyrin VIII: 179 complexes, VII: 7, VII: 11 guanidinocarbonyl-based anion receptors Domino-fused sapphyrin Re(I) complex, X-ray and, VIII: 171, VIII: 173–174 structure of, II: 354, II: 355 DNA binding domains of heme sensor output Donor. See Electron donors/acceptors domains, XV: 125 Donor-bridge-acceptor systems, photophysics DNA cleaving agents of, XX: 64–78 anionic porphyrins, IV: 25, IV: 26 Doped polypyrrole/polythiophene films, cation porphyrin–anthraquinone XII: 232–236 (porphyrin–AQ) hybrids, IV: 23, DosS, XV: 148–152 IV: 24 DosT, XV: 148–150 cation porphyrin-modified amino acids, Double component systems of tectons IV: 20, IV: 22, IV: 23–25, IV: 26 general information (coordination bonds), metallophthalocyanines (MPc), IV: 63, XIII: 316 IV: 80–82 H-bonded networks for, XIII: 369, metalloporphyrins, IV: 16–22 XIII: 371–380 sapphyrins, IV: 50 Double decker Pc derivatives. See UV-vis sulfonated dihydroxyphosphorus(V) absorption data of sandwich-type Pcs tetrabenzotriazacorrole (TBC), Double-bond formation (desaturation), IV: 80, IV: 81 cytochrome P450 enzymes and, V: 191 telomerase inhibitors, IV: 19 Double-zigzag geometry of 1D networks, tetra-N-methylpyridiniumporphyrin coordination bonds for porphyrin-based

(TMPyP4), IV: 19–20 tectons, XIII: 310–311 texaphyrins, IV: 47 Doubly fused porphyrin dimer, oxidation in DNA sequencing, and through-space BODIPY synthesis of meso-β, II: 67, II: 69 energy transfer cassettes, VIII: 65 Doubly linked arrays, dihedral angle control DNR, XV: 442–443 and, I: 467–469 Dodeca-alkyl- or aryl-substituted compounds, Doubly N-confused

of phthalocyanines, III: 31 hexaphyrins (N2CHs), II: 179, Dodecaarylporphyrins, using Suzuki II: 358–359, II: 360 cross–coupling reaction, XXIII: 139 pentaphyrin, X-ray structure of Rh(I) Dodecafluorosubphthalocyanine as electron complex of, II: 357, II: 358

acceptor unit, X: 201 porphyrins (N2CPs), cis- and trans-, Dodecaphenylporphyrin, XVIII: 130–132 II: 349, II: 350, II: 351 dication of, XVIII: 137 sapphyrin, II: 178 formation of porphyrin nanochannels, X-ray structure of a derivative of, XVIII: 138 II: 356 inclusion of hydroquinone and chloride bilanes, synthesis of, XVI: 310 counteranions, XVIII: 138 calix[4]pyrroles, and related quadruply intermolecular interaction between confused system, XVI: 269 porphyrin host and hydroquinone hexaphyrins, synthesis of, XVI: 295 guest molecules, XVIII: 138 porphyrin, attempted synthesis of, XVI: 7 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 90 FA

90 Cumulative Index to Volumes 1–25

Doubly N-fused porphyrin (N FP), X-ray Duodenal cytochrome b (DCytb), 2 561 structure of, II: 350, II: 352 XIX: 353–354 Doubly N-fused porphyrin, synthesis of, bacterial expression of, XIX: 356 XVI: 204 biochemical analysis of DCytb, DPD cleft, XXI: 66 XIX: 356–358 DPD Pacman porphyrins, XXI: 99 change in α-band intensity during titration DPD spacer, XXI: 62 of purified recombinant, XIX: 358 DPOR, XX: 160, XX: 162–163, XX: 226 expression and purification of recombinant, DPX/DPD Pacman scaffolds, XXI: 60 XIX: 355–356 DPX Pacman series. See Pacman porphyrin induced Madin–Darby canine kidney complexes/special pairs/chemical (MDCK) cells, XIX: 354–355 models kinetics of DCytb reduction by AsA, D-ring reduced chlorins (semisynthetic XIX: 358 chlorophylls), XI: 280–282 physiological role, XIX: 354–355 Drosophila melanogaster, V: 218 reaction of AsA with, XIX: 356 and [2Fe-2S]+ cluster as cofactor of FECH, spectroscopic oxidation-reduction titration XV: 63–65 of, XIX: 357 and crystal structures of FECH, XV: 67 X-Band EPR spectra of purified FECH interaction with iron-binding recombinant, XIX: 357 proteins/transport/delivery, XV: 97 DV-Chlide 8-vinyl reductase (DVR), XX: 163, FECH purification and, XV: 57 XX: 226 iron metabolism-related disorders and, DV-Pchlide a, XX: 118, XX: 163 XV: 105 DV-Pchlide b, XX: 163

Drug delivery, vitamin B12 as carrier for DVR gene, XX: 24, XX: 163 targeted. see also radioimaging/as Dyad, synthesis of TPP-BODIPY, II: 74–75 carrier for targeted drug delivery, Dyads, optimization of. See Geometry

vitamin B12 for optimization of dyads metallic cytotoxins, XXV: 120–123 supramolecular self-organization at organic cytotoxins, XXV: 118–120 air-barituric acid subphase interface, dSDP (2,4-disulfonic acid dihydrochloride), XII: 128 and metal-ion-binding sites of FECH, Dyads, organic molecular solar cells, XV: 77 XVIII: 76–79 DsrMKJOP complex, XIX: 207 Dye applications, and bridging ethyne in Dual lifetime determination (DLD), optical ground/excited states, I: 9–10 sensors and, XII: 172 Dye decolorization peroxidases (DyP, (dxy)2(dxz,dyz)3 ground state of low-spin D-family), XIX: 57, XIX: 233, Fe(III) porphyrins XIX: 271–275 bis-ammine/amino ester/phosphine AnaPX, XIX: 274 complexes and, VI: 159–160 “azo” dyes, XIX: 273 effect of porphyrin substituents on pattern B subfamily of, XIX: 242 of spin delocalization, VI: 147–150 D-family homologs, XIX: 274 imidazolate ligands and, VI: 152 kinetic constants for, XIX: 272 and imidazole plane orientation, structure of Thanatephorus cucumeris VI: 152–159 Dec 1 Dyp, XIX: 57 mixed-ligand complexes and, VI: 160–161 Dye-sensitized solar cells (DSCs), XXIV: 391 neutral imidazole ligands and, VI: 150–152 aggregation of phthalocyanines, XXIV: 414 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 91 FA

Cumulative Index to Volumes 1–25 91

bulky hydrocarbon substituents, XXIV: 415 monocarboxyphenyl-triarylporphyrins in electrochemical data of complexes DSSCs, XVIII: 88 containing anchoring groups and phthalocyanines, XVIII: 104–108 central metals, XXIV: 414 with anchoring groups, XVIII: 105–107 hypothetical power density, XXIV: 392 attachment through axial metal-ligand incident photon to current conversion interactions, XVIII: 107–108 efficiency (IPCE), XXIV: 393 without anchoring groups, XVIII: Jablonski diagram with primary 104–105 photophysical processes, XXIV: 407 platinum-coated FTO, XVIII: 84 optimum load, XXIV: 392 porphyrins, XVIII: 86–102 organic photovoltaic (OPV) cells, anchored through β-carboxy groups, XXIV: 416 XVIII: 97–100 parameters for cells with anchored through phthalocyanine-sensitized electrodes, meso-carboxy-arylethynyl XXIV: 404–406 groups, XVIII: 89–94 photophysical and photochemical anchored through meso-carboxy groups, requirements for sensitizers XXIV XVIII: 95–97 fluorescence lifetimes, XXIV: 407–410 anchored through meso-carboxyphenyl Φ fluorescence quantum yields ( F), groups, XVIII: 86–89 XXIV: 410–411 dimers, XVIII: 100 Φ triplet state quantum yields ( T) and in DSSCs, XVIII: 86 τ lifetimes ( T),XXIV: 411–413 dye attachment methods, photophysical data for MPcs used in, XVIII: 100–101 XXIV: 409 as sensitizers, limited absorptivity, phthalocyanines as sensitizers in, XVIII: 88 XXIV: 390–391 solid-state DSSCs, XVIII: 102 efficiency of phthalocyanines as ruthenium-based dyes, XVIII: 85 sensitizers in DSCs, ruthenium phthalocyanine in, XVIII: 108 XXIV: 413–416 substituted tetraarylporphyrins in DSSCs, electrochemical behavior, XXIV: 413 XVIII: 86 photophysical and photochemical Dyes, IX: 3 requirements for sensitizers, Dye-sensitized solar cells (DSSCs) XXIV: 406 basic concepts of, X: 157, X: 159 Ru-based bipyridine complexes, CHENO and, X: 168–169 XXIV: 393 coadsorbents and, X: 167–169 working principles of, XXIV: 391–406 cosensitization strategy and, X: 169–173 Dye-sensitized solar cells (DSSC), XII: interfacial electron transfer dynamics and, 387–391, XVIII: 84–85. See also X: 166–167 Nanoparticles with porphyrins/related JK2/IPCE structures versus wavelength of systems (applications) TT-1/JK-2 molecule, X: 169–171 chlorins and bacteriochlorins, optimization via peripheral XVIII: 102–104 modification/preparation of new corroles, XVIII: 108–109 derivatives, X: 163–164 fused naphthalene porphyrins in DSCCs, optimization via TT-1 derivatives with XVIII: 89 π-conjugated/non-conjugated links, meso-carboxyphenylethynylporphyrins in X: 164–165 DSSCs, XVIII: 91 photovoltaic data comparisons, X: 164–165 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 92 FA

92 Cumulative Index to Volumes 1–25

RuPcs and, X: 160–162, X: 166 Electrocatalysis/electroanalysis. See also self-assembled porphyrin nanostructures Electropolymerized thin films of and, XI: 212–214 metalloporphyrins and silicon naphthalocyanine dyes, X: 162 anion detection/pH measurements and, and structural optimization of Pcs, XII: 287 X: 159–166 and development of optic fibers as pH tetracarboxy-ZnPcs tested in, X: 160 sensors, XII: 287 and tetra-tert-butyl-substituted TiPs/RuPcs electroassisted biomimetic reduction of with carboxy groups at axial ligand, molecular oxygen, XII: 278–283 X: 161–162 film as ion-selective electrode, XII: 287 and unsymmetrically substituted films as sensors for NO/superoxide in carboxy-Zn(II)Pcs, X: 162–163 solution, XII: 284–286 Dynamic combinatorial libraries, III: 487 nitrite reductase enzymes and, Dynamic Light Scattering (DLS), XII: 286–287 sulfonatocalixarenes and, XIII: 177–178 and oxidation of hydrazine for decreasing Dynamin-like protein, and heme synthesis overpotential of carbon electrodes, intermediate transport, XV: 7–8 XII: 288 Dysprosium, unsubstituted Pcs (UV-vis Electrocatalysts for fuel cells, self-assembled absorption data) and, IX: 136 porphyrin nanostructures and, XI: 214–218 E Electrocatalytic organic halide reduction by 3-Ethenyl substituents (semisynthetic B derivatives, X: 344–346 12 chlorophylls), XI: 240–246 Electrochemical 1,2-migration of functional 4-Ethylphenylcobalamin, XXV: 146 groups 2− E- and Z-dimers, [M(II)(NCP )]2 complexes catalytic 1,2-migration of functional and formation of, II: 331–332 groups, X: 324–325 E. coli. See also Superoxide dismutases catalytic simulation of methylmalonyl-CoA (SODs); Superoxide dismutases (SODs) mutase and, X: 321–324 mimics ring-expansion reactions and, X: 326 aerobic growth of SOD deficient, Electrochemical biosensors (heme XI: 320–321 protein-based) SOD mimicking versus Mn-transporting amperometric, V: 252–254 mechanisms (stability), XI: 345–347 analytical applications of, V: 205–210 E. coli btuB riboswitch, XXV: 227 bi-/multi-enzymatic, V: 270–273 E75, heme sensor proteins and, XV: 422 biomimetic membranes and electrode EcDos modification, V: 230–232 EcDosC, XV: 143–144 carbon nanotubes and electrode heme-PAS domains and, XV: 137–139 modification, V: 246–249 EfeB-like proteins, XIX: 233–234, catalase and fabrication of, V: 269 XIX: 241–242 cellobiose dehydrogenase (CDH) and from E. coli (see YcdB) fabrication of, V: 270 Eglinton reaction, ethynyl-conjugated concept/classification/application of, porphyrin arrays and, I: 6–7 V: 204–205 Eigen values, I: 314 CYP proteins and fabrication of, Electrical conductance, arrays, I: 449–452 V: 269–270 Electroassisted biomimetic reduction of cytochrome c and fabrication of, molecular oxygen, XII: 278–283 V: 257–260 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 93 FA

Cumulative Index to Volumes 1–25 93

cytochrome c oxidase (CcO) and homoleptic bis(phthalocyaninato) fabrication of, V: 270 complexes, XIV: 413–425 defined, V: 296 homoleptic/heteroleptic bis(porphyrinato) electrode substrate design of, V: 221–222 complexes, XIV: 431–432 generations of, V: 210–214 mixed (phthalocyaninato) (porphyrinato) glossary, V: 296–298 double-decker complexes, hemoglobin and fabrication of, V: 266–269 XIV: 427–431 horseradish peroxidase and fabrication of, mixed (phthalocyaninato) (porphyrinato) V: 260–264 triple-decker complexes, impedance, V: 255–256 XIV: 436–441 importance of, V: 204, V: 273 tris(phthalocyaninato) complexes, layer-by-layer (LbL) assembly and XIV: 432–436 electrode modification, V: 226–229, Electrochemical quartz crystal microbalance V: 297 (EQCM), XII: 257–258, XII: 260–261 metal nanoparticles and electrode doped polypyrrole/polythiophene films modification, V: 237–240 and, XII: 233 metallic chalcogenide nanoparticles and and electropolymerized zinc porphyrin with electrode modification, V: 240–246 fullerene, XII: 276–278 molecular self-assembly and electrode repetitive cyclic voltammograms of gold modification, V: 223–226 electrode and, XII: 260–261 myoglobin and fabrication of, V: 264–266 Electrochemical STM (EC-STM), XVIII: 18 nanocomposite materials and electrode Electrochemical sensors modification, V: 249–251 amperometric sensors, XII: 195–199 nanomaterial application and electrode ferrocene-linked porphyrins and, III: 438 modification, V: 236–237 potentiometric sensors, XII: 200–207 organic solvents and electrode voltammetric sensors, XII: 199–200 modification, V: 235–236 Electrochemically induced FTIR difference other heme proteins and fabrication of, spectroscopy V: 270 surface-enhanced IR and, VII: 464–466 potentiometric, V: 254 thin layer electrochemistry and, VII: and protein engineering application, 463–464 V: 215–220 Electrocyclic reactions, annelation of aromatic protein-film voltammetry (PFV), rings by, XIII: 73–75 V: 214–217 Electrodeposition processes, XII: 267–278 sol-gel technology and electrode Electrodes. See also Glassy carbon (GC) modification, V: 232–235 electrodes; Oxygen sensors, Electrochemical HOMO-LUMO gaps Eeg, porphyrins/related compounds as optical linear multi-porphyrin arrays and, I: 8 film as ion-selective electrode, XII: 287 Electrochemical impedance spectroscopy immobilized enzyme chemically modified, (EIS), V: 255–256 XII: 256–257 and films with luminescent properties, immobilized enzyme modified, XII: 262–263 XII: 256–257 Electrochemical properties of tetrapyrrole rare and need for mimicking enzymatic earth complexes systems, XII: 230 heteroleptic bis(phthalocyaninato) repetitive cyclic voltammograms of gold complexes, XIV: 423, XIV: 425–427 electrode/EQCM, XII: 260–261 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 94 FA

94 Cumulative Index to Volumes 1–25

Electrodes of biosensors freeze-quench EPR experiments and biomimetic membranes and, V: 230–232 Compounds I/ES, V: 308–310 carbon nanotubes and, V: 246–249 NO properties and, V: 124 layer-by-layer (LbL) assembly and, overview of, VI: 7 V: 226–229, V: 297 and oxidized/isolated form of NOR, metal nanoparticles and, V: 237–240 V: 134, V: 136 metallic chalcogenide nanoparticles and, peroxidases and, VI: 370–372 V: 240–246 peroxidases (plant/fungal/bacterial molecular self-assembly and, V: 223–226 superfamily) and, VI: 422–429 nanocomposite materials and, V: 249–251 soluble guanylate cyclase and, V: 152 nanomaterial application and, V: 236–237 Electron paramagnetic resonance (EPR) organic solvents and, V: 235–236 spectroscopy sol-gel technology and, V: 232–235 and [2Fe-2S] + cluster as cofactor of substrate design of, V: 221–222 FECH, XV: 61–62, XV: 65 Electron donors/acceptors. See also and crystal structures of hemopexin, Porphyrin/phthalocyanine-fullerene XV: 228 donor-acceptor hybrids N-/C-domains of hemopexins and, XV: 235 Bingel reaction of meso-meso-linked Electron paramagnetic resonance (EPR), oligoporphyrin bis-malonates with iron-oxo complexes and, XIV: 553

C60, I: 89–90 Electron Spin Echo Envelope Modulation for β-substituted ZnP-p-phenyleneethynylene- experiments, VI: 9 τ C60 system and, I: 157 Electron spin relaxation times (T1e or s), coupling and, I: 139 VI: 34 covalent bridge and, I: 149–151, Electron transfer I: 154–155 calixarenes and, XIII: 176–177

multiwall wall carbon nanotubes (MNT) and diffusion rate constant k12, as, I: 135 X: 188–189 nanometer scale structures and, I: 134–135 dodecafluorosubphthalocyanine as electron and photosynthetic RCs of cyanobacterial acceptor unit, X: 201

photosystems, I: 2 and driving force dependence of log ket, porphyrins/phthalocyanines as, I: 310–311 X: 186, X: 188, X: 194–196, p-phenylenebutadiynylenes/ X: 198–199, X: 206–208 p-phenylenevinylene and, Marcus theory of, X: 184–186 I: 154–157 and modifications to meso-aromatic regulatory forces of nanometer scale substituents on BODIPY core, structures, I: 134–135 VIII: 18–24 relay concept using redox building blocks, and monomer vs. dimer porphyrins in I: 151–154 artificial photosynthetic systems,

and synthesis of C60-based donor-acceptor X: 190–196 ensembles, I: 141–143 multistep photoinduced, X: 203–212. See use of Gaussian program for, I: 314 also Multistep photoinduced electron

(ZnP)3-ZnP system and, I: 163–166 transfer

ZnP-thiophene-C60 system and, I: 158 and noncovalent syntheses of Electron paramagnetic resonance (EPR) multiporphyrin species in aqueous spectroscopy, and charge/spin mobility solution, XIII: 159 in conjugated structures, I: 9. See also observed second-order rate constant of, Spectroscopy X: 187–188 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 95 FA

Cumulative Index to Volumes 1–25 95

photoinduced in supramolecular cytochrome c-associated membrane complexes, X: 212, X: 214 complexes, XIX: 209–213 photosynthetic reaction centers (RCs) and, Qmo and Dsr complexes, XIX: 207–209 I: 225 monoheme cytochrome c, XIX: 160–163 and planar vs. nonplanar porphyrins in multiheme cytochromes artificial photosynthetic systems, class III cytochrome family, X: 186–190 XIX: 167–196 Electron transfer dynamics, interfacial, dye- cytochrome c nitrite reductase NrfHA, sensitized solar cells and, X: 166–167 XIX: 196–199 Electron transfer processes (ETPs) dimeric diheme split-Soret cytochrome c, in catalytic cycle of cytochromes P450, XIX: 163–167 V: 173–174 Electron transfer systems, energy changes and elimination of nonessential amino (-GT), I: 139–140 acids for efficiency, V: 219 Electron tunneling, long-distance charge and heme-propionate side chains, V: 35–41 separation reactions and, I: 12

HRP and, V: 10–11, V: 218–219, Electron/energy transfer (ket) back energy V: 260–264 transfer and, XI: 17–18 from NAD(P)H to heme with fungal NOR, basic concepts of, XI: 11–14 V: 146–147 and basic elements of photophysics, between P450 and fungal NOR, V: 143–144 XI: 8–11 and uncoupling in catalytic cycle, basic premise of, XI: 11

V: 181–182 bimolecular rate constant ket, XI: 11–12 zinc hemoproteins and, V: 26–27 charge recombination and, XI: 11 Electron transfer reactions. See also Charge the Dexter mechanism and, XI: 16–17 transfer (porphyrin/phthalocyanines and donor/acceptor singlet transfer process, carbon nanostructures); Non-covalently XI: 13 linked hybrids, fullerenes donors/acceptors of cofacial bisporphyrins basic tenets of, I: 309–310 held by flexible chains, XI: 60 cofacial porphyrin dimers and, I: 54 and energy delocalization across identical geometrical arrangements of, I: 146 chromophores, XI: 17 ideal, I: 148 the Förster mechanism and, XI: 15–16 and parabolic dependence, I: 138–139 intramolecular processes and, XI: 14–15 photoinducted from metallotetrapyrrole- occurrence when, XI: 12 fullerene, I: 313 Electron-donating groups of phthalocyanines and replacing zinc metal with titanium in alkylthio-/arylthio-substituted, III: 173, non-covalent hybrids, I: 178 III: 176–190 singlet–singlet and non-covalently linked amino-substituted, III: 114–121 hybrids, I: 175–176 with electron-withdrawing groups in three-dimensional compared with two- isoindole fragments, III: 288 dimensional acceptors, I: 144–145 with electron-withdrawing substituents in (ZnP)3-ZnP system and, I: 163–166 same benzene ring, III: 190–198 Electron transfer and respiration — hydroxy-/alkoxy-/aryloxy-substituted, cytochromes, XIX: 159–160 III: 121–176. See also Hydroxy-/ dissimilatory sulfite reductase, alkoxy-/ aryloxy-substituted XIX: 200–204 phthalocyanines and derivatives membrane complexes, XIX: 205–207 Q-band and, III: 286 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 96 FA

96 Cumulative Index to Volumes 1–25

and Q-band of chlorinated phthalocyanines, mixed (phthalocyaninato) (porphyrinato) III: 288–289 double-decker complexes, Electron-donor–acceptor hybrids, I: 167. XIV: 319–326 See also Non-covalently linked hybrids, mixed (phthalocyaninato) (porphyrinato) fullerenes triple-decker complexes (electronic Coulomb complexes and, I: 172–175 absorption spectroscopy), H P/SWNT composites and, I: 196–197 XIV: 331–342 2 orders of magnitude and, I: 174–175 tris(phthalocyaninato) complexes, pyridine functionalized fullerene ligand, XIV: 329–332 I: 174–175 Electronic properties, ferric heme-nitrosyls replacing zinc metal with titanium, I: 178 with proximal imidazole coordination,

and reversal of ZnP/C60, I: 180–181 XIV: 198–201 selective complexation and resulting Electronic/magnetic structures topological control of, I: 181 13C NMR spectroscopy to determine, Electronic absorption data VII: 15–20 isoporphycene derivatives and, VII: 383 1H NMR spectroscopy to determine, Electronic absorption maxima VII: 12–15 5-monosubstituted tetrabenzoporphyrins, and axial ligands effect on ground states, XIII: 103–104 VII: 26–31 5,10,15,20-tetrasubstituted benzo and axial ligands for formation of pure substituted tetrabenzoporphyrins, intermediate-spin complexes, XIII: 112–116, XIII: 108–111 VII: 58–61 general information, XIII: 94–95 effect of peripheral substitution on, heteroanalogs, XIII: 137–140 VII: 31–39 meso-di-substituted tetrabenzoporphyrins, and electronic ground states in intermediate- XIII: 105–107 spin complexes, VII: 70–75 meso-unsubstituted tetrabenzoporphyrins, EPR spectroscopy to determine, VII: 20–22 XIII: 96–102 [Fe(MAzP)L ] + and [Fe(OEP)L ] +, 2 2 mono-, di-, and tribenzoporphyrins, VII: 82–87 XIII: 117–125 and [Fe(OETPP)L ] + spin crossovers 2 naphtho[2,3]porphyrins, XIII: 126–136 between S = 3/2 and S = 1/2, Electronic absorption spectra VII: 76–80 corrphycenes and, VII: 390–392 and [Fe(OMTPP)L ] + and 2 free-base porphycenes (general Fe(TBTXPL)L2 spin crossovers, information) and, VII: 380–390 VII: 80–82 hemiporphycenes and, VII: 390–392 formation of pure intermediate-spin isoporphycene derivatives and, complexes, VII: 58–70 VII: 390–392 general considerations, VII: 57–58 Electronic absorption spectroscopy of and Fe(IV) porphyrins with Fe(IV)=O tetrapyrrole rare earth complexes bond, VII: 124–127 heteroleptic bis(phthalocyaninato) and Fe(IV) porphyrins without Fe(IV)=O complexes, XIV: 312–319 bond, VII: 127–129 homoleptic bis(phthalocyaninato) low-spin Fe(III) porphyrin complexes complexes, XIV: 299, (general considerations), VII: 22–26 XIV: 301–312 one-electron-oxidized products, Fe(III) homoleptic/heteroleptic bis(porphyrinato) with (dxz, dyz)4(dxy)1 electrons and, complexes, XIV: 327–328 VII: 117–124 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 97 FA

Cumulative Index to Volumes 1–25 97

one-electron-oxidized products of Fe(III) with electron-donating substituents in same porphyrins benzene ring, III: 190–198 general information, VII: 108–109 functionalized with carboxylic acids and high-spin cation radicals, VII: 109–113 derivatives, III: 95–111 2 3 Fe(III) with (dxy) (dxz, dyz) electrons, functionalized with phosphoric acid VII: 116–117 derivatives, III: 111–114 low-spin cation radicals, VII: 115–124 halogen-substituted, III: 62–79 mixed high-spin/intermediate-spin nitro-substituted, III: 79–83 cation radicals, VII: 114–115 phthalocyanine sulfoacids and derivatives, orbital interactions to determine, VII: 7–11 III: 83–92 and porphyrin ring deformation for Q-band and, III: 286 formation of pure intermediate-spin Electrophilic substitution, modification of complexes, VII: 61–70 porphyrin core, XXIII: 114–121 ruffled porphyrin ring deformation and, acylation, XXIII: 116 VII: 39–45 formylation, XXIII: 116 saddled deformation and, VII: 45–47 halogenation, XXIII: 115 and solvent effects on ground states, metalation, XXIII: 117–121 VII: 47–53 nitration, XXIII: 115 spin crossover Electrophilic substitution reaction, and water- general considerations, VII: 75–76 soluble BODIPYs, VIII: 39–40 structural consequences and, Electrophilic substitution reactions, BODIPYs VII: 87–91 with heteroatom substituents, and spin crossovers between S = 3/2 and VIII: 24–39 S = 5/2 Electropolymerization of porphyrins on carbon monoaqua complexes, VII: 94–95 electrodes, chemical sensors and, monoaqua complexes of saddled XII: 138 porphyrins, VII: 91–94 Electropolymerized porphyrin films as and spin crossovers in monoimidazole electrochemical sensors for NO/ complexes superoxide in solution, XII: 284–286 [Fe(OETPP)L] +, VII: 101–108 Electropolymerized thin films of [Fe(TMP)L] + and [Fe(TMTMP)L] +, metalloporphyrins VII: 96–101 amino-/hydroxy-/vinyl-substituted general information, VII: 95–96 porphyrins, XII: 251–263 two-electron-oxidized products diverse electrodepostion processes, Fe(III) N-oxides, VII: 134 XII: 267–278 Fe(III) porphyrin dications, VII: 134 doped polypyrrole/polythiophene films, Fe(III) general considerations, VII: 129 XII: 232–236 Fe(V) porphyrins, VII: 134 immobilization of multicharged porphyrins oxoiron(IV) cation radicals, VII: 130–134 into films bearing functional groups, Electrons, illuminating heme in NMR XII: 236–239 spectroscopy, VI: 9 need for, XII: 228–230 Electron-withdrawing groups of nickel porphyrins in alkaline solution, phthalocyanines XII: 263–267 alkyl-/arylsulfonyl and sulfinyl-substituted, pyrrole-/thiophene-substituted III: 92–95 metallorporphyrins, XII: 239–251 with electron-donating groups in isoindole strategy of, XII: 230–231 fragments, III: 288 Electrostatic coupling, X: 290–291 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 98 FA

98 Cumulative Index to Volumes 1–25

Electrostatic ion-pairing interactions, Endothelial NOS (eNOS), XIX: 77, XIX: 94 I: 338–339 Endothelium-derived relaxing factor (EDRF), EMAP-II, IV: 434 biosensors and, V: 207 Emiliania huxleyi, XIII: 258 Energy delocalization, across identical Emission quantum yield (Φe), XI: 10 chromophores, XI: 16–17

bimolecular rate constant ket and, XI: 12 Energy payback time (EPT), XXIV: 390 Emission quenching, XI: 11–12 Energy transfer (ET) Empirical methods of spectral analysis, cofacial porphyrin dimers and, I: 54 VI: 80–82 energy transfer efficiency in dendritic Enaminoketones, III: 456–457, III: 461–462 arrays, I: 35 Enantioselectivity excitation energy transfer (EET), I: 3 and chiroporphyrin development, X: 22 future outlook of charge transfers and,

and D4-symmetric Halterman porphyrin, I: 206–208 X: 15–18 metallotetrapyrrole-fullerene dyads and,

and D4-symmetric porphyrin (chiral picket I: 316–318, I: 318–322 fence porphyrins), X: 10 NADPH and, I: 225 effect of temperature on chiral picket fence optical sensors and, XII: 169 porphyrins, X: 24 singlet energy transfer, I: 11, I: 18–19 ENDA and styrene cyclopropanation, supramolecular assemblies of X: 62–63 metalloporphyrins, I: 97, I: 100–101 and iron/manganese glycosylated Engineering interfacial nanostructures, porphyrins (chiral picket fence XVIII: 110 porphyrins), X: 18–19 Enhanced permeability and retention (EPR), and molybdenum complex with TBHP, IV: 314, IV: 330–331, IV: 340, X: 15 IV: 354, IV: 376–377, XII: 367–368 and rhodium metal/ruthenium exchange in Enterocytes, and heme transport in mammals, chiral picket fence porphyrin XV: 27 cyclopropanation, X: 49–50 Enyne metathesis, III: 354, III: 356 [Ru(O) ] chiral picket fence porphyrins, Enyne metathesis, in synthesis of 2 5 X: 11–12 chlorin-diene system, II: 235 and sulfoxidation of chiral picket fence Enzymatic activities. See also Nitric oxide porphyrins, X: 74 (NO) chemistry by heme-enzymes Enantioselectivity, XXI: 180 assimilatory nitrate reductase (Nas),V: 128 Endogenous reducing system, for IDO/TDO, and biochemical pathway of anammox, V: 76–77 V: 131 Endonucleosomes, IV: 405–406, IV: 407 copper and nitrogen cycle, V: 129

Endoplasmic reticulum (ER) cytochrome cd1-type, V: 129 Bcl-2 localization, IV: 408, IV: 411 eukaryotic nitrate reductase, V: 128 9-capronyloxytetrakis (methoxyethyl) hemoproteins and, V: 4–5 porphycene (CPO), IV: 408–409, and IDO/TDO nonrequirement of proton/ IV: 410 base/electron reductants, V: 114–115 PEGylated porphyrin localization, IV: 368 molybdenum and nitrogen cycle, porphyrin localization, IV: 278–279 V: 128–129 tethering to OM, XV: 33–34 nitrogenase and, V: 131 Endosomes, IV: 278, IV: 343, IV: 406, periplasmic nitrate reductase (Nap),V: 128

IV: 418–419 qCuANOR, V: 133, V: 139 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 99 FA

Cumulative Index to Volumes 1–25 99

respiratory nitrate reductase (Nar), V: 128 Epidermal growth factor (EGF), IV: 347–348

site-directed mutagenesis and, V: 218 chlorin e6 conjugates, IV: 153–155, Enzymatic reactions IV: 280–281 and bc complex from respiratory chain, phthalocyanine conjugates, IV: 347 1 VII: 472–474 polyvinyl alcohol (PVA) conjugates, heme proteins and, VII: 3–4 IV: 153–155, IV: 281

importance of IR spectroscopy in studying, Sn(IV) chlorin e6 conjugates, IV: 347–348 VII: 441 Epidermal growth factor receptor (EGFR), and protonation sites in cytochrome c IV: 159, IV: 335, IV: 338 oxidase, VII: 468–472 Epoxidation Enzymatic systems. See also as catalyzed by cytochromes P450, V: 189 Electropolymerized thin films of of 1,2-dihydronaphthalene catalyzed by metalloporphyrins [MnCl] chiral picket fence need for mimicking, XII: 229 porphyrins, X: 22–23, X: 35–36 Enzyme activation of photosensitizer of 2-nitrostyreneusing chiral strapped conjugates, IV: 281–284 porphyrins, X: 27–28

Enzyme functions (B12). See Catalysts with B12 of aromatic alkenes catalyzed by [MnCl] enzyme functions chiral picket fence porphyrins, Enzyme-labeling amplification biosensors, X: 10–12 HRP and, V: 262–264 of aromatic alkenes catalyzed by [RuCO] Enzyme-labeling immunosorbent assay chiral picket fence porphyrins, (ELISA), V: 262 X: 12–13 Enzyme-linked field effect transistors of aromatic olefins catalyzed by (ENFETs), V: 254 [FeCl] chiral strapped porphyrins, Enzyme-linked immunosorbent assay X: 27–31, X: 33 (ELISA), IV: 166, IV: 269, IV: 429, iron/ruthenium complexes (chiral IV: 434, IV: 436, IV: 440 strapped porphyrins), X: 34–35 Enzymes. See also Ferrochelatase (FECH); [MnCl] chiral picket fence porphyrins, Heme biosynthesis X: 8–9, X: 20–21 + and [2Fe-2S] cluster as cofactor of [Ru(O)2] chiral strapped porphyrins, FECH, XV: 65–66 X: 35 ALAD as metalloenzyme, XV: 6–7 and atropisomers of glycoconjugated heme catabolism and, VIII: 295–296 porphyrins (chiral picket fence , XIII: 202–204 porphyrins), X: 19–20 and metal-ion-binding sites of FECH, and binaphthyl-derived catalysts (chiral XV: 71–74 strapped porphyrins), X: 30–31 porphyrias and, XV: 162 and binaphthyl group for catalytic stability transport of home precursors between (chiral picket fence porphyrins), cytosolic enzymes, XV: 11–12 X: 8–9 UROD, XV: 8 C=C epoxidation by Cpd I of CYP450, Eosin, IV: 3 X: 127–129 Eosinophil peroxidase (EPO) chiral basket handle porphyrins (chiral as component of superfamily of animal strapped porphyrins), X: 40–43 peroxidase, VI: 430 chiroporphyrin development, X: 21–22

resonance raman (RR) frequencies and, and D4-symmetric Halterman porphyrin, VI: 435 X: 15–18 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 100 FA

100 Cumulative Index to Volumes 1–25

and D4-symmetric porphyrin (chiral picket and porphyrin on ortho-position of fence porphyrins), X: 10 meso-aryl groups (chiral picket fence and development of chiral strapped porphyrins), X: 7–8 porphyrins, X: 26–27 and proline-derived ligands (chiral strapped and electron-withdrawing trifluoromethyl porphyrins), X: 38–39 group (chiral picket fence styrene reactions with PhIO (chiral picket porphyrins), X: 14–15 fence porphyrins) and, X: 25–26 and chiral picket fence porphyrins, of styrenes with PhIO, X: 27–28 X: 5–7 and threitol-strapped porphyrins, X: 37–38 historical aspects, X: 3–5 Epoxidation, XXI: 384–390 and homochiral-strapped porphyrin with catalytic asymmetric epoxidation, chiral cyclohexane auxiliaries, XXI: 384 X: 36–37 and hydroxylation, mechanisms of, and homochiral threitol-strapped XXI: 392–394 porphyrins, X: 33–34 of limonene, XXI: 388 and iron/manganese glycosylated olefin by , XXI: 389 porphyrins (chiral picket fence reaction, XXI: 386 porphyrins), X: 18–19 structure of monomeric microperoxidase, and molybdenum complex with TBHP, XXI: 385 X: 15 Epoxide isomerization and carbonylation and Mosher’s chiral amide (chiral picket reaction XXI fence porphyrins), X: 25 epoxide carbonylation reactions, of olefins catalyzed by XXI: 367–369 [FeBr] chiral picket fence porphyrins, carbonylations of epoxides, XXI: 369 X: 18–19 epoxide isomerization, XXI: 367 [FeCl] chiral strapped porphyrins, EPR spectroscopy, to determine electronic X: 38, X: 40 structures (iron porphyrin complexes), [MnCl] chiral picket fence porphyrins, VII: 20–22 X: 15, X: 17, X: 38–39 Epstein-Barr virus (EBV), IV: 342

[Ru(O)2] chiral strapped porphyrins, Equilibrium reactions of combinatorial X: 37–38 chemistry, III: 508–509 [RuCO] chiral picket fence porphyrins, E-ring-opening substituents (semisynthetic X: 15–16 chlorophylls), XI: 271–284

[RuCl2] chiral picket fence porphyrins, E-rings X: 14 E-ring-opening substituents (semisynthetic and ortho-aryl position attachment of ether chlorophylls), XI: 271–284 groups (chiral picket fence modified 5-membered (semisynthetic porphyrins), X: 24 chlorophylls), XI: 266–267 ® and Oxone (KHSO5) and cis modified 6-membered (semisynthetic β-methylstyrene (chiral picket fence chlorophylls), XI: 267–271 porphyrins), X: 11 ER-Mitochondria Encounter Structure and peptide chain attachment to (ERMES), XV: 34 meso-positions (chiral picket fence Error-prone polymerase chain reaction porphyrins), X: 25 (epPCR), V: 217–218 and picket fence/basket handle porphyrins Erythropoietic protoporphyria (EPP), XV: 101, with amino acids, X: 40 XV: 104, XV: 203 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 101 FA

Cumulative Index to Volumes 1–25 101

Eschenmoser’s different synthetic strategies Esterification, reduction of 8-vinyl group, for construction of corrin macrocycle, XX: 35–36 XXV: 270 catalyzed esterification, XX: 35 Escherichia coli, IV: 47, IV: 60, IV: 82–83, sophisticated analysis of BChl/Chl IV: 387, XV: 390 synthases, XX: 35 and active site of bacterial NOR, V: 138 Estradiol, IV: 173–174, IV: 176, IV: 353 and bacterial NOR, V: 132 Estradiol-conjugated phthalocyanines, and [2Fe-2S] + cluster as cofactor of structures of, XVIII: 295 FECH, XV: 61, XV: 67 Estrogen receptor (ER), IV: 353 C -pathway to ALA formation and, Estrogen–photosensitizer conjugates, 5 XV: 170–171, XV: 173 IV: 353–354 EcDos and, XV: 137–139, XV: 143–144 Etheno-bridged NCPs, synthesis of, XVI: 203 extracellular signaling mechanisms and, Etheno-bridged N-confused porphyrin (NCP), XV: 386 X-ray structure of, II: 343–344 FECH cloning and, XV: 57 Ethanolamine ammonia lyase (EAL), globin coupled sensors and, XV: 139, XXV: 192–194 XV: 141 Etheration, meso-etheration/hydroxylation GluTR/GSAM and coordination of heme (C–O coupling), III: 404–413 biosynthesis in cell, XV: 203–204 Ethoxyethanol tails, hydrogen bonding pattern heme biosynthesis and, XV: 162 of, XVIII: 24 heme substitution and, V: 7 Ethyne-linked porphyrin trimer, Pd-catalyzed PBGD and, XV: 181–183 synthesis of, XXIII: 236 PBGS structures and, XV: 177 Ethyl cellulose, optical sensors and, XII: 315 post-transcriptional heme regulation and, Ethylmalonyl-CoA mutase (ECM), XV: 384 XXV: 186–187 and TDO/IDO identification/ Ethyl α-nitrodiazoacetate (ENDA), and characterization, V: 81 styrene cyclopropanation, X: 62, X: 65 and transport of ALA out of mitochondria, Ethyl (3,4-dicyanophenyl)phenylphosphinate, XV: 10–11 and phthalocyanine functionalized with and UROGEN conversion to heme, phosphoric acid derivatives, XV: 187 III: 113–114 UROGEN conversion to heme (CPDH) Ethylene glycol pyropheophorbide a (PPhide a) and, XV: 194–195 monoester, XX: 53 UROGEN conversion to heme (CPO) and, Ethyl substituent, free rotation of, XVI: 143 XV: 193 Ethyne-bridged linkage, for dye applications, UROGEN conversion to heme (PPO) and, I: 9–10 XV: 199 Ethynyl-conjugated porphyrin arrays ESI mass spectroscopy, and mixed reactant cyclic architectures, I: 25–34 approaches to solution phase Englinton reaction and, I: 6–7 combinatorial porphyrin libraries, linear architectures, I: 8–25 III: 489–490 Etioporphycene, metalloporphyrin Ester linkage with oxidized CNT, and covalent structure/electron configurations and, linkage of carbon nanotubes, VI: 16–17

X: 280–281 Etioporphyrin (A4B4), XXIII: 25 Esters, of carboxyphthalocyanine derivatives, “theoretical” isomers of, XXIII: 26 III: 106–108 Etioporphyrin I, XXIII: 25 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 102 FA

102 Cumulative Index to Volumes 1–25

molecular skeleton of, XXIII: 63 photosynthetic antennae and, I: 225 relatives of, XXIII: 6 self-sorting systems from meso-meso- skeleton, XXIII: 63 linked diporphyrins and, I: 106–107 stereoisomeric double-deckers, XXIII: 63 and synthesis of cyclic porphyrin arrays, Etioporphyrin II, relatives of, XXIII: 6 I: 3 Etioporphyrin III, relatives of, XXIII: 6 Excitation/emission, of porphyrin-based Etioporphyrin IV, relatives of, XXIII: 7 oxygen sensors, XII: 309–310 Etioporphyrins conversion to meso- Excited state deactivation in alkylated aminoetioporphyrins, XIII: 222–223 porphycenes (photophysics), porphyrin Erythrocyte UROD assays, XIX: 302 isomers, VII: 404–407 Euglena gracilis, and heme biosynthesis of Excited state intramolecular proton transfer ALA, XV: 165 (ESIPT), XVII: 124, XVII: 140, Eukaryotic heme trafficking XVII: 172 heme bacterial uptake in, XV: 17–20 Excited states heme-binding proteins for, XV: 29–32 bridging ethyne in, I: 9–10 heme biosynthetic pathway, XV: 5–9 hexapyrrolic expanded porphyrins, heme chaperones in transporting, I: 517–518 XV: 16–17 pentapyrrolic expanded porphyrins, I: 512 heme/hemoglobin uptake in solvatochromic responses and, I: 25 trypanosomatids, XV: 21–22 Exciton after excitation across photosynthetic heme transport in helminths, XV: 24–25 membrane. See Energy delocalization heme transport in mammals, XV: 26–29 Exciton chirality, and diastereomeric ligation heme uptake/detoxification in insects, of BChls, I: 232, I: 234 XV: 22–24 Exciton coupling heme uptake in yeast, XV: 20–21 circular dichroism (CD) and, VII: 150–153 history/general structures of, XV: 3–5 and determination of absolute interorganellar heme transfer mechanisms, configurations of natural products, XV: 32–36 VII: 237–239 transport of ALA of mitochondria, Exciton couplings, cofacial bisporphyrins held XV: 10–11 by flexible chains and, XI: 63–64 transport of CPgenIII into/PPgenIX within Exciton diffusion, XII: 387, XII: 393–394 mitochondria, XV: 12–14 Exciton diffusion lengths, XVIII: 64 transport of home precursors between Exciton-blocking layers (EBLs) and Pc cytosolic enzymes, XV: 11–12 incorporation into OPV by vapor transport of PPIX to FECH, XV: 14–15 deposition, X: 146–147 Eupreyma scolopes, and H-NOX regulation of Exocyclic double bonds output domains, XV: 133 oxophlorins and, XIII: 199–200 Europium, unsubstituted Pcs (UV-vis and porphyrins with double bonds at meso absorption data) and, IX: 135 positions, XIII: 236–243 Exchange spectroscopy (EXSY cross peaks), Expanded calix[n]pyrroles, XVIII: 146–148 linewidths and, VI: 33 Expanded carbaporphyrinoids, II: 176 Excitation energy migration. See Energy organometallic complexes and larger-sized, delocalization II: 182–183 Excitation energy transfer (EET) with p-phenylene and substituents in meso in cyclic arrays/porphyrin boxes, and β-positions, II: 180–181 I: 480–485, I: 495–499 Expanded hemiporphyrazines, XVII: 177–186 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 103 FA

Cumulative Index to Volumes 1–25 103

synthesis, XVII: 180 Expanded thiadiazole hemiporphyrazine, Expanded phthalocyanines, synthesis of, XVII: 181 τ XVII: 179 Experimental fluorescence lifetime ( t ), Expanded porphyrins, IV: 44–51 XI: 10 compared to extended porphyrins, XIII: 2 Extended porphyrins (cyclic π-systems) defined, I: 508 carbonyl group condensations for diprotonated cyclo[n]pyrroles, IV: 50–51 annelation of, XIII: 86–88 hexaphyrin, IV: 45 compared to expanded porphyrins, XIII: 2 heptapyrrolic cycloaddition reactions for annelation of, Hückel aromaticity, I: 535–542 XIII: 75–79 Möbius aromaticity, I: 542–544 electrocyclic reactions for annelation of, overview, I: 535 XIII: 73–75 hexapyrrolic electronic absorption maxima excited state dynamics, I: 517–518 5-monosubstituted tetrabenzo- Hückel antiaromaticity, I: 529–534 porphyrins, XIII: 103–104 Möbius aromaticity, I: 519–528. 5,10,15,20-tetrasubstituted benzo- See also Hexapyrrolic expanded substituted THIs, XIII: 112–116 porphyrins 5,10,15,20-tetrasubstituted overview, I: 515 tetrabenzoporphyrins, spectroscopic properties/aromaticity, XIII: 108–111 I: 518–519 general information, XIII: 94–95 steady state spectroscopy, I: 515–517 heteroanalogs, XIII: 137–140 lutetium metal complex (Lutex), meso-di-substituted tetrabenzoporphyrins, IV: 263–264 XIII: 105–107 Motexafrin (Xcytrin), IV: 47, IV: 49 meso-unsubstituted tetrabenzoporphyrins, octapyrrolic (Möbius aromaticity), XIII: 96–102 I: 544–546 mono-, di-, and tri-benzoporphyrins, pentapyrrolic XIII: 117–125 excited state dynamics, I: 512 naphtho[2,3]porphyrins, XIII: 126–136 N-fused pentaphyrins/metalation, free-radical cyclizations for annelation of, I: 514–515 XIII: 88–90 nonlinear optical properties, I: 513–514 modification of, XIII: 90–94 overview, I: 510–511 olefin metathesis for annelation of, quantum mechanics, I: 513–514 XIII: 85–86 steady state spectroscopy, I: 511–512 pericyclic reactions for annelation of, in photodynamic therapy (PDT), XIII: 73 IV: 263–264 sulfolenopyrroles/sulfolenoporphyrins for porphocyanines, IV: 44–45 annelation of, XIII: 79–85 properties, IV: 44 synthesis by template condensation protonation of [38]nonaphyrin, I: 546–551 cross-condensations, XIII: 31–34 sapphyrins, IV: 49–50, IV: 54, IV: 95 dibenzopropentdyopents in template texaphyrins, IV: 46–49, IV: 98, condensations, XIII: 34–37 IV: 251–252, IV: 263–264 early methods by Hellberger/ uses for, I: 508 Linstead/Vogler, XIII: 16–19 Expanded sapphyrin, ORTEP III drawing, history, XIII: 12–15 XVI: 303 phthalocyanine-mimetic, XIII: 19–31 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 104 FA

104 Cumulative Index to Volumes 1–25

synthesis from isoindoles X-ray absorption (EXAFS) studies, general information, XIII: 37–41 XIX: 18–19

in regular porphyrin synthesis, F430, cofactor, XIX: 114 XIII: 46–49 biosynthesis of template co-pyrolysis, XIII: 41–46 biosynthetic precursors and synthesis from masked isoindoles, intermediates, XIX: 123–124 XIII: 49–50 required transformations, XIX: 123

synthesis from pyrrolic precursors, structure and function of cofactor F430, XIII: 37 XIX: 120–123 synthesis via DHI derivatives methyl coenzyme M reductase, XIX: 121 4,7-DHI motif, XIII: 63–68 structure of, XIX: 122 6,7-DHI motif, XIII: 60–63 Face-to-edge arrangements, I: 146 DHI synthons, XIII: 69–73 Face-to-face exciton coupling, VII: 150–151 general information, XIII: 60 Face-to-face porphyrins, XXI: 79 synthesis via THI derivatives Faraday A term, MCD intensity and, process, XIII: 53–60 XIV: 474–475 sources, XIII: 50–53 Faraday terms, XXIII: 289, 374

External ligands (Lext), XIII: 346–354 pseudo-A1 term, XXIII: 360 External metallic centre (Mext), and double Far-infrared (FIR) absorbance spectra, component systems of tectons, VII: 451–452 XIII: 317–347 metal-ligand vibrations and, VII: 454–456 Extracellular matrix metalloproteinase inducer and modes of collective nature, (EMMPRI), IV: 436 VII: 453–454 Extracellular proteins, heme-binding, Fast heme dissociation rate, heme sensor XV: 31–32 proteins and, XV: 410, XV: 412–413 Extracellular signal-regulated kinase Fatty acid hydroxylase, V: 322–323

(ERK1/2), IV: 430 [Fe(butyloxy)2Hp]2O, XVII: 137

Eye radioprotection, medical effects of Fe(Hp)OFe(Hp)H2O, structure, XVII: 137 water-soluble metalloporphyrins, XI: 377 [Fe(Hp)O]n, XVII: 137 Fe(III) µ-oxo dimer, XVII: 136 F Fe-coproporphyrin III (Fe-COPRO III), 18F-fluorodeoxyglucose (FDG), IV: 297, XIX: 148 IV: 299, IV: 301, IV: 314 Fe corrole, treatment of, XXI: 125 18F-labeled porphyrins, IV: 94, IV: 95 Fe porphyrins and pressure dependence of IR 2-Formylcarbaporphyrins, mono- and spectroscopy, VII: 458–459 diprotonation of, XVI: 34 Fe(II) 7-Formylchlorophyll d, XX: 236 p-N-confused pyriporphyrin, 21-Functionalized NFPs, Suzuki Fe(II)–[C9220-H] interaction in, cross-coupling reactions of 21-Br-NFP II: 131 and, II: 341, II: 342 porphyrin, synthesis of poly(ethylene

F16CoPc, XVIII: 39 glycol)(PEG) immobilized, II: 281,

F430, coenzyme, XIX: 6 II: 283 active sites, XIX: 16 porphyrinoid, coordination complex of, coordination and oxidation state of, II: 156, II: 157 XIX: 18–19 Fe(II)(porphyrin)(NO) complexes, structure, XIX: 6–7 XIV: 179–180 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 105 FA

Cumulative Index to Volumes 1–25 105

Fe(III) effect of axial ligand plane orientation on 3-aza-22-hydroxy-m-benziporphyrin, low-spin, VI: 50–55 formation of, II: 131 and g-values of low-spin iron(III), Fe(III) complexes of VI: 135–138 NCTPP, II: 313 heme ruffling of nitrophorins/comparison 21-oxo-NCTPP, II: 312 to other hemes, VI: 217–221 N-oxides, VII: 134 measurement of magnetic susceptibility p-N-confused pyriporphyrin, crystal anisotropies of, VI: 26–29 structure of, II: 132 and mixed ground state behavior of porphyrin dications, VII: 134 bis-(pyridine) complexes of

Fe(III)(porphyrin)(NO)(NO2) complexes, low-spin, VI: 167–174 XIV: 180–181 nitrite reductase activity of nitrophorin 7 Fe(V) porphyrins, VII: 134 and, VI: 221–222 Feline leukemia virus subtype C receptor NMR investigations of high-spin forms of (FLVCR), XV: 325–327 nitrophorins from Rhodnius prolixus, and heme export in mammals, XV: 28 VI: 196–204 iron reclamation/recycling of hemopexin NMR investigations of low-spin forms of and, XV: 319–322 nitrophorins from Rhodnius prolixus, Fenna-Mathews-Olson (FMO) protein, green VI: 207–217 sulfur photosynthetic bacteria and, NMR spectroscopy of XI: 228 apo-nitrophorin 2, VI: 223–224 FePc/RuPc/OsPc absorption spectra, IX: 54–64 miscellaneous other heme proteins, Ferric heme-nitrosyls VI: 249–251 and catalytic mechanism of cytochrome nitrophorins, VI: 190–196 P450nor, XIV: 211–215 NMR studies of and NO transport/binding constants, bacterial heme , VI: 230–243 XIV: 209–211 dynamic reactvity relationships, with proximal imidazole coordination VI: 243–249 electronic structure/comparisons, high-/low-spin mammalian heme XIV: 198–201 oxygenases, VI: 227–230 geometric properties, XIV: 192–193 pH titration of high-spin forms of PES and NO binding, XIV: 201–203 nitrophorins from Rhodnius prolixus, Ru(III)-NO complexes comparisons, VI: 204–207 XIV: 203–204 Ferritin IRE, heme sensor proteins and, XV: 429 vibrational spectroscopy, XIV: 193–198 Ferrocene linkage, metal-bridged porphyrin and thiolate coordination to, XIV: 204–209 arrays and, I: 112, I: 114 and thiolate coordination to ferric Ferrocene-linked porphyrins heme-nitrosyls, XIV: 204–209 corrole-ferrocene compounds, III: 476–477 Ferric iron [Fe(III)], DosS and, XV: 149 and peripherally metalated derivatives, Ferric resting state/substrate binding, in III: 432–438 catalytic cycle of cytochromes P450, Ferrocene-linked porphyrinoids, XVI: 314 V: 168–172 Ferrocene-porphyrin-fullerene composites, as Ferric-ferrous reduction, in catalytic cycle of long-distance charge separation cytochromes P450, V: 173–174 reactions, I: 11–12 Ferriheme proteins Ferrocenyl porphyrins, Sonogashira C–C dimerization of NP4 and, VI: 222–223 coupling reactions and, III: 341–342 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 106 FA

106 Cumulative Index to Volumes 1–25

Ferrochelatase (FC, FECH), XX: 167 purification and, XV: 55–56 [2Fe-2S] + cluster as cofactor in, reaction mechanism summary, XV: 92–93 XV: 61–67 steady-state kinetic mechanism of, activity of structure/reaction mechanism, XV: 87–90 XV: 53–55 transport of PPIX to, XV: 14–15 alignment from evolutionarily diverse and UROGEN conversion to heme, organisms, XV: 58–60 XV: 200–203 basic catalysis reaction of, XV: 50–51 Ferrous carbonyl iron complex [Fe(II)]-CO, cloning/expression/overproduction and, XV: 152 XV: 56–60 Ferrous heme-nitrosyls crystal structures of, XV: 67–71 and DFT calculations on, XIV: 169–172 and direct substrate channel to enzyme site, effect of thiolate coordination on, XV: 87 XIV: 172–174

erythropoietic protoporphyria and, Fe(III)(porphyrin)(NO)(NO2) complexes XV: 101–104 and, XIV: 180–181 FC1 and FC2, XX: 167–168, XX: 175 hyponitrite complexes and, XIV: 181–183 FECH mimetics/distortion and, XV: 81–84 linkage isomers of, XIV: 177 future implications of distortions, NO binding and catalysis, XIV: 188–191 XV: 106–107, XV: 106–107 NO binding to globins, XIV: 183–186 and heme synthesis intermediate transport, NO signaling and sGC, XIV: 187–188 XV: 7, XV: 9 Ferrous heme-nitrosyls, five-coordinate historical aspects of structure/reaction binding constants of, XIV: 122, mechanism, XV: 51–53 XIV: 125–130 interaction with iron-binding electronic structure of, XIV: 136, proteins/transport/delivery, XIV: 138–143 XV: 96–100 EPR spectroscopy of, XIV: 125, iron metabolism-related disorders and, XIV: 131–133 XV: 104–106 Fe(II)(porphyrin)(NO) complexes and, metal ion-binding sites of, XV: 71–74 XIV: 179–180 metal ion substrate geometric structures of, XIV: 121–125 inhibition/selectivity of, XV: 89, and modulation of Fe-NO π-backbonding, XV: 91 XIV: 143–146 specificity and, XV: 85–87 and modulation of Fe-NO σ-backbonding, mitochondrial import and, XV: 100–101 XIV: 146 nonenzymatic porphyrin metalation normal coordinate analysis of, XIV: 134, distortion, XV: 80–81 XIV: 136–137 general information, XV: 78–80 vibrational spectroscopy of, XIV: 133–135 metal ion reactivity, XV: 81 Ferrous heme-nitrosyls, six-coordinate oligomeric structure of, XV: 60–61 electronic structure of, XIV: 162–164 porphyrin-binding sites of, XV: 74–78 EPR spectroscopy of, XIV: 153–159 porphyrin substrate specificity and, geometric properties of, XIV: 146–153 XV: 84–85 and modulation of π-backbonding in, pre-steady state kinetic mechanism of, XIV: 166–168 XV: 89 and modulation of σ-bonding in, protein-protein interaction networks (PINs) XIV: 164–166 of, XV: 93–96 Mössbauer spectroscopy of, XIV: 159–160 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 107 FA

Cumulative Index to Volumes 1–25 107

Ru(III)(porphyrin)(L)(NO) complexes and, Fischer’s restrictions, XXIII: 5 XIV: 177–179 applications with, XXIII: 29–34 vibrational spectroscopy of, XIV: 160–162 lifting, XXIII: 34–35 Ferrous iron [Fe(II)], CooA and, XV: 144–145 Five-coordinate complexes Ferrous nitrosyl iron complex [Fe(II)]-NO, carbon monoxide of M(II) porphyrins XV: 152 (axial ligand bands), VII: 446–448 Ferrous sGC cyanide of M(II) porphyrins (axial ligand five-coordinate NO adduct of, XIV: 58–61 bands), VII: 448 spectroscopic characterization of, dioxygen of M(II) porphyrins (axial ligand XIV: 57–58 bands), VII: 444–445 Ferrous state of heme. See also Compound and formation of pure intermediate-spin ES; Compound I; Compound I; CYP complexes nomenclature ruffled, VII: 62–65 and chemical transformations catalyzed by saddled, VII: 67–69 cytochromes P450, V: 189–192 imidazoles of M(II) porphyrins (axial dioxygenase reaction and, V: 114–116 ligand bands), VII: 444 metal-NO complexes and, V: 126 nitric oxide of M(II) porphyrins (axial and P450cam Compound I, V: 307 ligand bands), VII: 448–450 and soluble guanylate cyclase in NO Five-coordinate metalloporphyrins, XXIV: 16 signaling, V: 149–154 square-pyramidal coordination group for, and unique properties of cytochrome P450, XXI: 17 V: 301 Fixation (of nitrogen), V: 127–128 Fibers based on meso-tetrakis[4-(3′- FixL genes, heme-PAS domains and, phosphonopropoxy)phenyl]porphyrin, XV: 135–137 XVIII: 30 FixN-type cytochrome oxidase (FixN on HOPG, XVIII: 30 complex), and amino acids of cNOR, Fiber-optic humidity sensor, II: 302 V: 141–142 Field effect transistor (FET), contact potential Flash lamp equipment, triplet-triplet transducers and, XII: 160–162 absorption and, XI: 9–10 Field emission scanning electron microscopy Flash photolysis time-resolved microwave (FESEM), doped polypyrrole/ conductivity (FP-TRMC), polythiophene films and, XII: 234 porphyrin–nanocarbon composites and, First-generation biosensors, V: 210–213, X: 230 V: 296 Flavin mononucleotide (FMN), into 5,6- Fischer’s etioporphyrin isomers, XXIII: 29 dimethylbenzimidazole, crystal Fischer’s mesoporphyrin isomers, structure of BluB and depiction of XXIII: 30–31 oxygen-dependent reaction for “type” definition, XXIII: 32 conversion of, XXV: 67 Fischer’s protoporphyrin isomers, XXIII: 6–7 Flexible spacers, undesired aggregates and, Fischer’s protoporphyrins with propionic acid XI: 62 substituents flanking meso-position, FLU-like proteins (FLP), XX: 184 XXIII: 53 Fluorescent cobalamin analogs, Fischer’s pyrroetioporphyrin isomers, XXV: 116–117 XXIII: 30 FLU protein, XX: 184 Fischer’s pyrroporphyrin isomers, Fluconazole-substituted zinc phthalocyanine, XXIII: 31–32 IV: 74 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 108 FA

108 Cumulative Index to Volumes 1–25

Fluoranthene-fused TBPs, bathochromic- chlorosomes and, I: 224–225 shifted Soret band of, II: 53 conjugated porphyrin arrays and, I: 4 Fluorescence electron donor/acceptor dyads and, I: 90 chlorophyll, XI: 226 ethyne-bridged polymersomes and, I: 10 nitro groups/heavy atom substituents and, hydrophilic conjugated porphyrin dimers VIII: 23–24 and, I: 18 quenching through pyrene-attached, ionic pyrene derivatives and SWNT, VIII: 196–197 I: 201–202 and through-bond BODIPY energy transfer non-covalently linked hybrids π cassettes, VIII: 70–86 MP and C60 systems, I: 184 and through-space BODIPY energy transfer ZnP functions and, I: 179, I: 185–186 cassettes, VIII: 65–70 and SWNT functionalized with PAMAM Fluorescence (spin-allowed) dendrimers, I: 195 Φ delayed, XI: 9 Fluorescence spectra/quantum yields ( F) lowest energy emissions (Kasha’s rule) absorption/excitation/emission spectra of, and, XI: 9 VII: 281–282 spin orbit coupling and, XI: 11 carboxylated derivatives and, VII: 313 τ Fluorescence decay time. See Lifetimes ( T) MPc complexes (quaternized derivatives), Fluorescence imaging VII: 313–314

advantages, IV: 289–290 MPc(SO3)mix complexes (sulfonated chlorophyll and, XI: 226 derivatives), VII: 292

clinical applications of photosensitizers, MPc(SO3)n complexes (sulfonated IV: 288–289 derivatives), VII: 292, VII: 313 comparison to NIR optical tomography, porphyrazine complexes (quaternized IV: 289 derivatives), VII: 313 conjugates for fluorescence imaging and properties of non-water soluble Pcs, PDT, IV: 289–293 VII: 293–312 fluorochrome and fluorophore yield values/behavior of water soluble Pcs, characteristics, IV: 289 VII: 283–291 HPPH–cyanine dye (CD) for fluorescence Fluorescent boron derivatives (oligoBODIPYs), imaging and PDT, IV: 290–293 open-chain oligopyrrole systems and, See also Tumor imaging VIII: 456–461 Φ Fluorescence quantum yields ( F) Fluorescent Chlorophyll Catabolite (FCC), basic photophysical parameters of, XX: 232 VII: 399–402 Fluorescent pH probes, from phenolic cofacial bisporphyrins held by flexible benzaldehydes, VIII: 11 chains and, XI: 58–59 Fluorescent systems. See BODIPY dyes/ MPc parameters and, VII: 275 derivatives

Fluorescence resonance energy transfer Fluoride atom substitution in BF2-group (FRET). See also Optical sensors (BODIPYs) optical sensors and, XII: 170 with alkoxide groups, VIII: 98–100 Fluorescence spectra. See also Single molecule with alkyl groups, VIII: 90 fluorescence spectroscopy (SMFS) with alkyne groups, VIII: 92–98 BChls and, I: 232–234 with aryl groups, VIII: 91–92 of butadiyne-linked porphyrin dimer, I: 4, with boronium/borenium cations, I: 7 VIII: 100–101 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 109 FA

Cumulative Index to Volumes 1–25 109

Fluoride-writable memory systems, and meso- exciton relaxation processes in (p-quinone) porphyrins, XIII: 232–233 “semiconductor CdSe/ZnS Fluorine-doped tin oxide (FTO), XVIII: 61, quantum dot–porphyrin” XVIII: 76 nanocomposites, XXII: 131–146 Fluorinated extended porphyrins, synthesis of, formation, structure, and properties, II: 61–62 XXII: 119–131 1 Fluorinated peripheral substituents, singlet oxygen ( O2) generation by reconstituted hemoproteins and, V: 19 “QD–porphyrin” Fluorinated TBPs, 4,5,6,7-tetrafluoroisoindole nanocomposites, XXII: 147–157 in synthesis of, II: 7 self-assembly and nanotechnology, Fluoroalkoxy-substituted complexes, III: 77–78 XXII: 69–72 Fluoroalkyl complexes, halogen-substituted Formylated chlorins (semisynthetic phthalocyanines and, III: 72, III: 76–78 chlorophylls), XI: 261 Fluorocharbon chain on substituted Formylbiliverdin, XIII: 206 phthalocyanines, III: 73–76 metal complexes of, VIII: 328–334 Fluoro-containing substituents of Formylporphyrins phthalocyanines spectra, III: 225–226 exo ring-fused porphyrin derivatives from, Fluoropolymers, optical sensors and, XII: 315 II: 80, II: 81, II: 82 Folic acid (FA)–porphyrin conjugates, IV: 16, use of Vilsmeier reaction in synthesis of, IV: 35, IV: 41–42, IV: 171–174 II: 78, II: 79 Folic acid receptors (FAR, FR), IV: 16, Formyl-substituted receptor molecules, and IV: 35, IV: 41, IV: 171–172 UV spectral changes of acyclic anion Formation principles and excited states receptors, VIII: 222–223 relaxation XXII Förster mechanism, for singlet transfer, organic nanocomposites based on XI: 15–16 tetrapyrrole compounds XXII Foscan [tetra(meta-hydroxyphenyl)chlorin, competition of energy and electron m-THPC], IV: 40–42, IV: 147, IV: 160, transfer in porphyrin triads, IV: 254 XXII: 77–91 Four-coordinate Fe(III) porphyrin cation, for dynamics/mechanisms of relaxation formation of pure intermediate-spin processes in triads with electron complexes, VII: 60–61 acceptors, XXII: 91–101 Fourier-transformed infrared (FTIR). See FTIR electronic energy relaxation in difference spectroscopy complexes containing fluorinated Four-leaf clover formation extra-ligands, XXII: 101–106 in ionic self-assembly of porphyrin formation principles, XXII: 72–77 nanostructures, XI: 187–188 interaction of porphyrin triads and photoconductivity and, XI: 197–200 pentads with molecular oxygen in Four-leaf clover porphyrin nanostructures, liquid solutions, XXII: 114–118 XII: 405 quenching exchange d-π effects in Franck-Condon-mediated nonradiative decay, self-assembled complexes linear multi-porphyrin arrays and, I: 9 containing Cu-porphyrins, Frataxin XXII: 106–114 and FECH interaction with iron-binding self-assembled inorganic–organic proteins, XV: 98–99 nanocomposites containing and FECH mechanism model, XV: 106 semiconductor CdSe/ZnS quantum iron metabolism-related disorders and, dots and porphyrins XXII XV: 105–106 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 110 FA

110 Cumulative Index to Volumes 1–25

Free-base porphyrins, XXI: 50, 115 and influence of substituents on geometry Free ligand biliverdin, VIII: 307–310 of internal cavity, VII: 369–373 Free nitric oxide regulation low-temperature spectroscopy of, β-cys93-nitrosylated Hb crystal structure VII: 397–399 (hypoxic vasodilation) and, perimeter model for XIV: 46–48 absorption elucidation, VII: 392–397

Fe(III)-NO2-crystal structures (hypoxic magnetic circular dichroism spectra, vasodilation) and, XIV: 51–54 VII: 392–397 nitrite reductase/anhydrase mechanism for relaxation from higher excited states sensing (hypoxic vasodilation), (photophysics), VII: 407 XIV: 48–51 tautomerism in porphycenes NO binding to ferrous (deoxy) Hb/Mb, coherent double hydrogen tunneling in XIV: 38–42 isolated molecules, VII: 411–416 NOD process, XIV: 33–36 molecules in condensed phases, oxidative denitrosylation and, XIV: 36–38 VII: 416–424 and peroxynitrite sources, XIV: 38 tautomerism in porphyrins, VII: 409–410 and S-nitrosylation of cysteine, tautomerism (single molecule studies), XIV: 42–43 VII: 424–426 SNO mechanism for sensing (hypoxic triplet state studies (photophysics), vasodilation), XIV: 43–46 VII: 407–409 Free-base Pacman bisporphyrins. See also Free-electron lasers (FELs), FIR and, Pacman porphyrin complexes/special VII: 453–454 pairs/chemical models Free-radical cyclizations, annelation of and modulation of Ct-Ct distance by choice aromatic rings by, XIII: 88–90 of appropriate spacer, XI: 35–36 Freeze-quench EPR experiments, Compounds Free-base porphycenes I/ES and, V: 308–310 basic photophysical parameters of, Freeze-quench Mössbauer experiments, VII: 399–402 Compounds I/ES and, V: 310–313 cis-trans tautomerism structure and, Friedreich ataxia (FRDA), XV: 104–106 VII: 373–380 FTIR difference spectroscopy common abbreviations for, VII: 360 perfusion-induced, VII: 481–482 derivatives of, VII: 364 reaction-induced electronic absorption data of, VII: 382–383 and accessible time domains, electronic absorption spectra VII: 474–475 corrphycenes, VII: 390–392 electrochemically induced general information, VII: 380–384 surface-enhanced, VII: 464–466 hemiporphycenes, VII: 390–392 thin layer electrochemistry, isoporphycene derivatives, VII: 390–392 VII: 463–464 porphycenes, VII: 384–390 ligand rebinding in cytochrome c oxidase excited state deactivation in alkylated (light-induced) and, VII: 476–479 porphycenes (photophysics), ligand rebinding (light-induced) and, VII: 404–407 VII: 475–476 formulas of most stable tautomeric form of, motivation and, VII: 462–463 VII: 362 perfusion-induced approaches general information (photophysics), (stopped-flow/rapid mixing) and, VII: 399–403 VII: 481–482 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 111 FA

Cumulative Index to Volumes 1–25 111

redox-induced FTIR difference spectra porphyrin oligomers and, I: 44–45, I: 48

bc1 complex from respiratory chain, porphyrin trimers and, I: 41, I: 43–44 VII: 472–474 synthesis of porphyrin-fullerene dyad, porphyrins/small hemoproteins, III: 354, III: 357 VII: 466–468, VII: 466–468 Fullerene-PPhide a molecular systems, protonation sites in cytochrome c XX: 76 oxidase, VII: 468–472 Fullerene-porphyrin conjugate, “click time-resolved THz spectroscopy and, chemistry” synthesis of, II: 275–276, VII: 479 II: 278 two-dimensional IR spectroscopy and, Fully synthetic chlorophylls, XI: 282–284. See VII: 479–481 also Semisynthetic chlorophylls FTIR difference spectroscopy, redox-induced Fully synthetic self-assembling BChl mimic

bc1 complex from respiratory chain, VII: chart of, I: 255–256 472–474 and crystal modification of BChls, porphyrins/small hemoproteins, I: 262–271 VII: 466–468, VII: 466–468 crystal structures and, I: 247–249 protonation sites in cytochrome c oxidase, electrostatic interaction and, I: 262 VII: 468–472 and film on cuvette walls, I: 259–262 Fuel cells, electrocatalysts for, self-assembled first unsuccessful strategies for, I: 245–246 porphyrin nanostructures and, metalation with zinc and, I: 246–247 XI: 214–218 reagents/conditions/transformations for, Fullerene, IV: 36, IV: 340–342, IV: 374, I: 250–255 IV: 375 and reduction of acetyl group to antenna-reaction center mimicry and, hydroxymethyl group in presence of I: 391–397 formyl group, I: 254 and Bingel reaction of meso–meso-linked reduction of carboxymethyl groups for, oligoporphyrin bis-malonates with I: 245–246

C60, I: 89–90 Zn coordinating ligand replacement of cocrystallates and, I: 137–138 meso-, I: 268–269 cofacial porphyrin dimers and, I: 49–50, Zn porphyrins and, I: 269–271 I: 52, I: 55 Fulvene aldehydes, synthesis from electron transfer systems and, I: 139–140, benzaldehydes and indene enamine, I: 310 XVI: 261 electropolymerized zinc porphyrin with, Fulvene dialdehyde precursors, synthesis to XII: 274–278 23-carbabenziporphyrins, XVI: 261 metallotetrapyrrole-fullerene dyads, Fumarate . see quinol I: 311–322 Function relationship of reconstituted nanometer scale structures and, I: 134–135 hemoproteins. See Structure-function porphyrin-fullerene dyad and electronic relationship of reconstituted transfer between porphyrin and, hemoproteins II: 228–231. See also Covalently Functionalization of hemoproteins linked conjugates, fullerenes; modification of heme-propionate side nanometer scale structures; chains, V: 35–48 non-covalently linked hybrids, modulation of activity with artificial fullerenes; porphyrin/ porphyrinoids, V: 32–35 phthalocyanine-fullerene and new nanobiomaterials, V: 48–57 donor-acceptor hybrids Functionalized porphyrins, XVIII: 8 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 112 FA

112 Cumulative Index to Volumes 1–25

carboxyphenyl-substituted porphyrins, Gd(III)-based conjugates for MRI and XVIII: 16–19 PDT, IV: 294–297 covalently-bound porphyrins, Gd(III)-based MRI contrast agents, XVIII: 31–33 IV: 294, IV: 295–297 cyanophenyl-substituted porphyrins, texaphyrin derivatives (Gd-Tex) as XVIII: 8–15 anticancer agents, IV: 47–48 imidazole-functionalized porphyrins, Gadolinium porphyrin complexes, XVIII: 384 XVIII: 36–38 Gadolinium, unsubstituted Pcs (UV-vis multi-porphyrin arrays, XVIII: 33–35 absorption data) and, IX: 135–136 phenoxy-substituted porphyrins, GAF domains XVIII: 19–24 DevS (DosS), XV: 439–440 phosphonate-functionalized porphyrins, DosS and, XV: 148–152 XVIII: 30–31 DosT, XV: 439 pyridyl-functionalized porphyrins, DosT and, XV: 148–150 XVIII: 25–30 general discussion of, XV: 148, XV: 438 thiol-functionalized porphyrins, Galectins, IV: 32, IV: 265–270, IV: 351 XVIII: 38–39 Gallium Fungal nitric oxide (NO) reductases anion optical sensors and, XII: 190 and fungi for denitrification, V: 142 unsubstituted Pcs (UV-vis absorption data) reaction mechanism of, V: 147–149 and, IX: 122 structural characteristics of, V: 144–147 Gallus gallus, and [2Fe-2S] + cluster as unique properties of, V: 143–144 cofactor of FECH, XV: 63 Fungal peroxidases. See Peroxidases GaPc absorption spectra, IX: 78–86 (plant/fungal/bacterial superfamily) Gas sensors, heme proteins as. See Heme Fur, heme sensor proteins and, XV: 429 proteins as gas sensors Fur box, XV: 383–384 Gastrin-releasing peptide receptor (GRPR), FurA, heme sensor proteins and, XV: 424 IV: 279, XVIII: 282 Fusarium oxysporum, and fungal NO Gauge-Including Atomic Orbital (GIAO), reductase, V: 143–144 I: 510

Fusarium solani, and fungal NO reductase, GCSF-B12-conjugates, XXV: 225 V: 143 Gel permeation chromatography (GPC), and Fused 2-oxybenziporphyrin, II: 141 cyclic porphyrin oligomers, I: 30 Fused m-benziphlorin, II: 145 Gem-diethyl keto structure, XVII: 45 Fused naphthalene porphyrins in DSCCs, Gem-dimethyldihydrodipyrrin, XVII: 18 XVIII: 89 Gene, hemopexin Fused perylene tetracarboxylic diimides avian hemopexin, XV: 262–263 (PDIs), BODIPYs and, VIII: 138–140 hemopexin evolution and, XV: 258–262 Fused porphyrin arrays, I: 78–79, I: 81–82 hemopexin gene and, XV: 255–256 Fused tetra-fulleridoporphyrin, optimized hemopexin gene promoter and temporal structure of, XVIII: 162 changes in expression during development, XV: 265–271 G hemopexin gene promoter regulation 67Ga-labeled phthalocyanines, IV: 93–94 of expression, XV: 264–265 Gable porphyrins, XXI: 69–70 hemopexin gene promoter structure, Gadolinium (Gd) XV: 263–264 Gd compounds as radiosensitizers, hemopexin polymorphism and, IV: 47–48, IV: 98 XV: 256–258 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 113 FA

Cumulative Index to Volumes 1–25 113

Geometric properties, ferric heme-nitrosyls DosC/YddV, XV: 438 with proximal imidazole coordination, GCY-34/GLB-5/GLB-6, XV: 437–438 XIV: 192–193 GsGCS, XV: 435–436 Geometry optimization of dyads HemAT, XV: 435 cofacial bisporphyrins held by HemATs, XV: 141–142 calix[4]arene spacer, XI: 44–46 HemDGC, XV: 438 modulation of Ct-Ct distance by choice of sequence alignment of, XV: 139–140 appropriate spacer, XI: 35–41 Globins, implications for NO binding to, parameters of face-to-face, XI: 34–35 XIV: 183–186 X-ray characteristics of Glow-discharge-induced sublimation (GDS), bismetalated biscorroles, XI: 48–50 and deposition of metalloporphyrin bismetalated bisporphyrins, XI: 42–44 derivatives, XII: 141 bismetalated porphyrin-corroles, XI: 48 Gluconoacetobacter xylinum, AxPDEA1 and, monometalated bisporphyrins, XV: 137 XI: 41–42 Glucopyranose moieties, XVIII: 243 monometalated porphyrin-corroles, Glucose oxidase (GOD), glucose sensors and XI: 46–48 coupling of enzymatic reaction with, GePc absorption spectra, IX: 86–95 XII: 191–192 Germanium hemiporphyrazine Glucose oxidase (GOx), biosensors and, V: 204 with axial alkyne groups, XVII: 143 Glucose sensor, optical sensors and, XII: 191 with trans-axial alkoxides, structures of, Glucosylated silicon(IV) phthalocyanines XVII: 133 photodynamic activity of, XVIII: 251 Germanium, unsubstituted Pcs (UV-vis structures of, XVIII: 251 absorption data) and, IX: 122 Glucosylated zinc(II) phthalocyanines, Glaser homocoupling side reaction, Cu-free XVIII: 253 Sonogashira reaction conditions and, GluRS from T. thermophilus XXV II: 228 conformational changes in active site of, Glaser-Hay coupling reaction XXV: 10 making butadiyne-linked porphyrin crystal structure of, XXV: 9 oligomers, I: 11 Glutamate mutase (GLM), XXV: 187–190 and template-directed method of active site sections of, XXV: 190 macrocyclization, I: 25–26 from Clostridium cochlearium, Glassy carbon (GC) electrodes structure/semitransparent surface amino-/hydroxy-/vinyl-substituted representation, XXV: 188 porphyrins and, XII: 257 interconverts (S)-glutamate and (2S,3S)-3- amperometric sensors and, XII: 196 methylaspartate, XXV: 188 and Co-porphyrin/polyaniline Glutamate mutase-like reactions, apoenzyme

nanocomposite, XII: 234–235 model/B12 model complexes and, and thin polymeric films from X: 331–333 Fe(III)-protoporphyrin IX dimethyl Glutamate-1-semialdehyde (GSA), and ester, XII: 263 coordination of heme biosynthesis in voltammetric sensors and, XII: 199 cell, XV: 203–204 Glassy carbon electrode (GCE), V: 221 Glutamate-1-semialdehyde-2,1-aminomutase Globin coupled sensors (GSAM), XXV: 8 AvGReg, XV: 436 proposed interaction between GluTR and, BpeGReg, XV: 437 XXV: 12 diguanylate cyclase-containing, XV: 142–144 structures of, XXV: 13 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 114 FA

114 Cumulative Index to Volumes 1–25

from T. elongatus, symmetrical homodimer Glycoporphyrins, use of ‘second generation’ of, XXV: 15 Grubbs catalyst in synthesis of, transformation of GSA to ALA by, XXV: 14 II: 238–239 Glutamate-1-semialdehyde-2,1-aminomutase Glycosubstituted phthalonitrile, cyclization of, (GSAM) XVIII: 242–243

C5-pathway to ALA formation and, Glycosylated/non-glycosylated structures of XV: 173–175 heme-hemopexin, XV: 231–232 and coordination of heme biosynthesis in Glycosylated phthalonitriles, XVIII: 252 cell, XV: 203–204 base-promoted cyclization of, XVIII: 255 and heme biosynthesis of ALA, XV: 165 O-/S-linked, XVIII: 243 Glutamycin, XXV: 12 Gold (Au) nanoparticles, XVIII: 193–196 Glutamyl-tRNA reductase (GluTR), Gold(III) porphyrins, XXII: 198–201 XX: 151–152, XX: 184–185 Gold, X: 303–304. See also Surface Glutamyl-tRNA reductase (GluTR), XXV: 9 functionalization of gold for electronics from M. kandleri, crystal structure of, Gold colloids and quantum size effect, XXV: 11 XII: 358–359 proposed interaction between glutamate-1- Gold nanoparticles, IV: 84–85, IV: 312–314, semialdehyde-2,1-aminomutase IV: 376–378 (GSAM) and, XXV: 12 Gold porphyrins, as reductive photocatalysts, GSAM simultaneously interact with XI: 201–202 GluTR, XXV: 12 Gold(III) complex of NCTPP, II: 329, II: 330 proposed mechanism of, XXV: 11 Gold-promoted transformations, fused

C5-pathway to ALA formation and, porphyrin dimers and, II: 67 XV: 170–173 Gonadotropin-releasing hormone (GnRH) and coordination of heme biosynthesis in agonist and antagonist conjugates, cell, XV: 203–204 IV: 350–351 and heme biosynthesis of ALA, Gouterman’s 4-orbital model, XXIII: 285–287 XV: 163–164 MO picture, XXIII: 286 reduction of glutamyl-tRNAGlu by, nodal patterns of four frontier π-MOs, XX: 151–152 XXIII: 327 Glutamyl-tRNA synthetase (GluRS), XX: 151 state picture, XXIII: 286 charge of plastid tRNAGlu with glutamate Gouterman’s four-orbital model, IX: 8–11, by, XX: 151 XIII: 3 Glutamyl-tRNA synthetase (GluRS), XXV: 8 absorption features of Pcs, IX: 5 from T. thermophilus, XXV: 9 G-protein-coupled receptor, heme sensor active site induced by presence of proteins and, XV: 428 tRNA, XXV: 10 Gram-negative bacteria, heme uptake in, Glutathione s- (GST), heme-binding XV: 17–20

cytoplasmic proteins and, XV: 30 Gram-negative bacterium, B12-uptake and Glycine/succinyl-coenzyme A condensation transport in, XXV: 217–224 into ALA, heme biosynthetic pathway Gram-negative organisms and, XV: 5–6 and ATP-dependent transport of heme Glycoconjugated phthalocyanines, across the cytoplasmic membrane, XVIII: 242, XVIII: 251 XV: 366–367 analog preparation, XVIII: 243 gram-positive lipoprotein network in, preparation, XVIII: 242–243 XV: 367–369 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 115 FA

Cumulative Index to Volumes 1–25 115

heme uptake in, XV: 360–361 Grignard reactions, 31-monosubstituted-alkyl and periplasmic heme trafficking, substituents (semisynthetic XV: 364–365 chlorophylls), XI: 251–252 and tonB-dependent receptors of Grignard reagent, reaction of meso- gram-negative organisms, formylporphyrin with, XXIII: 125 XV: 361–364 Grignard reagents, and fluoride atom Gram-positive bacteria, heme uptake in, substitution in BF -group with aryl 2 XV: 17, XV: 20 groups, VIII: 91–92 Gram-positive organisms Ground states and ATP-dependent transport of heme axial ligand effect on, VII: 26–31 across the cytoplasmic membrane, bridging ethyne in, I: 9–10 XV: 366–367 in intermediate-spin complexes, gram-positive lipoprotein network in, VII: 70–75 XV: 367–369 peripheral substituents’ effect on, heme uptake in, XV: 359–360 VII: 31–39 and periplasmic heme trafficking, solvatochromic responses and, I: 25 XV: 364–365 Group 1/group 2 Pc complexes (unmetalated), Gram-positive SRB, XIX: 142 VII: 321–323 Granick hypothesis, XX: 133–135 Group 12 Pc complexes (ZnPc complexes), Graphene, carbon nanoparticles and, VII: 330–335 XII: 378–381 Group 13 Pc complexes, VII: 337–339 Graphene functionalization via amide linkage, Group 14/group 15 Pc complexes, X: 292–293 VII: 339–341 Graphene sheets, XVIII: 183–185 Groups 4 to 11 Pc complexes, VII: 330 Green bacteria, XX: 108 Grubbs catalysts, ruthenium-catalyzed C–C (B)Chls biosynthetic pathways in, coupling reactions and, III: 353–354 XX: 111–113 GSA aminotransferase (GSA-AT), XX: 152 (B)Chls in, XX: 110 GSA to ALA by GSAM, transformation of, biosynthetic pathways producing Chlide XXV: 14 from Proto in green GSU0935/GSU0582, XV: 445 chlorophototrophic bacteria, XX: 111 G-tensor anisotropy and spectral analysis, Chls and BChls found in bacteria, XX: 134 VI: 83 Mg chelatases in, XX: 113 Guanidinocarbonyl-based anion receptors, reduction of B-ring, XX: 113 VIII: 169–174 Green Filamentous Anoxygenic Phototrophs Gyc-88E, XV: 440–442 (FAP), XX: 108 Gymnocins, and determination of absolute Green fluorescent protein (GFP)-chromophore configurations of natural products, analogs, BODIPYs and, VIII: 134–137 VII: 233–234 Green hemes, metalloporphyrin structure/ electron configurations and, VI: 16 H Green sulfur bacteria (GSB), XX: 108 (1H-Benzotriazol-1-yloxy)tripyrrolidino- Green sulfur photobacteria phosphonium hexafluorophosphate antenna effect for, XI: 161–166 (PyBOP), IV: 147 chlorosomes and, XI: 229 1-Hydroxycorrin, photochemical formation of, FMO protein and, XI: 228 XXV: 282 photosystems of, XI: 7 1-Hydroxymethylbilane (HMB), XIX: 146–148 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 116 FA

116 Cumulative Index to Volumes 1–25

2D Hyperfine Sublevel CORrElation 23-Heteroazuliporphyrins spectroscopy for experiments, VI: 9 to give 23-thia- and 23- 2H-Benz[e]isoindole, synthesis of TBP or TNP selenabenzocarbaporphyrins, ring using, II: 44–45, II: 47 contractions of, XVI: 90 2H-Dibenz[e,g]isoindole, synthesis of TBP or pyrrolidine adducts formation with, TNP using, II: 44–45, II: 47 XVI: 90 2H-Isoindole, synthesis of TBPs and, II: 5–6 synthesis of, XVI: 88 2H, unsubstituted Pcs (UV-vis absorption data) 2H NMR spectra methods of assignment and, IX: 102–103 2D 13C natural abundance HMQC spectra, 2,3,7,8,12,13-HexabromoTPP, synthesis of, VI: 59–62 II: 207 2D NMR techniques and, VI: 64–69 2-(1-Hexyloxyethyl)-2-devinyl- and complete 13C labeling of protohemin, pyropheophorbide a (HPPH, Photochlor) VI: 59–62 2-Heptyl-4-hydroxyquinoline-N-oxide deuteration of specific groups, VI: 58–59 (HQNO), XIX: 199 NOE difference spectroscopy and, 2-Hydroxyethylphosphonate (HEP), XXV: 180 VI: 63–64 to (S)-2- hydroxypropylphosphonate saturation transfer NMR experiments and, (HPP), conversion of, XXV: 181 VI: 62–63

4-Hydroxyphenyl-substituted calix[4]pyrrole, substitution of H by CH3/other substituents, XVIII: 144 VI: 57–58 5-(4-Hydroxyphenyl)-10,15,20-tritolylporphyrin, 3H-labeled (tritiated) porphyrins, IV: 90, lanthanide complex microwave-assisted IV: 165

synthesis of, II: 197 H2DPP, X: 216–220, X: 227–229

5-Hydroxytryptophan, electrochemical H2O2 dismutation chemistry oxidation of, XVII: 302 corroles, 38–39 7-Hydroxymethyl-Chl a reductase (HCAR), superstructured porphyrins, 32

XX: 164, XX: 166, XX: 230 H2Pc thin-films, XVIII: 62, XVIII: 220 7-Hydroxymethylchlorophyll a, XX: 228 on Au substrate, XVIII: 227 21-Heteroporphyrins crystallinity of, XVIII: 230 heteroatom as a donor and coordination CV redox process, XVIII: 228 properties of, II: 113 in-situ resistance measurements on, XVIII: as a synthon for organometallic ligands, 228 II: 113 in-situ UV-vis spectra for, XVIII: 228 21-HydroxyNCP, metalated NCPs and lamellar structure, XVIII: 229

tautomers of, XVI: 200 H2Pc/HPc absorption spectra, IX: 12–17

21-Hydroxyazuliporphyrin, keto-enol H2S sensor proteins, XV: 446

equilibrium of, II: 156 H2TTDPz films, XVIII: 226–230 22-Hydroxy-m-benziporphyrin, Fe(II), Ni(II), cyclic voltammetry (CV) of, XVIII: 226 and Pd(II) complexes of, II: 145 EDL-OTFT with an ionic-liquid gate 22-Hydroxybenziporphyrins dielectric, XVIII: 231 synthesis and metalation of, XVI: 148 in-situ resistance change, XVIII: 227

tautomers of, XVI: 151 H2TTDPz thin-films, XVIII: 221

antiaromatic [20]annulenoid structure of H3(TBP8Cz), as stabilizer for high-valent metal keto tautomer of, II: 140 species, XIV: 530 synthesis and keto-enol equilibrium of, H83A variant, heme-loaded HasA and, II: 140–141 VI: 350–353 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 117 FA

Cumulative Index to Volumes 1–25 117

HA14-1, IV: 409 Halomonas halodenitrificans, and bacterial H bonding network, and KatG from NOR, V: 132 Mycobacterium tuberculosis, Haloporphyrins, oxidative addition of Pd with, VI: 396–397 III: 370–373 Haemonchus contortus, heme-binding porphyrin synthesis and metal-cross cytoplasmic proteins and, XV: 30 coupling reactions of, II: 55–56 Haemonchus sp., and heme transport in Halterman porphyrin, XXI: 383 helminths, XV: 24 Halterman porphyrins. See also Epoxidation Haemophilus haemolyticus, heme biosynthesis aromatic alkenes catalyzed by [RuCO] and, XV: 162–163 chiral picket fence porphyrins, Haemophilus influenza X: 12–13 and bacterial acquisition of iron, VI: 341 aziridination of olefins by manganese exogenously acquired heme and, XV: 382 complexes of, X: 69–72 and heme uptake in gram-negative bacteria, cyclopropanation and, X: 45, X: 48–49 XV: 18 derivatives, X: 15

vaccine development and, XV: 388–389 and D4-symmetric Halterman porphyrin, Haemoproteus columbae, and heme uptake/ X: 15–18

detoxification in insects, XV: 23 and D4-symmetric porphyrin (chiral picket Hafnium, unsubstituted Pcs (UV-vis fence porphyrins), X: 10 absorption data) and, IX: 131–134 and electron-withdrawing trifluoromethyl H-aggregates, LBL deposition and, XII: 136 group (chiral picket fence Haken–Strobl–Reineker formalism, XXII: 85 porphyrins), X: 14–15 Halobacterium salinarium, HemATs and, sol-gel and ruthenium porphyrin complex XV: 141 in, X: 13–14 Halogenation, and electrophilic substitution Hamilton-receptors, non-covalently linked reactions of BODIPYs with heteroatom hybrids and, I: 169–170 substituents, VIII: 26–28 Hampster lung fibroblast cells (V79), II: 14 Halogen-halogen bond of molecular tectonics, Hangman cobalt corroles, XXI: 132 XIII: 305 “Hangman” porphyrins, III: 377 Halogen-substituted phthalocyanines Hangman porphyrins, synthesis of, and 3-fluorophthalonitrile as precursor, XXIII: 153 III: 68 Hangman scaffolds, XXI: 111–112 chain-fluorinated substituted compounds catalysis, XXI: 128–135 and, III: 72–76 corroles, XXI: 132–135 chlorinated copper phthalocyanine porphyrins, XXI: 128–132 preparation and, III: 69–70 synthesis and structure, XXI: 112–127 direct C(aryl)-F bonds (examples), corroles, XXI: 123 III: 64–68 porphyrins, XXI: 112–123 halogen-substituted phthalocyanines Hap1, XV: 440 spectra, III: 220–224 heme sensor proteins and, XV: 419–420 octafluorophthalocyanines and, III: 68–69 Haptoglobin (Hp) reaction of 3,4,5,6-tetrafluorophthalonitrile hemopexin and, XV: 225–226 and perfluoropropene with cesium and hemopexin as first line of defense, fluoride, III: 76–77 XV: 308 trifluorosulfanyl-/trifluorosulfanyl- Haptoglobin systems, hemopexin and, substituted phthalocyanines and, XV: 308–309 III: 76–77 Harderoporphyrinogen, XIX: 314 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 118 FA

118 Cumulative Index to Volumes 1–25

Harmonic Oscillator Model of Aromaticity Heck reaction, XXIII: 166–169, 254–258 (HOMA), I: 509 alkynylation of 5,15-diphenylporphyrin, Haptocorrin, XXV: 215 XXIII: 163 Hartree-Fock method, XXII: 172 divinylporphyrin, conversion into HasA (heme-loaded) polymers, XXIII: 257 13C-NMR and heteronuclear detection, formation of dimeric metalloporphyrin by, VI: 346–349 XXIII: 137 15N-NMR and heteronuclear detection, porphyrin dimers using with 1,4-divinyl- VI: 349–350 and 1,3, 5-trivinylbenzene, 1H NMR of iron(III) derivative, XXIII: 254 VI: 344–346 porphyrin trimer linked by divinylbenzene apo HasA and, VI: 353–354 units resulting from of H83A variant and, VI: 350–353 1,4-divinylbenzene, XXIII: 256 heteronuclear detection (general vinylated 5,10,15,20-tetraphenylporphyrins information), VI: 346 via, XXIII: 168 and NMR of gallium(III) derivative, Helicity, of polyisocyanides via VI: 344 conformational analysis, VII: 230–232 and structure of Serratia marcescens, Heliobacter pylori, transcriptional heme VI: 342–344 regulation and, XV: 383 HasA–HasR interaction Heliobacterium chlorum, and spectra of BChl 1H-15N NMR spectra and, VI: 353–358 g/g′, VII: 184–186 and fate of the heme, VI: 358–359 Helix B in peroxidases, XIX: 51 H-bonded networks for porphyrin-based Helminths, heme transport in, XV: 24–25 tectons Hematite, XII: 385 double component systems made of two Hematoporphyrin (HP) complementary tectons, XIII: 369, absorption spectra, IV: 4 XIII: 371–380 conjugation with monoclonal antibodies general information, XIII: 360 (MAb), IV: 158–159, IV: 170 single component systems made of conjugation with proteins, IV: 125–126, self-complementary tecton, IV: 150–151–152, IV: 343–344 XIII: 360–370 inactivation of Gram-negative bacteria, triple component systems made of three IV: 387 complementary tectons, XIII: 379, isolation from blood, IV: 11 XIII: 381–384 lipoprotein conjugates, IV: 345 HbrL, heme sensor proteins and, XV: 426 noncovalent conjugation with bovine serum Head-to-tail exciton coupling, VII: 150–151 albumin, IV: 124–125 Heat shock protein (Hsp), IV: 439–440 photodynamic effect, IV: 3 Heavy atom effect, of porphyrin in as radiosensitizer, IV: 96 π-delocalization frame, XI: 10–11 structure, IV: 12, IV: 125, IV: 329 Heavy metal ion optical sensors, XII: 180–189 Hematoporphyrin derivatives (HPDs) Heck and Stille C–C coupling reactions, in Photofrin, IV: 3, IV: 12–13, IV: 96 III: 345–348 as photosensitizers, IV: 404–405 Heck reaction preparation, IV: 404 formation of C–C and C-heteroatom radiolabeled HPDs, IV: 90, IV: 96 through, II: 194 as radiosensitizers, IV: 96 functionalization of porphyrinic Hematoporphyrin dimethyl ester, XVII: 71 frameworks using, II: 232 Hematoxylin structure, XXIII: 428 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 119 FA

Cumulative Index to Volumes 1–25 119

Hematoxylin-TiPc complex XXIII structural information for Ccm proteins, electronic absorption and CD spectra of, XIX: 385 XXIII: 428 substrate specificity, XIX: 386–387 observed and calculated absorption, variations of system I pathway, XXIII: 429 XIX: 387–388 HemATs, and ligand affinity in global coupled system II, heme attachment pathways sensors, XV: 141–142 cytochrome c biogenesis, XIX: 389 Heme, XX: 146, XX: 166 distribution, XIX: 388 Heme a, V: 3, XX: 147 heme transport and attachment, Heme b, XX: 147 XIX: 389–390 Heme c, XX: 147 redox control, XIX: 388–389 Heme acquisition (by hemophores) ResA structure, XIX: 389 1H-15N NMR spectra and, VI: 353–358 ResB and ResC function, XIX: 389 apo HasA and, VI: 353–354 substrate specificity, XIX: 390 biological background of, VI: 340–342 variations of the system ii pathway, and fate of the heme, VI: 358–359 390–391 H83A variant and, VI: 350–353 system III, heme attachment pathways heme-loaded HasA and, VI: 342–350 cytochrome c biogenesis, XIX: 392 hemoglobin interaction and, VI: 359–360 distribution, XIX: 391 holo-HasAp surface representation, VI: 360 HCCS and mitochondrial cytochrome c Heme attachment to cytochromes c import, XIX: 391–392 cytochrome c maturation (Ccm) System I, HCCS function, XIX: 392–393 XIX: 380 holocytochrome c synthase (HCCS), cytochromes c XIX: 391 heme covalently attached to c-type substrate specificity, XIX: 393–394 cytochromes, XIX: 375–376 system IV, heme attachment pathways spontaneous heme attachment to CCB1, CCB2, CCB3, CCB4, XIX: 395 cytochromes, XIX: 376–379 components and interactions, structures and functions, XIX: 372–375 XIX: 395 diversity of heme attachment pathways, distribution, XIX: 394 XIX: 379 Heme b, V: 3 system I, heme attachment pathways Heme b, alternative branch, XIX: 151–154 CcmA/CcmB/CcmC, XIX: 381 pathway, synthesis of siroheme (SH), CcmI protein, XIX: 386 XIX: 152 covalent attachment of heme to heme Heme/bilin branch, XX: 166–167 chaperone CcmE, XIX: 383 assembly of cytochrome c, XX: 170 CXXCH motif, XIX: 386 biosynthesis of mitochondrial heme a, distribution, XIX: 379–380 XX: 169 heme attachment reaction to biosynthesis of phytochrome chromophore cytochromes c, XIX: 384–385 by PΦB synthase, XX: 169 heme chaperone CcmE, XIX: 381–384 insertion of central ferrous ion by heme handling components, XIX: 381 ferrochelatase, XX: 167–168 heme-histidine bond in CcmE, XIX: 382 oxidative cleavage by heme oxygenase, NrfEFG, XIX: 388 XX: 168–169 redox control and chaperoning of apo- Heme binding cytochrome, XIX: 385–386 by hemopexin, XV: 236–237 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 120 FA

120 Cumulative Index to Volumes 1–25

and interdomain interactions forming structure of, XIX: 125

heme- of hemopexin, Heme d1, biosynthesis of, XIX: 126 XV: 234–236 didecarboxysiroheme, isolation of, Heme biosynthesis, IV: 7 XIX: 132–134

C5-pathway to 5-aminolevulinic acid genetic background, XIX: 127–128 (ALA) formation, XV: 164–165, Nir proteins and putative pathway XV: 170–175 intermediates, XIX: 128 cancer phototherapy and herbicide nirD, nirL, nirG, nirH, XIX: 131–132 applications, XV: 162–163 nirE, XIX: 128–130 general discussion of, XV: 160–161 nirF, XIX: 130 metabolic channeling of intermediates, nirJ, XIX: 130–131 XV: 203–204 required transformations, XIX: 126–127

overview, XV: 163–164 structure and function of Heme d1, pathways for, XIX: 133 XIX: 124–126 Shemin pathway to 5-aminolevulinic acid Heme dioxygenases (ALA) formation, XV: 164–170 and allosteric interaction of TDO, V: 90–92 side chain modification during, XIX: bacterial TDO compared with IDO 285–286 structure, V: 112–114 UROGEN conversion to heme and biological/biochemical properties of CPDH and, XV: 194–197 IDO/TDO, V: 73–75 CPO and, XV: 191–194 and catalytic properties of IDO/TDO, FC, FECH and, XV: 200–203 V: 75–76 general information, XV: 186–187 and endogenous reducing system for PPO and, XV: 197–200 IDO/TDO, V: 76–77 UROD and, XV: 188–190 EPR study of rhTDO, V: 92, V: 94 UROGEN formation EPR study of rlDO/rhlDO, V: 92–93 general information, XV: 175–177 and heme environment/binding mode of PBGD, XV: 181–183 L-Trp in xcTDP, V: 111–113 PBGS, XV: 177–180 heme environment of rhlDO, V: 105–107 UROS, XV: 183–186 IDO/TDO and, V: 73 Heme biosynthetic pathway IDO2 properties, V: 75 general discussion of, XV: 5 importance of, V: 73, V: 80 schematic model, XV: 6 mutagenesis study and rhlDO, V: 107–108 Shemin pathway, XV: 5 overall structure of IDO and rhlDO, Heme c, V: 3 V: 103–106 Heme carrier protein (HCP), and heme import and pathological roles of IDO/TDO, in mammals, XV: 27 V: 77–78 Heme catabolism, and coordination chemistry and proposed mechanism of dioxygenase of verdohemes, VIII: 295–296 reaction, V: 114–118 Heme copper oxidase (HCOs), XXII: 291 relevant abbreviations, V: 72–73 Heme-copper oxygen reductases, XIX: and resonance Raman spectra of rhlDO, 214–216 V: 94–97 Heme-copper reductases (HCOs), XIX: and resonance Raman spectra of rhTDO, 214–215 V: 97–103

Heme d1, V: 3, XVII: 11, XIX: 114, XIX: 124 and spectra of rabbit IDO, V: 82–83, V: 85, pathways for, XIX: 133 V: 87 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 121 FA

Cumulative Index to Volumes 1–25 121

and spectra of recombinant human IDO, N-donor ligand helps activate bound V: 82–83, V: 87 NO for catalysis, XXII: 278 and spectra of rhTDP human, V: 87–90 UV-Vis absorption of (ferrous) heme-iron spectroscopy (history), V: 81 nitrosyl species, XXII: 272 and structures of related enzymes (bacterial Heme o, V: 3 TDO), V: 108–109 Heme oxidation and structures of TDO from X. campestris, coupled oxidation and, VIII: 296 V: 109–112 dimeric complexes (metal complexes) and Heme domain in mammalian NOS isoforms, biliverdin, VIII: 310–312, XIX: 94 VIII: 318–321 structure of, XIX: 94–95 formation by dehydration of bilindione, neuronal (nNOS) VIII: 301, VIII: 304 heme domain dimer, XIX: 95 formation by porphyrin oxidation, Heme enzymes, XIX: 46–47 VIII: 296–302 Heme enzymes. See Cytochrome P450 free ligand (metal complexes) and enzymes; Nitric oxide (NO) chemistry biliverdin, VIII: 307–310 by heme-enzymes heme catabolism and, VIII: 295–296 Heme lipoprotein (HeLp), and heme uptake/ iron complexes (metal complexes) and detoxification in insects, XV: 23 biliverdin, VIII: 321–328 Heme Nitric oxide/OXygen (H-NOX) and metal complexes of formylbiliverdin, bacterial H-NOX domains, XV: 130–135 VIII: 328–334 sGC and, XV: 128–130 miscellaneous complexes and open-chain Heme nitrosyls, XXII: 268–279 oligopyrrole systems, VIII: 335–338 early work with simple porphyrins, monomeric complexes (metal complexes) XXII: 268–275 and biliverdin, VIII: 312–318 EPR spectroscopy of (ferrous) heme-iron and open-chain tetrapyrroles from ring nitrosyls species, XXII: 273 opening of verdohemes, five-coordinate and six-coordinate VIII: 301–307 porphyrins, XXII: 275 and ring skeletal structures of tetrapyrrole heme-iron with distal superstructure (and ligands, VIII: 294–295 no tail) 12-NO, XXII: 277 Heme oxygenases (HOs), XX: 167 non-heme iron nitrosyls species bacterial, XV: 376–378 characterized by IR, rR, EPR, and heme release mechanisms from NRVS spectroscopies, XXII: 274 heme-hemopexin, XV: 309–311 stretching and bending Fe–NO in (ferrous) intracellular heme route to cells for heme nitrosyls, XXII: 271 degradation by, XV: 311–313 stretching Fe–N (vFe–N) in (ferrous) iron recycling/overload and, XV: 313–315 heme-iron nitrosyls, XXII: 274 oxidative cleavage by, 168–169 stretching N–O (vN–O) in (ferrous) heme Heme peroxidases, XIX: 234 nitrosyls, XXII: 269–270 defining features of plant/fungal/bacterial

tailed heme-iron/non-heme zinc FeHZnB, peroxidases, XIX: 236–238 XXII: 276–277 mechanism of, XIX: 53 tailed heme-iron with distal superstructure, peroxidase classifications, XIX: 234–235 XXII: 275–276 conventional classifications, XIX: 235 tailed heme-iron with no superstructure, See Peroxidases XXII: 277–278 Heme pocket b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 122 FA

122 Cumulative Index to Volumes 1–25

and extended network of H-bonds, defined, V: 296 VI: 380–381 importance of, VII: 3 Fe(III) resting state and, VI: 374–380 natural heme systems, VII: 153–165 and functions in biological systems, V: 2 synthetic heme systems, VII: 165–173 imidazolate ligands and, VI: 384–386 third-generation biosensors and, V: 214 interaction with heme resulting in Heme resonances holoprotein, V: 4 and 2D 13C natural abundance HMQC KatG from Mycobacterium tuberculosis, spectra, VI: 59–62 VI: 394–396 biosynthetic pathway for, VI: 61–62 KatG from Synechocystis, VI: 390–394 Heme sensor proteins. See also Heme-based and modification of propionate side chains, gas sensor proteins V: 14 AhpC and, XV: 429 removal of heme from, V: 6–7 Bach1 and, XV: 421–422 and role of 2-/4-substituents in heme ChrS and, XV: 426 framework, V: 7–12 clotrimazole-heme complex and, XV: 428 structural diagrams of KatGs, VI: 386–390 CP motif (heme-regulatory motif) and, vinyl-protein interaction and, VI: 381–384 XV: 410–412 Heme proteins Dap1p/PGRMC1p and, XV: 428 catalytic diversity of, XIX: 232 DGCR8 and, XV: 426–427 diversity in sulfate reducing bacteria, DHR51 and, XV: 422 XIX: 141–145 E75 and, XV: 422 Heme protein-based electrochemical fast heme dissociation rate and, XV: 410, biosensors. See Electrochemical XV: 412–413 biosensors (heme protein-based) ferritin IRE and, XV: 429 Heme proteins as gas sensors Fur and, XV: 429 AxPDEA1 and, XV: 137 FurA and, XV: 424 bacterial H-NOX domains, XV: 130–135 future implications of, XV: 446–448 CooA and, XV: 144–148 G-protein-coupled receptor and, XV: 428 EcDos and, XV: 137–139 Hap1, XV: 419–420 fixL genes and, XV: 135–137 HbrL and, XV: 426 GAF domains and, XV: 148–152 heme function, XV: 405–406 globin coupled sensors, XV: 139–144 heme-regulated β-lactamase, XV: 427 heme cofactors and, XV: 124–125 and heme-regulated inhibitor (HRI): heme- mammalian heme-PAS-containing proteins regulated eukaryotic initiation factor and, XV: 139 2α (elF2α) kinase, XV: 415–416 requirements of, XV: 125–127 hemopexin and, XV: 429 Sensor Containing Heme Instead of HIV-1/HIV-2 and, XV: 427 Cobalamin (SCHIC) and, HssRS and, XV: 425–426 XV: 152–153 human Slo1 BK channel and, XV: 423–424 sGC and H-NOX domains, XV: 128–130 IRP2 and, XV: 420 Heme proteins. See also Iron porphyrin Irr and, XV: 420–421 complexes mPer2 and, XV: 419 assignment of heme doming modes, N-end rule pathway and, XV: 425 VII: 459–460 neudesin and, XV: 425 and catalytic mechanism of cytochrome NPAS2 and, XV: 415–419 P450, VII: 3–4 Nrf2 and, XV: 421 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 123 FA

Cumulative Index to Volumes 1–25 123

and protein flexibility/plasticity, bacterial heme oxygenases and, XV: 413–414 XV: 376–378 redox-dependent heme binding and, and biliverdin in bacterial signaling, XV: 410–411, XV: 413 XV: 381–382 Rev-erbα, XV: 422–423 and exogenously acquired heme, XV: 382 Rev-erbβ, XV: 423 and extracellular signaling mechanisms for serum albumin and, XV: 429 regulation, XV: 385–388 ShuS and, XV: 424–425 future implications of, XV: 390–391 SOUL/p22/HBP and, XV: 428 gram-negative organisms and, and synthesis of yeast peroxisomal XV: 360–361, XV: 360–361 proteins, XV: 427 gram-positive cell wall and, XV: 359–360 THAP and, XV: 420 gram-positive/gram-negative common and thiolate as heme-binding site, structural motifs, XV: 369–370 XV: 407–409 gram-positive lipoprotein network in, TLR4 and, XV: 428 XV: 367–369 TrpRS and, XV: 428 heme coordination/spin state transitions Heme thiolate enzymes. see peroxidase and and, XV: 373–375 heme thiolate enzymes heme specificity/affinity/dynamics and, Heme thiolate ligand, XIX: 79 XV: 370–373 Heme trafficking, eukaryotic. See Eukaryotic heme utilization/iron release and, heme trafficking XV: 376–382 Heme transport. See also Eukaryotic heme and iron release by non-heme-oxygenase trafficking; Hemopexin and mechanisms, XV: 378–381 cytoprotection mechanistic aspects of, XV: 370–376 and cytochrome P450scc in IM, XV: 16 metalloporphyrin inhibitors of, heme chaperones and, XV: 16–17 XV: 389–390 and heme uptake in and periplasmic heme trafficking, gram-negative bacteria, XV: 17–20 XV: 364–365 gram-positive bacteria, XV: 17, XV: 20 post-transcriptional regulation of, yeast, XV: 20–21 XV: 384–385 interorganellar heme transfer mechanisms, protein-protein interactions (PPIs) of, XV: 32–36 XV: 375–376 Heme transport of synthesis intermediates. See regulation of, XV: 382–388 also Eukaryotic heme trafficking structural aspects of, XV: 360–370 porphyrias prevention during, XV: 9 and tonB-dependent receptors of gram- transport of negative organisms, XV: 361–364 ALA out of mitochondria, XV: 10–11 transcriptional regulation of, XV: 383–384 CPgenIII into/PPgenIX within vaccine development and, XV: 388–389 mitochondria, XV: 12–14 Heme-based gas sensor proteins, XV: home precursors between cytosolic 445–446. See also Heme sensor enzymes, XV: 11–12 proteins

PPIX to FECH, XV: 14–15 AppA (O2 sensor proteins), XV: 440 Heme uptake mechanisms in bacterial BKCa (CO sensor proteins), XV: 444 pathogens BxRcoM-2 (CO sensor proteins), XV: 444 and ATP-dependent transport of heme circadian (NPAS2/CLOCK/E75/DHR52/ across the cytoplasmic membrane, Rev-erbα/Rev-erbβ) (CO sensor XV: 366–367 proteins), XV: 444–445 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 124 FA

124 Cumulative Index to Volumes 1–25

CooA (CO sensor proteins), XV: 443 and crystal structures of nitrite/nitrosyl β cystathionine -synthase (CO sensor adducts of cd1/NIR, XIV: 28–30 proteins), XV: 443–444 and DFT calculations on ferrous DcrA (c-type heme-containing heme-nitrosyls, XIV: 169–172

redox-and/or O2-sensing proteins), effect of thiolate coordination on ferrous XV: 445–446 heme-nitrosyls, XIV: 172–174 DNR (NO sensor proteins), XV: 442–443 and electron transfer pathway in NorBC, future implications of, XV: 446–448 XIV: 93–94

GAF domain as O2-sensing site (O2 sensor electronic structure of five-coordinate proteins), XV: 438–440 ferrous heme-nitrosyls, XIV: 136, general discussion of, XV: 429–430 XIV: 138–143

globin coupled sensors (O2 sensor proteins) electronic structure of six-coordinate ferrous and, XV: 435–438 heme-nitrosyls, XIV: 162–164 GSU0935/GSU0582 (c-type EPR spectroscopy of five-coordinate heme-containing redox-and/or ferrous heme-nitrosyls, XIV: 125,

O2-sensing proteins), XV: 445 XIV: 131–133 Gyc-88E (NO sensor proteins), XV: 442 EPR spectroscopy of six-coordinate ferrous

Gyc-88E (O2 sensor proteins), XV: 440–441 heme-nitrosyls, XIV: 153–159 H-NOX (NO sensor proteins), XV: 441–442 and Fe(III)-NO complex characterization,

H-NOX (O2 sensor proteins), XV: 441 XIV: 113–114

H2S (c-type heme-containing redox-and/or Fe(III)-NO2 crystal structures (hypoxic

O2-sensing proteins), XV: 445–446 vasodilation) and, XIV: 51–54

Hap1 (O2 sensor proteins), XV: 440 Fe(III)(porphyrin)(NO)(NO2) complexes

PAS fold as O2-sensing site (O2 sensor and, XIV: 180–181 proteins), XV: 430–435 ferric heme-nitrosyls with proximal sGC (NO sensor proteins), XV: 441 imidazole coordination SONO (NO sensor proteins), XV: 442 electronic structure/comparisons, systems modulating CO response (CO XIV: 198–201 sensor proteins), XV: 445 geometric properties, XIV: 192–193 Heme-dinitrosyl complex, XIV: 174–177 PES and NO binding, XIV: 201–203 Heme-nitrosyls and nitric oxide (NO) in Ru(III)-NO complexes comparisons, biological systems XIV: 203–204 alternative bacterial NORS vibrational spectroscopy, XIV: 193–198 (qNOR/qCuANOR) and, XIV: 107 five-coordinate Fe(II)(porphyrin)(NO) and anaerobic respiration/proton pathways complexes and, XIV: 179–180 in NorBC, XIV: 92–93 and five-coordinate NO adduct of ferrous β-cys93-nitrosylated Hb crystal structure sGC, XIV: 58–61 (hypoxic vasodilation) and, fungal NO reductase (P450nor) (overview) XIV: 46–48 and, XIV: 108 bacterial NOS and, XIV: 20–21 geometric properties of six-coordinate binding constants of five-coordinate ferrous ferrous heme-nitrosyls, XIV: 146–153 heme-nitrosyls, XIV: 122, geometric structures of five-coordinate XIV: 125–130 ferrous heme-nitrosyls, XIV: 121–125 and catalytic mechanism of cytochrome heme-dinitrosyl complex, XIV: 174–177 P450nor, XIV: 211–215 heme nitric oxide/oxygen (HNOX) binding corresponding model complexes for, domains (overview) and, XIV: 119–121 XIV: 66–67 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 125 FA

Cumulative Index to Volumes 1–25 125

historical aspects of, XIV: 8–9 and nitrite reductases (NIRs) overview, hyponitrite complexes and, XIV: 181–183 XIV: 23 and interaction of NO with cytochrome nitrophorin protein structure, XIV: 74–82 c′, XIV: 72–73 NO binding and catalysis, XIV: 188–191 and interaction of NO with cytochrome P450 NO binding to ferrous (deoxy) Hb/Mb, monooxygenases, XIV: 117–118 XIV: 38–42 linkage isomers of, XIV: 177 NO binding to globins, XIV: 183–186 and mechanism of NO reduction by NO biosynthesis overview, XIV: 9–10 cytochrome P450nor, XIV: 114–117 NO dependent mechanism of sGC NorBC, XIV: 98–102 activation by NO, XIV: 62–66 mechanism of NO synthesis by NOS, and NO in biological catalysis (overview), XIV: 16–21 XIV: 90–91 and mechanism of NO transport by and NO reductase from denitrifying nitrophorins from C. lectularius, bacteria (NorBC) (overview), XIV: 85–87 XIV: 91–92 nitrophorins from R. prolixus, NO sensing overview, XIV: 54 XIV: 82–85 NO signaling and sGC, XIV: 187–188 and mechanism of NO2− reduction in and NO transport/binding constants,

cd1/NIR, XIV: 30–32 XIV: 209–211 model complex studies of NO reduction, NO transport (overview), XIV: 73 XIV: 105–107 NOR-activity of heme-copper oxidases and modulation of Fe-NO π-backbonding (HCOs) and, XIV: 102–105 with five-coordinate ferrous normal coordinate analysis of five- heme-nitrosyls, XIV: 143–146 coordinate ferrous heme-nitrosyls, and modulation of Fe-NO σ-backbonding XIV: 134, XIV: 136–137 five-coordinate ferrous and NOS inhibition by NO, XIV: 22–23 heme-nitrosyls, XIV: 146 other heme-based NO reductases and modulation of π-backbonding in oxidative denitrosylation and, XIV: 36–38 six-coordinate ferrous and peroxynitrite sources, XIV: 38 heme-nitrosyls, XIV: 166–168 protein sequences/gene structure of fungal and modulation of σ-bonding in NOR, XIV: 108–109 six-coordinate ferrous and protein speciation/sequences of heme-nitrosyls, XIV: 164–166 nitrophorins, XIV: 73–74 Mössbauer spectroscopy of six-coordinate protein structure of soluble guanylate ferrous heme-nitrosyls, cyclase (sGC), XIV: 55–57

XIV: 159–160 and protein structures of cd1/NIR, and NIR activity of Mb/Hb, XIV: 32 XIV: 23–27 nitric oxide dioxygenation (NOD) and, protein structures of heme nitric oxide/ XIV: 33–36 oxygen (HNOX) binding domains, nitric oxide synthase (NOS) overview, XIV: 67–72 XIV: 10–11 and resting state of NorBC, XIV: 97–98 nitric oxide synthase (NOS) protein and role of heme ruffling for Fe(III) structure, XIV: 11–16 stabilization, XIV: 87–90 nitrite reductase/anhydrase mechanism for S-nitrosocysteine activation of sGC by NO, sensing (hypoxic vasodilation), XIV: 66 XIV: 48–51 and S-nitrosylation of cysteine, XIV: 42–43 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 126 FA

126 Cumulative Index to Volumes 1–25

and sGC activation implications due to Heme-regulated inhibitor (HRI): heme- HNOX protein structures, regulated eukaryotic initiation factor 2α XIV: 67–72 (elF2α) kinase, heme sensor proteins six-coordinate Ru(III)(porphyrin)(L)(NO) and, XV: 415–416 complexes and, XIV: 177–179 Heme-regulated β-lactamase, heme sensor SNO mechanism for sensing (hypoxic proteins and, XV: 427 vasodilation), XIV: 43–46 Heme-responsive gene (HRG), and heme soluble guanylate cyclase (sGC) overview import in mammals, XV: 27 and, XIV: 54–55 Hemes. See also Eukaryotic heme trafficking and spectroscopic characteristics of artificially created. See also Hemoproteins

cd1/NIR, XIV: 27–28 (reconstituted with artificially spectroscopic characterization of ferrous created hemes) sGC, XIV: 57–58 heme P460, V: 3 and structure of catalytically active site of non-propionate substituted, V: 21–22 NorBC, XIV: 94–97 reconstituted hemoproteins and disorder of, structure of P450nor, XIV: 109–112 V: 17–19 and thiolate coordination to ferric structure of, XV: 4 heme-nitrosyls, XIV: 204–209 HemH, XXV: 51 two-step activation process of sGC by NO, Hemin, IV: 11, IV: 12 XIV: 61–62 and preparation of apo-/reconstituted vibrational spectroscopy of five-coordinate proteins, V: 6 ferrous heme-nitrosyls, XIV: propionate side chains and, V: 14 133–135 synthetic, effect of axial ligand plane vibrational spectroscopy of six-coordinate orientation on, VI: 50–55 ferrous heme-nitrosyls, and transport of CPgenIII into/PPgenIX XIV: 160–162 within mitochondria, XV: 14 Heme-oxygenase-1 (HO-1), IV: 383–384 Hemiporphycene, XVI: 25 Heme-propionate side chains Hemiporphycenes acid-alcohol pair sequential in cytochrome cis/trans tautomeric forms of, P450, V: 185–186 VII: 378–379 and construction of electron transfer electronic absorption data of, VII: 383 processes, V: 35–41 electronic absorption spectra of, and construction of interfaces on protein VII: 390–392 surface, V: 41, V: 43–44 formulas of most stable tautomeric form of, and construction of substrate binding sites, VII: 362 V: 44–48 myoglobin function regulation and, for heme prosthetic group, V: 5 V: 33–34 propionate in cytochrome P450, as skeletal isomer of porphyrin, II: 296–297 V: 183–184 Hemiporphyrazines (HPzs), XXIII: 326 Heme-protein models, XIII: 175–176. electronic properties of, XXIII: 332 See also Porphyrins/porphyrin analogs Hemiporphyrazines, XVII: 118–119 with double bonds at meso positions aryl diamines inserted into, XVII: 119 to biliverdin oxidative transformation, asymmetric hemiporphyrazines, XIII: 206 XVII: 177–179 and chemical oxidation of porphyrin, bis(arylimino)isoindolines XIII: 202–206 alternate, XVII: 220–224 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 127 FA

Cumulative Index to Volumes 1–25 127

bioinorganic BPI chemistry, iron porphyrins and, VII: 360–361 XVII: 215–220 Hemopexin BPI metal complexes, XVII: 190–206 heme-binding extracellular proteins and, BPI metal complexes as catalysts, XV: 30 XVII: 206–215 heme sensor proteins and, XV: 429 chemistry of free BPI ligand, Hemopexin and cytoprotection XVII: 186–190 avian hemopexin, XV: 262–263

bis-pyridyl hemiporphyrazine (H2Hp), barrier tissues and, XV: 329–331 XVII: 120–127 and binding of exogenous ligands, metal chemistry of, XVII: 128–141 XV: 240–244 carbahemiporphyrazines, XVII: 148–155 and biological functions of alternate, XVII: 167–173 heme-hemopexin complex, XV: 251 metal chemistry of, XVII: 155–166 as biomarkers of disease, XV: 272 EPR spectroscopy of transition metal bloodstream dynamics of, XV: 281–293 hemiporphyrazine complexes, and cytoprotection against XVII: 135 ischemia-reperfusion injury in expanded hemiporphyrazines, stroke, XV: 316–319 XVII: 177–186 expression in inflammation/ first hemiporphyrazine crystal structure, cancer/infection/neuro- XVII: 129 degeneration, XV: 274–277 flexibility, XVII: 122 as extracellular antioxidant, XV: 297–298 genesis of, XVII: 116–119 general discussion of, XV: 223–225 Hp macrocycles as materials, haptoglobin systems and, XV: 308–309 XVII: 141–148 heme binding by hemopexin, XV: 236–237 isoindoline unit in, XVII: 127 heme-hemopexin reduction, XV: 240–244 metal–nitrogen bond distances for the heme-hemopexin spectroscopic

isomorphous series M(II)Hp(H2O), characteristics, XV: 238–240 XVII: 136 heme release mechanisms from open shell crystal orbital method, XVII: 123 heme-hemopexin, XV: 309–311 producing “core modified,” XVII: 149 heme toxicity and, XV: 293–296 and related systems, XVII: 114–116 in hemolytic conditions, XV: 272–274

six-coordinate Ni(II)Hp(py)2, XVII: 129 hemopexin evolution and, XV: 258–262 sorption of NOX, XVII: 123 hemopexin gene, XV: 255–256 structure of alkylated macrocycle, hemopexin gene promoter XVII: 126 regulation of expression, XV: 264–265 synthetic chemistry, XVII: 125 structure, XV: 263–264 triazolehemiporphyrazines, XVII: 173–177 temporal changes in expression during Hemoglobin and biosensor fabrication, V: 262, development, XV: 265–271 V: 266–269 hemopexin polymorphism and, Hemoglobin (Hb) XV: 256–258 circular dichroism (CD)/electronic innate/autoimmune system modulation by, absorption spectra and, VII: 154–156 XV: 322–325 heme acquisition (by hemophores) and, and interdomain interactions forming VI: 359–360 heme-binding site of, XV: 234–236 and heme uptake/detoxification in insects, intracellular heme route to cells for XV: 23 degradation by oxygenases, hemopexin and, XV: 225 XV: 311–313 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 128 FA

128 Cumulative Index to Volumes 1–25

iron recycling/overload and heme hemoproteins, XXII: 291–292 oxygenases, XV: 313–315 non-heme-based metalloproteins, iron salvage and, XV: 298–304 XXII: 292 and isolation/characterization of organometallic complexes, XXII: 292 hemopexin, XV: 251–254 biomimetic studies XXII membrane-associated heme removal by, first NO binding, XXII: 280–283 XV: 296–297 second NO binding, NO reduction and

metal/non-metal tetrapyrrole ligands and, N2O formation, XXII: 283–291 XV: 248–250 hemoproteins, XXII: 238–239 methodology of hemopexin isolation/ models of nitric oxide reductase, XXII: 245 characterization, XV: 251–254 bioengineered models, XXII: 266–268 mortality and, XV: 296 computational models, XXII: 246–247 N-domain and, XV: 246–248 synthetic models, XXII: 247–265 nutritional immunity and, XV: 331–334 nitrogen cycle, XXII: 239 peroxide and stability of, XV: 297–298 Hemoproteins (reconstituted with artificially pH/temperature effects on created hemes) heme-hemopexin, XV: 244–245 apo-/reconstituted proteins and, V: 6–7 plasma protein systemic signals for azaporphyrins incorporation with, V: 31–32 regulation of, XV: 325–329 chlorin incorporation with, V: 28–30 proteinuria/biomarkers/kidney disease and, chlorophyll derivative incorporation with, XV: 280–281 V: 30 proteomic studies identifying marker cobalt hemoproteins and, V: 24–25 protein as, XV: 277–280 fluorinated peripheral substituents and, and receptor-mediated endocytosis, V: 19 XV: 304–308 functionalization by modification of recombinant hemopexin and, XV: 255 activity with artificial porphyrinoids, reperfusion injury and, XV: 297–298 V: 32–35 structural aspects heme-propionate side chains, V: 35–48. crystal of, XV: 228–234 See also Heme-propionate side general of, XV: 226–227 chains and trafficking of extracellular heme for and functions in biological systems, V: 2 iron reclamation/recycling, heme disorder and, V: 17–19 XV: 319–322 and heme prosthetic groups, V: 3 Hemophilus ducreyi, vaccine development manganese hemoproteins and, V: 25–26 and, XV: 388–389 mixed-metal hybrid hemoproteins and, Hemoprotein models XXII V: 27 authentic mononitrosyl species, XXII: 268 molecular design of, V: 5 heme nitrosyls, XXII: 268–279 nanobiomaterials and, V: 53–57 non-heme nitrosyls, XXII: 279–280 and new nanobiomaterials, V: 48–57 bacterial nitric oxide reductase (NOR), non-propionate substituted hemes and, XXII: 240 V: 21–22 biomimetic models, XXII: 244–245 other metal hemoproteins and, V: 27–28 mechanism of NO reduction in NOR, and other peripheral substituents, V: 22–23 XXII: 242–244 other porphyrin analog incorporation with, nitric oxide (NO), XXII: 244 V: 32 structure of NOR, XXII: 240–242 phthalocyanine derivative incorporation beyond NOR, XXII: 291 with, V: 30–31 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 129 FA

Cumulative Index to Volumes 1–25 129

and propionate positions, V: 19–21 Heteroanalogs, electronic absorption maxima redox-induced FTIR difference spectra and, of, XIII: 137–140 VII: 466–468 Heteroatom substituents with BODIPY and replacement of heme with other metal from electrophilic substitution reaction, (general information), V: 24 VIII: 24–28 and role of 2-/4-substituents in heme from metal mediated C–H framework, V: 7–12 functionalization, VIII: 32–36 and role of 6-/7-propionate side chains in from nucleophilic attack on halogenated heme framework, V: 12–17 BODIPYs, VIII: 28–32 zinc hemoproteins and, V: 26–27 from nucleophilic attack on meso-position, Hemoproteins, XXII: 238–239 VIII: 36–39 Hemozoin, and heme uptake/detoxification in from nucleophilic attacks on halogenated insects, XV: 22–23 BODIPYs, VIII: 28–32 Heptaalkyl NCP, proton NMR data for, Heteroatoms inside aromatic skeleton of Pcs, XVI: 212 UV-vis absorption data, IX: 415–448 Hepta-alkyl N-confused porphyrin Heteroatoms, and coordination of metal ions, MacDonald “2 + 2” synthesis, XVI: 209 III: 430 synthesis and protonation of nickel(II) Heterobimetallic complexes, and hydroxy-/ complex of, XVI: 213 alkoxy-/aryloxy-substituted Heptanitrated macrocycles, microwave- phthalocyanines, III: 173 assisted synthesis of, II: 201 Heterobimetallic complexes, XXI: 12, 81 Heptaphyrins, II: 183 Heterobimetallic porphyrin–corrole dyads XXI Heptapyrrolic expanded porphyrins ORR activity of, XXI: 103 heptapyrrolic (Hückel aromaticity), Heterocycle-derivatized diiminoisoindolines, I: 535–542 XVII: 187 heptapyrrolic (Möbius aromaticity), Heterocycle-fused porphyrins I: 542–544 β-nitroporphyrins in synthesis of, II: 74 octapyrrolic (Möbius aromaticity), microwave-assisted synthesis of, II: 202–203 I: 544–546 Heterocyclic , XVII: 116 overview, I: 535 Hetero-dimer systems, chiral phthalocyanines protonation of [38]nonaphyrin, I: 546–551 synthesis/characterization, Hepatoerythropoietic porphyria (HEP), XXIII: 431–433 XIX: 289 electronic absorption, CD and MCD laboratory diagnosis of, XIX: 301–302 spectra of Y(III) double-decker Herbicide applications, heme biosynthesis and, complexes, XXIII: 433 XV: 162–163 molecular structures of rare-earth Hereditary coproporphyria (HCP), XIX: 315, double-deckers comprising XIX: 324 tetra(pchlorophenyl) porphyrin and clinical manifestations, XIX: 325 binaphthyl-linked Pc, XXIII: 432 frequency, XIX: 324–325 Heterodimers. See UV-vis absorption data of laboratory diagnosis, XIX: 327 sandwich-type Pcs pathogenesis, XIX: 326 Hetero-diporphyrins, III: 410–411 Herpes simplex virus (hsv), IV: 137 Heterojunction bilayer organic solar cell, Herringbone phase, CoTBPP on Ag(111) XVIII: 61 showing, XVIII: 4 Heterogeneity, ethyne-bridged polymersomes/ Hereditary hemochromatosis gene (HFE), amphiphilic diblock copolymers and, XIX: 289 I: 10 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 130 FA

130 Cumulative Index to Volumes 1–25

Heterogeneous chlorophyll dyads, energy Hexaphyrin, IV: 45 transfer in, XX: 78–81 amidopyrrole-based receptors and, VIII: 189 Heteroleptic bis(phthalocyaninato) complexes combinatorial libraries, III: 519 (synthetic method) [28]hexaphyrin, I: 519–529 electrochemical properties of, XIV: 423, trans-vinylene bridged hexaphyrin, XIV: 425–427 I: 529–534 electronic absorption spectroscopy of, Hexapyrrolic expanded porphyrins XIV: 312–319 excited state dynamics, I: 517–518 infrared (IR) vibrational spectroscopy of, excited state dynamics (Möbius), XIV: 359–365 I: 523–526 resonance Raman (RR) spectra of, hexapyrrolic (Möbius aromaticity). XIV: 392, XIV: 394–400 See also Hexapyrrolic expanded as sandwich-type tetrapyrrole rare earth porphyrins complexes, XIV: 260–268 Hückel antiaromaticity, I: 519, I: 529–534 schematic structure, XIV: 253–254 metalation (Möbius), I: 528–529 Heteroleptic rare earth double-decker Pc Möbius aromaticity, I: 519–528 complexes, structure of, XXIII: 431 NMR spectroscopy (Möbius), I: 520 Heteronuclear correlation nonlinear optical properties (Möbius), HETCOR map of dicyanoprotohemin IX, I: 527–528 VI: 65 overview, I: 515 spectroscopy for experiments, VI: 8 spectroscopic properties/aromaticity, Heteronuclear detection I: 518–519 13 C-NMR and, VI: 346–349 steady state spectroscopy, I: 515–517 15 N-NMR and, VI: 349–350 steady state spectroscopy/2D correlation general information, VI: 346 absorption spectra (Möbius), Heteronuclear lanthanide-containing I: 521–523 complexes, XVIII: 390 Hexapyrrolohexaazacoronenes, XVII: 285 Heteronuclear Multiple Bond Correlation Hexapyrrolylbenzenes, XVII: 285 spectroscopy for experiments, VI: 8 electrooxidation of, XVII: 286 Heteroporphyrins, as porphyrins with XNNN pyrrolyl oxidation in, XVII: 327 for a NNNN cavity, II: 105 Hexvix (ALA-hexyl ester), IV: 8 + Hexaalkyl NCPs, MacDonald-type “3 1” C60-fullerene derivatives, IV: 36 synthesis of, XVI: 219 HPPH conjugates for MRI and PDT, Hexa-alkyl pyrazoloporphyrin, attempted IV: 294–297 synthesis of, XVI: 232 HPPH–cyanine dye (CD) for fluorescence Hexadecasubstituted compounds imaging and PDT, IV: 290–293 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25- HPPH nanocrystals, IV: 307 hexadecasubstituted compounds of In(III) complexes, IV: 259–261 phthalocyanines, III: 31–34 structure, IV: 34, IV: 254 and hydroxy-/alkoxy-/aryloxy-substituted sugar–HPPH conjugates, IV: 270–272, phthalocyanines, III: 121 IV: 273–274 [34]hexaphyrin(3.1.3.3.1.3), synthesis of, synthesis, IV: 33–34 XVI: 302 tumor imaging and PS capacity of cyanine Hexahydroporphyrin, XX: 4 conjugate, IV: 36 Hexamethyldisilazane (HMDS), XVIII: 243 See also Pheophorbides; Hexaphyrins and metalated derivatives, Pyropheophorbides XVI: 294 HfPc absorption spectra, IX: 39–42 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 131 FA

Cumulative Index to Volumes 1–25 131

Hg(II) complex of ZnTEEP-pyridine on, XVIII: 24 (2-Me-NCTPP)Ph, II: 334, II: 335 Highly oriented pyrolitic graphite (HOPG) 5,20-Ph2-NCP, II: 334 and deposition of organic molecules, HgPc absorption spectra, IX: 74–78 XII: 142–143 Hierarchical control of noncovalent syntheses, and polymerization of zwitterionic XIII: 183 guanidinocarbonylpyrrole, VIII: 174 HIF-1 responsive genes, IV: 433 High-spin/intermediate-spin porphyrin High density lipoprotein (HDL), IV: 126, complexes IV: 343, IV: 345 and axial ligands for formation of pure Highest occupied molecular orbital (HOMO) intermediate-spin complexes, dye-sensitized solar cells and, X: 157 VII: 58–61 effects of splitting, XIV: 470–471 and electronic ground states in intermediate- HOMO-LUMO gaps Eeg and, I: 8, I: 78, spin complexes, VII: 70–75 I: 82–83, I: 89 formation of pure intermediate-spin and historical aspects of porphyrinoid complexes, VII: 58–70 optical spectroscopy, XIV: 466 general considerations, VII: 57–58 IR optical communication and, I: 89 and porphyrin ring deformation for MCD intensity and, XIV: 474 formation of pure intermediate-spin MCD spectra and, VII: 392–397 complexes, VII: 61–70 meso–meso bridge and, I: 8 High-valent iron-oxo porphyrins in and origin of intensity of absorption, oxygenation reactions XIV: 476–477 and aliphatic C–H activation by Compound I and origin of optical spectrum, XIV: 479 of CYP450, X: 108–120 pentapyrrolic expanded porphyrins and, and aliphatic hydroxylation mechanisms I: 517 with byproduct formation for and predicted absorption spectra based on CYP450, X: 120–124 TD-DFT/ZINDO/s methods, and aromatic C–H activation by Compound I XIV: 514–515 of CYP450, X: 125–127 supramolecular dyads and, I: 314–315 and catalytic cycle of CYP450, X: 87–93 trends between calculated parameters/ and C=C epoxidation by Compound I of observed properties, XIV: 515–519 CYP450, X: 127–129 and use as wire, I: 78, I: 82–83 cytochromes P450 as superfamily of Highly ordered pyrolytic graphite (HOPG) cysteine thiolate-ligated heme surface, XVIII: 4–5 enzymes, X: 85–86 π cis-diacid (C2R2) derivatives on, XVIII: 21 and Fe(IV)-oxo porphyrin -cation radical

monocarboxylic acid (C1R3) derivatives on, complexes, X: 93–97 XVIII: 21 and modeling of CYP450 properties/ monolayer of TEEP on, XVIII: 24 reactivities of compound I (Cpd I), pyridine group itself on self-assembly X: 98–106 behavior on, XVIII: 26 and modeling of CYP450 TCPP, XVIII: 18 properties/reactivities of two-state hydrogen-bonded network on, reactivity, X: 106–107 XVIII: 18 and sulfoxidation by Cpd I of CYP450, TEEP and its zinc analog ZnTEEP, self- X: 129–131 assembly behavior on, XVIII: 22 High-valent transition metal corroles/ zinc hexamer and DABCO on, XVIII: 34 corrolazines b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 132 FA

132 Cumulative Index to Volumes 1–25

chromium-imido complexes (corroles), silver complexes (demetalation strategies), XIV: 581–583 XIV: 592–594 chromium-nitrido complexes (corroles), titanium-oxo complexes (corrolazines), XIV: 581–582 XIV: 569–571 chromium-oxo complexes titanium-oxo complexes (corroles), aerobic oxidation, XIV: 563–564 XIV: 568–569 RR spectroscopy, XIV: 564–565 vanadium-oxo complexes unsymmetrical, meso-substituted corrolazines, XIV: 569–571 derivatives, XIV: 565–567 corroles, XIV: 568–569 high-valent cobalt complexes Hippuric acid, and GFP-chromophore analogs corrolazines, XIV: 588–590 of BODIPYs, VIII: 135–136 corrole-porphyrin dyads, XIV: 591–592 HIV corroles, XIV: 586–588 cobaltacarborane porphyrin conjugation to high-valent iron vs. non-innocent corrole HIV-1 Tat, IV: 220, IV: 222–223 ligands, XIV: 584–585 HIV-1 transactivator protein (HIV-1 Tat) in iron-oxo complexes targeted conjugates, IV: 278, catalytic applications, XIV: 560 IV: 279 mononuclear terminal, XIV: 556–560 oxovanadium(IV)–TPP complex effect on oxo-bridged dimers/derivatives, XIV: HIV-1b replication, IV: 16 552–556 SiPc anti-HIV activity, IV: 78 manganese-imido complexes sulfonated naphthylporphyrin anti-HIV catalytic applications and electron- activity, IV: 14–15 deficient imides, XIV: 579–581 TPP conjugation to HIV-1 transactivator corrolazines, XIV: 577–579 protein (HIV-1 Tat), IV: 144–146 corroles, XIV: 574–577 ZnPc conjugation to HIV-1 transactivator manganese-nitrido complexes protein (HIV-1 Tat), IV: 145, catalytic applications and electron- IV: 147 deficient imides, XIV: 579–581 HIV-1/HIV-2, heme sensor proteins and, corrolazines, XIV: 577–579 XV: 427 corroles, XIV: 574–577 Hmc complex from D. vulgaris manganese-oxo complexes Hildenborough, XIX: 205, XIX: 209 catalytic applications, XIV: 551–552 HMQC experiment corrole synthesis/reactivity, 2D 13C natural abundance HMQC spectra, XIV: 533–543 VI: 64–69 OAT/HAT reactivity, XIV: 547–551 2D NMR techniques and, VI: 64–69 theoretical calculations, XIV: 543–544 HNOX proteins, XXV: 101 manganese-oxo corrolazines, H-NOX, XV: 441–442 XIV: 544–547 Holocytochrome c synthase (HCCS), Mn(IV) halide complexes and, XIX: 391 XIV: 585–586 function, XIX: 392–393 molybdenum-oxo complexes disruption of, XIX: 393 meso-aryl derivatives, XIV: 572–573 and mitochondrial cytochrome c import, octaalkyl derivatives, XIV: 571–572 XIX: 391–392 rhenium-oxo complexes, XIV: 567–568 substrate specificity, XIX: 393–394 silver complexes [Ag(III) corrole Holo-phytochrome, XX: 149 synthesis], XIV: 592–593 Homeostasis, hemopexin and, XV: 285 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 133 FA

Cumulative Index to Volumes 1–25 133

HOMO (a1u), transitions among, II: 2 schematic structure, XIV: 253–254 HOMO/LUMO energies and electron HOMO-LUMO gaps, mixed pyrroles and, distributions, optimizing, III: 492 XVIII: 109–110 Homonuclear correlation spectroscopy Homobimetallic complexes, XXI: 60 (COSY), 2D NMR techniques and, Homobimetallic manganese complexes, VI: 64–69 XXI: 74 Homotopic ligands, XXIII: 62 Homobimetallic xanthene porphyrins, XXI: 61 Honda-Fujishima effect, XII: 384–385

Homo-coenzyme B12, XXV: 148, 150 Hormone biosynthesis, cytochrome P450 Homo-dimer systems, chiral phthalocyanines enzymes and, V: 166 synthesis/characterization, Horseradish peroxidase (HRP), IV: 412 XXIII: 428–431 and biosensor fabrication, V: 260–264 Homo sapiens as classification, VI: 423 and [2Fe-2S]+ cluster as cofactor of FECH, Fe(IV)–O determination and, VI: 419 XV: 63 and protein engineering application, and crystal structures of FECH, XV: 67–71 V: 218–219, V: 232 FECH reaction mechanism summary and, resonance raman (RR) frequencies and, XV: 93 VI: 414, VI: 417 and metal-ion-binding sites of FECH, and role of 2-/4-substituents in heme XV: 73–74 framework, V: 10–11 metal ion substrate specificity and, XV: 86 structure of heme cavity with key residues HOMO/LUMO wavefunction symmetry, of resting state HRP/CCP, VI: 413 IX: 6–9 UV-vis, EPR spectra, VI: 415

HOMO-1 (a2u), transitions among, II: 2 Horseradish peroxidase (HRP), XIX: 48–49, Homochiral-strapped porphyrin with chiral XIX: 236, XIX: 266 cyclohexane auxiliaries, X: 36–37 Horseradish peroxidase isoenzyme C (HRPC)

Homodimer, nitrous oxide reductase (N2OR) as classification, VI: 372 as, V: 130 electronic absorption maxima of Fe(III) Homo-diporphyrins, III: 409 resting state/intermediate compounds Homoleptic bis(phthalocyaninato) complexes of, VI: 418 (synthetic method) Host-guest interactions, dihedral angle control as sandwich-type tetrapyrrole rare earth and, I: 464–466 complexes, XIV: 255–260 Hoveyda-Grubbs catalysts schematic structure, XIV: 253–254 and cardanol-based porphyrins, III: 354 Homoleptic/heteroleptic bis(porphyrinato) and synthesis of porphyrin-fullerene dyad, complexes (synthetic method) III: 354 electrochemical properties of, HPc absorption spectra, IX: 12–17 XIV: 413–425, XIV: 431–432 HPLC/fluorescence method, and Mn porphyrins electronic absorption spectroscopy of, in plasma/tissues, XI: 352–354 XIV: 299, XIV: 301–312, HPPH, XII: 396–398 XIV: 327–328 See 2-(1-Hexyloxyethyl)-2-devinyl infrared (IR) vibrational spectroscopy of, pyropheophorbide a (HPPH, XIV: 342–359, XIV: 366, XIV: 369 Photochlor) resonance Raman (RR) spectra of, Hp macrocycles as materials, XVII: 141–148 XIV: 375–394 2,6-diaminopyridine to obtain edge-linked as sandwich-type tetrapyrrole rare earth hemiporphyrazine polymers, complexes, XIV: 270–271 XVII: 142 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 134 FA

134 Cumulative Index to Volumes 1–25

“shish-kebab”-type hemiporphyrazine electrochemistry and spectro- electro- polymers, XVII: 142–143 chemistry, XVI: 372–375 HSCoM, XIX: 9 general solution phase properties and biosynthesis, XIX: 9 reactivities, XVI: 352–356

in MCRox1-silent structure, XIX: 16 Magnetic Circular Dichroism (MCD), − HSO4 , dipyrrinone and, VIII: 182 XVI: 363–364 HssRS, heme sensor proteins and, XV: 425–426 photophysics, XVI: 365–371 Hückel rule spectroscopies, XVI: 371–372 electron distribution in aromatic molecule theoretical treatments of electronic and, XIV: 473 properties, XVI: 357–360 hexapyrrolic expanded porphyrins and, UV-vis spectroscopy, XVI: 360 I: 519, I: 529–534 nomenclature, terminology and notation, pentapyrrolic expanded porphyrins and, XVI: 333–335 I: 513–515 potential applications and prospects, Huisgen reaction, as “click chemistry” XVI: 397–400 reaction, II: 270, II: 272–273 solid state properties Human Genome Mutation Database, electrical measurements, XVI: 392–397 erythropoietic protoporphyria and, mesophase properties, XVI: 383–389 XV: 101–102 thin film formulations, XVI: 390–392 Human globulin (HG), IV: 126 X-ray structure analyses, XVI: 375–383 Human hemopexin (HPX), XV: 226–227. structures of series of identically See also Hemopexin and cytoprotection substituted macrocycles and their isolation/purification of, XV: 252–254 UV-vis spectra in THF, 362 sequence identity (protein/DNA) of, synthesis, XVI: 336–351 XV: 230 Hybrid planar-mixed molecular Human hepatic cytochrome P450 CYP3A4, heterojunctions and OPV by vapor V: 183 deposition, X: 146–147 Human immunodeficiency virus. See HIV Hybrid porphyrin-mesoporous materials, Human serum albumin (HSA) chemical sensors and, XII: 146–148 heme-binding extracellular proteins and, Hydrazine, with meso-tetra- XV: 32 arylazuliporphyrins, nucleophilic nanoparticles, IV: 384–385 addition of, XVI: 80 protein–photosensitizer conjugates, IV: 58, Hydrogen, light-harvesting arrays for IV: 60, IV: 126–128, IV: 155, IV: 347 production of, XI: 210–211 Human Slo1 BK channel, heme sensor Hydrogen atom transfer (HAT), proteins and, XV: 423–424 manganese-oxo complexes (corrole Humidity, and capacitance-resistance variation synthesis/reactivity) and, XIV: 547–551 for chemical sensors, XII: 152–153 Hydrogen bond (HB) geometry Hybrid CMOS transistor memory, hybrid porphycenes and, VII: 364 electronics and, X: 302 THz spectroscopy and, VII: 453–454 Hybrid electronics. See Conductors/ Hydrogen bonds between cyanophenyl group semiconductors for hybrid electronics and 3,5-dialkoxyphenyl group, Hybrid nanowire transistor memory, hybrid XVIII: 13 electronics and, X: 302–303 Hydrogen bonding Hybrid phthalocyanine-tetrabenzoporphyrin and BChl mimics, I: 248–249, I: 262–263, macrocycles, synthesis and properties of I: 265, I: 269–271, I: 280–283, molecular properties I: 289 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 135 FA

Cumulative Index to Volumes 1–25 135

combinatorial chemistry of porphyrins and, Hydroxymethylbilane, XXV: 28 III: 495–502 biosynthesis, XXV: 22–27 complementary base-paired, I: 329–335 Hydroxymethylbilane (HMB), XX: 150, and dimers, I: 243–244 XX: 153, XX: 221 importance of, I: 309 Hydroxyl radical (•OH), IV: 6, IV: 412–414 ion paired, I: 335–338 Hydroxylation and organic capture of anions, VIII: 166–167 as catalyzed by cytochromes P450, pyrrole NH site as donor for, VIII: 167–168 V: 189–190 self-assembled porphyrin-fullerene of chiral basket handle porphyrins, X: 76–77 conjugates via, I: 329–338 of chiral picket fence porphyrins, C–H subpyriporphyrin and N–HN, II: 128 bond functionalization and, X: 73–74 Hydrogenobyrinic acid, XXV: 33 of chiral strapped porphyrins, X: 76 − a,c-diamide synthesis, XXV: 41–42 of ethylbenzene by Compound I(Cl ), synthesis, XXV: 40–41 X: 125–127 Hydrogenobyrinic acid a,c-diamide, XXV: 33 Hydroxyl-substituted porphyrins, Hydrogen fuel cells, XI: 215 electropolymerization of, XII: 251–263

Hydrogen peroxide (H2O2), IV: 412–413, Hydroxymethylbilane (HMB) IV: 418 and heme synthesis intermediate transport, electrochemical biosensors and, V: 206–207 XV: 8 Hydrogenases, XIX: 143 and transport of home precursors between Hydrolysis of isopropylidendioxy substituents cytosolic enzymes, XV: 11–12 (with strong acid), and hydroxy-/alkoxy-/ Hydroxyoxybenziporphyrin aryloxy-substituted phthalocyanines, bromination of, XVI: 141 III: 172 oxidation with [bis(trifluoroacetoxy)iodo] Hydroperoxide dissociation, and uncoupling in benzene, XVI: 141 catalytic cycle, V: 182 synthesis of, 136 Hydrophobicity and reprecipitation reactions, HyperChem software package, XXII: 77 XI: 194 Hyperfine shifts, VI: 10 Hydroporphyrins Hypericin, IV: 429–430 macrocyclization reactions to give, Hyponitrite complexes, XIV: 181–183 VIII: 467–470 Hypothetical tetracarbaporphyrinoids, XVI: 7 organometallic C–C coupling reactions Hypoxia induced by PDT, IV: 426, IV: and, III: 332–334 432–433, IV: 441 structural chemistry Hypoxia-inducible factor (HIF-1α), IV: bacteriochlorins, XIII: 287–288 432–433, IV: 435, IV: 440 benzochlorins, XIII: 288–289 Hypoxia-inducible factor (HIF-1β ), IV: 432 chlorins, XIII: 284–286 Hypoxic vasodilation isobacteriochlorins, XIII: 287–288 β-cys93-nitrosylated Hb crystal structure metallopheophorbides, XIII: 272–274 and, XIV: 46–48 − Hydrosilylation of C–C triple bond, X: 269–270 Fe(III)-NO2 crystal structures and, Hydroxy-/alkoxy-/aryloxy-substituted XIV: 51–54 phthalocyanines and derivatives nitrite reductase/anhydrase mechanism for examples of, III: 122–168 sensing, XIV: 48–51 spectra of, III: 235–254, III: 286 SNO mechanism for sensing, XIV: 43–46 Hydroxyazaphthalocyanine, XVIII: 276 Hydroxybenziphthalocyanines, synthesis of, I XVI: 157 123I, 123I, and 125I-labeled porphyrins, IV: 91–92 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 136 FA

136 Cumulative Index to Volumes 1–25

123I-based photosensitizers for PET and PDT, multi-linkage of surface/macrocycle and, IV: 302, IV: 303–304 X: 259–260 125 124I and I-labeled phthalocyanines, IV: 92 TPP derivatives and, X: 253–256 124I-based photosensitizers for PET and PDT, Immobilization of multicharged porphyrins IV: 299–303 into films bearing functional groups, 3-Imino-1-oxoisoindoline, XVII: 116 XII: 236–239 IDO. See Indoleamine 2,3-dioxygenase (IDO) Immobilized metal affinity chromatography Illumination, and capacitance-resistance variation (IMAC), hemopexin isolation and, for chemical sensors, XII: 152–153 XV: 253 IM862, IV: 434 Immunoglobulin G (IgG), IV: 158, IV: 160, Imaging studies, medical effects of IV: 388 water-soluble metalloporphyrins and, Immunotargeting. See Active targeting; XI: 379–380 Monoclonal antibody Imidacene, VII: 387–388 (MAb)–photosensitizer conjugates Imidazoles Impedance biosensors, V: 255–256 axial ligand bands and M(II) porphyrins, “Incomplete” aquacyanocorrinoids, binding of VII: 444 cyanide to, XXV: 93 4 1 bis-imidazole adopting (dxz,dyz) (dxy) “Incomplete” corrinoids, XXV: 87, 142–143 ground state, VII: 53–54 structural formulas of, XXV: 88 heme-imidazole model and NO signaling, “Incomplete” corrins, structural formulas of, V: 153–154 XXV: 138 Imidazole-functionalized porphyrins, Incident photon-to-photocurrent generation XVIII: 36–38 efficiency (IPCE), XII: 401 Imidazole-modified self-assembled mixed Incorporation of Pcs into organic photovoltaic monolayer of thiols, formation of devices by solution processing,

multiple layers of RuTMP(N2)2 on, X: 153–157 XVIII: 7 Indium tin oxide (ITO) Imidazolinone, and GFP-chromophore analogs chemical sensors and, XII: 141–143 of BODIPYs, VIII: 135–136 complex-based films on transparent Imidazolylcobamides, XXV: 139 electrodes of, XII: 258–259 Imidazoloporphyrin, XVI: 8 in idealized porphyrin/polyaniline Imidazolylporphyrinato zinc(II) dimers, composite, XII: 236–237 XVIII: 36 nanoparticles and, XII: 361, XII: 364 Immobilization matrices and optical sensors, poly[Co(II)-porphyrin] films and, XII: 312–314 XII: 258–259 Immobilization of complex porphyrin systems, and ZrP linkage for LBL porphyrin units, and surface functionalization of gold, XII: 236 X: 260–263 Indium, unsubstituted Pcs (UV-vis absorption Immobilization of macrocycle data) and, IX: 130 “click” coupling and, X: 265–267 Indoles/isoindoles complex porphyrin system immobilization cyanation of, XVII: 309 and, X: 260–263 monoelectronic oxidation of, XVII: coordination bond coupling and, 342–346 X: 264–265 oligomerization of, XVII: 298–302 and modulation of surface/macrocycle polymerization of, XVII: 266–267 linker, X: 256–259 substituted indoles, XVII: 274 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 137 FA

Cumulative Index to Volumes 1–25 137

Indole moieties, acyclic anion receptors and, leishmaniasis treatment by ALA or Metvix VIII: 169 (ALA methyl ester), IV: 285 Indoleamine 2,3-dioxygenase (IDO) Mycobacterium tuberculosis, IV: 284–285 bacterial TDO compared with IDO meso-phenyl-tri(N-methyl-4-pyridyl)- structure, V: 112–114 porphyrin (PTMPP), IV: 285 biological/biochemical properties of, Staphylococcus aureus, IV: 47, V: 73–75 IV: 285–286, IV: 388–389 biological functions of, V: 73 Staphylococcus epidermidis, IV: 391 catalytic properties of, V: 75–76 See also Antimicrobial PDT; Photodynamic endogenous reducing system for, V: 76–77 therapy (PDT); Photosensitizers (PS) EPR study of rlDO/rhlDO, V: 92–93 Infrared (IR) absorptions. See also heme environment of rhlDO, V: 105–107 Absorptions IDO2 properties, V: 75 BChls mimics and, I: 272–273 importance of, V: 80 conjugated porphyrin arrays and, I: 4 metabolic importance of, V: 73 and semisynthetic BChl mimics, I: 282 and metabolic pathway of L-tryptophan, Infrared (IR) vibrational spectroscopy of V: 73–74, V: 74–75 tetrapyrrole rare earth complexes mutagenesis study and rhlDO,V: 107–108 heteroleptic bis(phthalocyaninato) overall structure of IDO and rhlDO, complexes, XIV: 359–365 V: 103–106 homoleptic bis(phthalocyaninato) pathological roles of, V: 78–80 complexes, XIV: 342–359 physiological roles of, V: 77–78 homoleptic/heteroleptic bis(porphyrinato) resonance Raman spectra of rhlDO, complexes, XIV: 366, XIV: 369 V: 94–97 mixed (phthalocyaninato) (porphyrinato) and spectra of recombinant human IDO, double-decker complexes, V: 87 XIV: 365–368 Indoles, V: 114–116. See also Indoleamine phthalocyaninato/porphyrinato triple- 2,3-dioxygenase (IDO) decker complexes, XIV: 369–374 Indolizines Infrared spectroscopy/microscopy monoelectronic oxidation of, XVII: 349–355 axial ligand bands oligomerization of, XVII: 298–302 carbon monoxide, VII: 445–448 substituted indolizines, XVII: 274–275 cyanide, VII: 448 Inducible NOS (iNOS), XIX: 77, XIX: 94 dioxygen, VII: 444–445 FMN module complexed with calmodulin, imidazoles, VII: 444 structure, XIX: 97 nitric oxide, VII: 448–450 Infectious disease treatment by characteristics of, VII: 441 photosensitizers, IV: 284–286 defined, VII: 441 anionic and cationic pyropheophorbide a electrochemically induced FTIR difference derivatives, IV: 285, IV: 286 spectroscopy, VII: 463–466 burn infections, IV: 285 far-infrared (FIR) Candida albicans, IV: 74, IV: 392–393 and effect of temperature (T-derivative), Escherichia coli, IV: 47, IV: 60, IV: VII: 456–458 82–83, IV: 387 and free electron lasers (FELs), β-lactamase-enzyme-activated VII: 453–454 photosensitizer (β-LEAP), IV: 286, and metal-ligand vibrations, IV: 287 VII: 454–456 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 138 FA

138 Cumulative Index to Volumes 1–25

five-/six-coordinate M(II) porphyrins (axial Interaction parameter (J), and multifrequency ligand bands), VII: 444–450 EPR spectroscopy/reactivity of catalytic infrared microscopy/imaging intermediates, VI: 422–424 (space-resolved techniques), Interactomes, XV: 93–96 VII: 460–461 Interfaces on protein surface, and heme- main spectral ranges (overview), VII: 442 propionate side chains, V: 41, V: 43–44 mid-infrared (MIR) Interfacial electron transfer dynamics, dye- general information, VII: 442–443 sensitized solar cells and, X: 166–167 metal-sensitive bands, VII: 443 Interleukin-1 beta (IL1β), IV: 432, IV: 435 M(II)/M(III) porphyrins (redox-/ Intermediates. See Catalytic intermediates spin-state-sensitive bands), of peroxidases VII: 450–451 Intermediate-spin/high-spin porphyrin motivation and reaction-induced FTIR complexes difference spectroscopy, VII: 462–463 and axial ligands for formation of pure near-infrared (NIR) recent developments, intermediate-spin complexes, VII: 452–453 VII: 58–61 perfusion-induced approaches electronic ground states in, VII: 70–75 (stopped-flow/rapid mixing), formation of pure intermediate-spin VII: 481–482 complexes, VII: 58–70 porphyrin π-cation radicals, VII: 451–452 general considerations, VII: 57–58 pressure and heme doming modes, and porphyrin ring deformation for VII: 459–460 formation of pure intermediate-spin and pressure dependence of features, complexes, VII: 61–70 VII: 458–459 Intermolecular cyclopropanation, XXI: 180

redox-induced FTIR difference spectra Internal N4 cavity enzymes from respiratory chain, importance of, VII: 368 VII: 468–474 influence of substituents on, VII: 369–373 porphyrins/small hemoproteins, N–N distances of, VII: 369 VII: 466–468 International Space Station, QMBs and, synchrotron light (space-resolved XII: 208 techniques), VII: 461 International Union of Pure and Applied time-resolved techniques/photoinduced Chemistry (IUPAC), biosensors and, reactions, VII: 474–481 V: 205 Inner-3H form of NCP, aromaticity of NCP2H Interorganellar heme transfer vs. that of, II: 301–302 brefeldin A and, XV: 33 Inorganic arsenics methyl transfer, X: 337–338 and delivering cargo via MDVs, InPc absorption spectra, IX: 78–86 XV: 35–36 Insecticides, cytochrome P450 enzymes and, and exchanging materials between plant V: 166 organelles, XV: 36 Insects, heme uptake/detoxification in, and maintaining morphology of cristae, XV: 22–24 XV: 35 α β Integrin v 3, IV: 276 and tethering OM to ER, XV: 33–34 Intensity. See Transition energy (intensity) Intersystem crossing (kisc) Intensity-dependent refractive index, defined, XI: 9 conjugated porphyrin arrays and, I: 4 spin orbit coupling and, XI: 11 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 139 FA

Cumulative Index to Volumes 1–25 139

Intracellular peroxidases of prokaryotic origin Ir-porphyrin catalyzed reactions of diazo (class I), as classification, VI: 372 compounds with olefins and alkanes, Intramolecular CH activation of pincer-like XVIII: 374 palladium complexes, open-chain Iridium, unsubstituted Pcs (UV-vis absorption oligopyrrole systems and, VIII: 441–444 data) and, IX: 134 Intramolecular energy, cofacial porphyrin IRIS, Australian Synchrotron, VII: 441 dimers and, I: 54 Iron. See also Heme uptake mechanisms Intramolecular processes, of electron/energy in bacterial pathogens transfer, XI: 14–15 and catabolized heme in liver, XV: 300–303 Intramolecular π–π interaction, X: 190–191, FECH interaction with iron-binding X: 210, X: 212–213. See also Planar vs. proteins/transport/delivery, nonplanar porphyrins XV: 96–100 porphyrin–nanocarbon composites and, nutritional iron deficiency and heme X: 221–222 transport in mammals, XV: 26 Intravesicular monodehydroascorbate (MDA), and plasma clearance of heme by XIX: 340 hemopexin in intravascular In vitro studies, transferability to living hemolysis, XV: 299–300 systems of, VII: 408–409 reutilization of, XV: 304 In vivo, meso groups and BODIPYs, unsubstituted Pcs (UV-vis absorption data) VIII: 15–18 and, IX: 115–119 Iodide and electrode preparation, XII: 257 Iron biliverdin complexes. See also Iodine species and aziridination, importance Biomimetic iron complexes of, X: 68 and anions with 50% thermal ellipsoids, Iodobenzene, cofacial bisporphyrins held by VIII: 323–324 µ flexible chains and, XI: 59 {Fe(III)( -OEB)}2, VIII: 322–323

Iodoethenyl–metalloporphyrins, XXIII: 122 isomers of {M(III)(OEB)}2, VIII: 323 Iodophthalocyanine, XVIII: 265, XVIII: 267 oxidative formation of iron tripyrrole Iodopropyltriethoxysilane (IPTES), XII: 397 complex, VIII: 323–324 Iodorhodium(III)-TMCP, XVIII: 320 pyridine solutions and dioxygen exposure, Iodosylbenzene (PhIO), iron-oxo complexes VIII: 327–328 and, XIV: 552 and ring opening reactions of Ion paired hydrogen bonding interactions, XFe(II)(OEOP), VIII: 325–326 I: 335–338 role in heme cleavage, VIII: 321–322 Ionic liquids, microwave radiation absorbance and XFe(II)(OEOP) (high-spin, and, II: 197 five-coordinate), VIII: 326–327 Ionic self-assembly, for synthesis of self- Iron, carbon-transfer reactions, XXI: 149–169 assembled porphyrin nanostructures, cyclopropanation, XXI: 149–158 XI: 184–188 asymmetric cyclopropanation of olefins, Ion-selective electrodes (ISE). See Electrodes XXI: 155

potentiometric sensors and, XII: 200–207 D4-symmetric Halterman porphyrin

Ion-selective field effect transistors (ISFETs), (H2P*), XXI: 155 V: 254 formal olefinic C–H insertion of vinyl Iridium(III) azuliporphyrins, synthesis of, ylide compounds, XXI: 153 XVI: 85 intramolecular cyclopropanation, Iridium porphyrin complexes, XVIII: 374 XXI: 154 formation of self-assembled porphyrin mechanism for most metalloporphyrin squares, XVIII: 375 catalysts, XXI: 157 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 140 FA

140 Cumulative Index to Volumes 1–25

of olefins with EDA (ethyl diazoacetate) “crystallographic resolution of spin using iron porphyrin catalysts, isomers,” XXIV: 74 XXI: 150 four-coordinate iron(II) derivatives, protocols for asymmetric, XXI: 154 XXIV: 77–78 in situ generation trifluorodiazomethane space-filling model of, XXIV: 77 and olefin, XXI: 153 five-coordinate iron(II) derivatives, of styrene with diazoketones, XXI: 156 XXIV: 78–83 synthetically useful Büchner products, five-coordinate (porphyrinato)-iron(II) XXI: 151 derivatives, XXIV: 79–80 tandem iron-catalyzed iron coordination group geometry, cyclopropanation, XXI: 152 XXIV: 81 with various diazo compounds, iron low-spin iron(II) complexes, XXIV: 82 porphyrin-catalyzed styrene, six-coordinate iron(II) derivatives, XXI: 151 XXIV: 83–88 iron porphyrin-catalyzed carbene transfer low-spin six-coordinate complexes, reactions, XXI: 168 stereochemical parameters, olefination, XXI: 164–168 XXIV: 83 allenic esters formation, XXI: 167 four-coordinate iron(III) derivative, Fe porphyrin-catalyzed olefination XXIV: 75–77

reactions, XXI: 166 [Fe(TpivPP)(1-MeIm)2] molecule, iron porphyrin-catalyzed olefination, XXIV: 87 XXI: 164 five-coordinate iron(III) derivatives,

of ketones with EDA and PPh3 XXIV: 56–65 catalyzed by Fe(TPP)Cl, five-coordinate low-spin iron(III) XXI: 166 complexes, XXIV: 63 stoichiometric carbene transfer to olefins, high-spin iron(III) complexes, XXI: 157 XXIV: 63 X–H insertion, XXI: 158–164 five-coordinate (porphyrinato)iron(III) carbene fragments into C–H bonds derivatives, stereochemical catalyzed by Fe(TPP)Cl, parameters for XXI: 159 high-spin species with alkoxides and iron porphyrin-catalyzed carbene phenoxides ligands, XXIV: 59–60 insertion, XXI: 161 high-spin species with bridged mixed iron porphyrin-catalyzed insertion, bimetallic ligands, XXIV: 61 XXI: 163 high-spin species with bridging oxygen piperazinone and morpholinone, donor ligands, XXIV: 60–61 generation, XXI: 162 high-spin species with halides ligands, primary amines catalyzed by XXIV: 58 Fe(TPP)Cl, XXI: 161 high-spin species with nitrogen donor single EDA insertion into N–H bonds ligands, XXIV: 61 catalyzed by Fe(III) porphyrins, high-spin species with sulfur donor XXI: 160 ligands, XXIV: 61–62 stoichiometric insertion into C–H intermediate-spin species, XXIV: 62 bonds, XXI: 159 low-spin species, XXIV: 62 Iron-catalyzed cyclopropanation, X: 45 low-spin six-coordinate (porphyrinato)- Iron derivatives, transition metal derivatives, iron(II) derivatives, stereochemical XXIV: 56–88 parameters, XXIV: 84–86 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 141 FA

Cumulative Index to Volumes 1–25 141

nitrido-bridged complex, XXIV: 88 Iron(II) N-confused pyriporphyrin, oxidation (porphyrinato)iron derivatives, of, XVI: 190 XXIV: 56 Iron, nitrogen-group transfers, XXI: 250–266 six-coordinate intermediate-spin amidation/amination, XXI: 257–265 iron(III), XXIV: 75 derivatization of aryl azide substrates, six-coordinate iron(III) derivatives, XXI: 263 XXIV: 65–75 formal allylic amidation/amination of axial ligand orientations, XXIV: 71 α-methylstyrenes, XXI: 259–260 axial ligands, perpendicular of hydrocarbons and PhI=NTs, XXI: 258 orientation, XXIV: 72 intra- and intermolecular, XXI: 261–263 displacements of iron(III) atom, reaction coordinate for amidation of XXIV: 65 propene, XXI: 264 + [Fe(TMP)(1,2-Me2Im)2] cation, aziridination, XXI: 250–257 XXIV: 70 of alkenes with PhI=NTs, XXI: 251

four-coordinate iron porphyrinates, Fe(TCP)(NNC9H18), ORTEP diagram stereochemical parameters, of, XXI: 255 XXIV: 77 iron-catalyzed aziridination of olefins, intermediate-spin six-coordinate XXI: 254 (porphyrinato)iron(III) iron porphyrin-catalyzed aziridinations, derivatives, stereochemical XXI: 254 parameters for, XXIV: 76 of olefins, XXI: 253 low-spin six-coordinate organic azides, XXI: 252 (porphyrinato)iron(III) of propene with Fe(por)( =NH)(SH), derivatives, stereochemical XXI: 255 parameters for, XXIV: 66–69 sulfimidation of sulfides, XXI: 265 mixed axial ligand, low-spin species, Iron-oxo complexes XXIV: 73 catalytic applications of, XIV: 560 nonplanar iron(III) derivatives, chromium-oxo complexes (corrole XXIV: 70 synthesis/characterization), orbital splitting pattern for low-spin XIV: 560–563 iron(III), XXIV: 72 mononuclear terminal and, XIV: 556–560 six-coordinate (porphyrinato)iron(III) oxo-bridged dimers/derivatives and, derivatives, high-spin, XXIV: 74 XIV: 552–556 “Iron-dimethylurotetrahydroporphyrin.” Iron-oxo porphyrins in oxygenation reactions. see siroheme (SH) See High-valent iron-oxo porphyrins in Iron Hangman corroles, XXI: 124 oxygenation reactions Iron Hangman porphyrins, peroxide Iron oxypyriporphyrin complex, myoglobin dismutation activity of, XXI: 129–130 heme pocket and, V: 32 Iron homeostasis — bacterioferritin, XIX: 154 Iron porphyrin. See Hemoproteins biochemical studies, XIX: 155 (reconstituted with artificially created BLAST search, XIX: 154 hemes) functional studies, XIX: 156–157 See also Heme acquisition (by spectroscopic studies, XIX: 155–156 hemophores) structural studies, XIX: 157–159 1H/13C NMR spectroscopy of high-/ Iron metabolism-related disorders, low-spin ferriheme proteins and, VI: XV: 104–106 190–251. See also Ferriheme proteins b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 142 FA

142 Cumulative Index to Volumes 1–25

bis-ammine/amino ester/phosphine sulfhemins [six-coordinate monomeric complexes and, VI: 159–160 Fe(III) porphyrin complexes] bridged dimeric complexes [six-coordinate and, VI: 117 monomeric Fe(III) porphyrin Fe(IV) complexes] and, VI: 125–128 porphryin π-radicals, VI: 261–266 cytochrome oxidase/NO reductase and, porphyrins, VI: 258–261 VI: 96–102 five-coordinate diamagnetic Fe(II) cytochrome P450/chloroperoxidase and, porphyrins and, VI: 85 VI: 96 five-coordinate high-spin Fe(II) porphyrins deoxyhemoglobin/deoxymyoglobin and, and, VI: 93–106 VI: 93–96 and five-coordinate low-spin 4 1 (dxy,dyz) (dxy) ground state of low-spin porphyrins/porphycene Fe(III), iron(III) porphyrins and, VI: 179–182 VI: 161–164 five-coordinate monomeric Fe(III) porphyrin and effect of porphyrin substituents on complexes and, VI: 107–112 pattern of spin delocalization, and g-values of low-spin Fe(III) VI: 147–150 porphyrins/ferriheme proteins, Fe(I) porphyrins and, VI: 83–84 VI: 135–138 Fe(II) porphyrin π-cation radicals and, and Griffith’s three-orbital theory/data for VI: 106–107 low-spin Fe(III) porphyrins, Fe(III) VI: 134, VI: 139–147 complex of tetraphenyl-21- heme ruffling of nitrophorins/comparison oxaporphyrin [six-coordinate to other hemes, VI: 217–221 monomeric Fe(III) porphyrin high-spin Fe(III) π-cation radicals, complexes] and, VI: 123–124 VI: 251–252 complexes of mono-meso-octaethyloxa- high-spin Fe(III) porphyrins and, porphyrin/mono-meso- VI: 107–128 octaethylazaporphyrin hydroxide/fluoride complexes and, VI: 103 [six- coordinate monomeric imidazolate ligands and, VI: 152 Fe(III) porphyrin complexes] and imidazole plane orientation, and, VI: 124–125 VI: 152–159 corrole π-radicals, VI: 256–258 intermediate-spin Fe(II) porphyrins and, dioxooctaethylisobacteriochlorin VI: 85, VI: 88–93 complexes [six-coordinate intermediate-spin Fe(III) porphyrins and, monomeric Fe(III) porphyrin VI: 128–132 complexes] and, VI: 123 and kinetics of axial ligand exchange, monooxochlorin complex [six- VI: 187–188 coordinate monomeric Fe(III) and low-spin Fe(III) complexes of porphyrin complexes] and, meso-meso-linked 5,5′-bis(10,15,20- VI: 122–123 triphenylporphyrin), VI: 178–179 octaethyl-/tetraphenylchlorin [six- and low-spin Fe(III) complexes of coordinate monomeric Fe(III) N-alkylporphyrins, VI: 186 porphyrin complexes] and, and low-spin Fe(III) complexes of reduced VI: 117–121 hemes, VI: 182–185 π-cation radicals of oxophlorins, low-spin Fe(II)/low-spin Fe(II) porphyrin VI: 254–256 electron exchanges, VI: 188–190 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 143 FA

Cumulative Index to Volumes 1–25 143

low-spin Fe(III) π-cation radicals, VI: 254 and thermodynamics of axial ligation of and mixed ground state behavior of Fe(III) porphyrins, VI: 186–187 bis-cyanide complexes, VI: 164–167 two Fe(III) octaethylisobacteriochlorin bis-(pyridine) complexes of low-spin isomers [six-coordinate monomeric ferrihemes, VI: 167–174 Fe(III) porphyrin complexes] and, bis-(pyridine) complexes of VI: 121–122 oxophlorins/meso- aminopor- verdoheme analogs (OEOP) and, phyrins, VI: 174–178 VI: 104–105 mixed-ligand complexes and, VI: 160–161 Iron porphyrin complexes N-alkyl/aryl porphyrin complexes and, 13C NMR spectroscopy to determine VI: 103–104 electronic structures, VII: 15–20 N-modified macrocycle complexes and, 1H NMR spectroscopy to determine VI: 105–106 electronic structures, VII: 12–15 neutral imidazole ligands and, VI: 150–152 and axial ligands effect on ground states, nitrite reductase activity of nitrophorin 7 VII: 26–31 and, VI: 221–222 and axial ligands for formation of pure NMR investigations of high-spin forms of intermediate-spin complexes, nitrophorins from Rhodnius prolixus, VII: 58–61 VI: 196–204, to determine electronic structures (iron NMR investigations of low-spin forms of porphyrin complexes), VII: 20–22 nitrophorins from Rhodnius prolixus, effect of peripheral substituent on ground VI: 207–217 states, VII: 31–39 NMR spectroscopy of apo-nitrophorin 2, and electronic ground states in VI: 223–224 intermediate-spin complexes, VII: NMR spectroscopy of miscellaneous other 70–75 heme proteins, VI: 249–251 [Fe(MAzP)L ]+ and [Fe(OEP)L ]+, 2 2 NMR spectroscopy of nitrophorins, VII: 82–87 + VI: 190–196 and [Fe(OETPP)L2] spin crossovers NMR studies of bacterial heme between S = 3/2 and S = 1/2, VII: oxygenases, VI: 230–243 76–80 NMR studies of dynamic reactvity and [Fe(OMTPP)L ]+ and Fe(TBTXPL)L + 2 2 relationships, VI: 243–249 spin crossovers, VII: 80–82 and NMR studies of low-spin Fe(III) formation of pure intermediate-spin 2 3 porphyrins with (dxy) (dxz,dyz) complexes, VII: 58–70 ground state, VI: 147–161 general considerations, VII: 57–58 NMR study of high-/low-spin mammalian and Fe(IV) porphyrins with Fe(IV)=O heme oxygenases, VI: 227–230 bond, VII: 124–127 pH titration of high-spin forms of and Fe(IV) porphyrins without Fe(IV)=O nitrophorins from Rhodnius prolixus, bond, VII: 127–129 VI: 204–207 low-spin Fe(III) porphyrin complexes six-coordinate diamagnetic Fe(II) (general considerations), VII: 22–26 porphyrins and, VI: 84–87 one-electron-oxidized products 4 1 six-coordinate monomeric Fe(III) Fe(III) with (dxz, dyz) (dxy) electrons porphyrin complexes and, and, VII: 117–124 VI: 112–116 Fe(III) porphyrins spin-admixed/intermediate-spin Fe(III) general information and, π-cation radicals, VI: 253–254 VII: 108–109 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 144 FA

144 Cumulative Index to Volumes 1–25

high-spin cation radicals and, diastereoselectivity, XXI: 328 VII: 109–113 Halterman porphyrin, sulfonation of, low-spin cation radicals and, XXI: 330 VII: 115–124 iron porphyrin-catalyzed alkene mixed high-spin/intermediate-spin cyclopropanations, XXI: 329 cation radicals and, trifluoromethyl-substituted cyclopropanes, VII: 114–115 synthesis of, XXI: 330 2 3 with (dxy) (dxz, dyz) electrons and, Iron protoporphyrin IX (FePPIX), structure of, VII: 116–117 XIV: 469–470 orbital interactions to determine electronic Iron-regulated surface determinants (Isd) structures, VII: 7–11 and gram-positive lipoprotein network in and porphyrin ring deformation for heme uptake, XV: 367–369 formation of pure intermediate-spin heme specificity/affinity/dynamics and, complexes, VII: 61–70 XV: 372–373 ruffled porphyrin ring deformation in, and heme uptake in gram-negative bacteria, VII: 39–45 XV: 19 saddled deformation in, VII: 45–47 and heme uptake in gram-positive bacteria, and solvent effects on electronic ground XV: 20 states, VII: 47–53 IRP2, heme sensor proteins and, XV: 420 spin crossover IrPc absorption spectra, IX: 65–68 general considerations, VII: 75–76 Irr, heme sensor proteins and, XV: 420–421 structural consequences and, Irradiance from sun, XI: 8 VII: 87–91 Ischemia/reperfusion conditions, medical and spin crossovers effects of water-soluble between S = 3/2 and S = 5/2 metalloporphyrins and, XI: 371–373 monoaqua complexes, VII: 94–95 Isobutyryl-CoA mutase (ICM), XXV: 187 monoaqua complexes of saddled Isocyclic ring formation, XX: 12–13 porphyrins, VII: 91–94 organisms containing both types of in monoimidazole complexes, cyclases, XX: 20–21 [Fe(OETPP)L]+, VII: 101–108 oxygen-dependent, XX: 13–17 [Fe(TMP)L]+ and [Fe(TMTMP)L]+, catalytic mechanism of aerobic isocyclic VII: 96–101 ring formation, XX: 15–17 general information, VII: 95–96 identification of potential cyclase genes, spin states of, VII: 5–6 XX: 13–14 two-electron-oxidized products membrane bound cyclase subunit, general considerations of, VII: 129 XX: 14–15 Fe(III) N-oxides, VII: 134 occurrence, XX: 13 Fe(III) porphyrin dications, VII: 134 oxygen-independent, XX: 17–20 Fe(V) porphyrins, VII: 134 BchE protein, XX: 17–18 oxoiron(IV) cation radicals, identification of genes, XX: 17 VII: 130–134 occurrence, XX: 17 Iron porphyrin-estradiol conjugate, structure proposed catalytic mechanism of, of, XXI: 384 XX: 18–20 Iron porphyrins, XXI: 327–333 potential additional functions of cyclase aryldiazomethanes undergoing genes, XX: 21 cyclopropanation, XXI: 332 Isobacteriochlorinato-Zn(II)(py), structure of, chiral Halterman iron porphyrin, XXI: 329 XVII: 38 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 145 FA

Cumulative Index to Volumes 1–25 145

Isobacteriochlorin bis(trifluoroacetate) ester, Isomers XVII: 69 diporphyrins and, I: 90 Isobacteriochlorins, XVII: 4–5 ethynyl-conjugated porphyrin arrays and, optical properties of, XVII: 6–9 I: 7 planar/non-planar, XVII: 5 face-to-edge/face-to-face arrangements of, Soret band of, XVII: 7 I: 146 synthesis (see also bacteriochlorins/ mixed pyrroles and, III: 491–492 isobacteriochlorins, synthesis) phthalocyanine libraries and, III: 517–518 one-step nickel, XVII: 13–14 self-sorting systems from meso-meso- UV-vis spectra comparison XVII: 6 linked diporphyrins and, I: 108 Isobacteriochlorins, II: 194, IV: 5, Isomers of heme-nitrosyls

XI: 282–283 Fe(III)(porphyrin)(NO)(NO2) complexes frontier molecular orbitals of, VI: 49 and, XIV: 180–181 metalloporphyrin structure/electron five-coordinate Fe(II)(porphyrin)(NO) configurations and, VI: 10–11, complexes and, XIV: 179–180 VI: 14–16 six-coordinate Ru(III)(porphyrin)(L)(NO) structural chemistry of, XIII: 287–288 complexes and, XIV: 177–179 Isocarbacorrole, synthesis and metalation of, Isomers of porphyrin. See Porphyrin isomers XVI: 306 Isomeric zinc(II) isobacteriochlorin tetraols, Isoelectric-Dalton (ISO-DALT), XV: 280–281 XVII: 54 Isoenzymes, plant peroxidases and, VI: 372 Isooxazolidine-fused chlorin, II: 262–263 Isoindole precursors Isoporphycene, XVI: 25 TBPs and TNPs synthesis as skeletal isomer of porphyrin, II: 296–297 oxidative method and, II: 8–19 Isoporphycene derivatives retro-Diels-Alder method and, II: cis/trans tautomeric forms of, VII: 376–378 19–44 electronic absorption data of, VII: 383 and use of soluble, II: 44–55 electronic absorption spectra of, VII: Isoindole units of Pcs, IX: 3 390–392 Isoindoles, XIII: 37–41 formulas of most stable tautomeric form of, masked, XIII: 49–50 VII: 362 regular porphyrin synthesis and, Isoporphyrin, XVI: 270 XIII: 46–49 Isopropylidene groups, and porphyrin analogs template co-pyrolysis and, XIII: 41–46 with exocyclic double bonds, Isolable meso-substituted hybrids, synthesis of, XIII: 237–238 XVI: 311 Isothiocyanate-substituted phthalocyanines, Isolated chlorophylls. See Chlorophylls (Chls) structures of, XVIII: 270 (isolated), structural chemistry Isotopically substituted macrocycles, Isolated α-H ruthenium carbene complexes, XXIII: 58–59 XXI: 183 isotopologs, XXIII: 58–59 Isomerization processes, XXIII: 11–17 isotopomers, XXIII: 58–59 evolution of terminology, XXIII: 13 Isoquatyrin, XVI: 8 linear oligopyrromethanes, XXIII: 13–14 IUPAC nomenclature for porphyrin core, reversible or irreversible reaction, XXIII: XXIII: 91 11–13 Iron porphyrins, crowned scrambling processes, XXIII: 16–17 (metallo)porphyrins with XXIV spiro intermediates in porphyrinogen aza-crown-capped iron(III) porphyrin, rearrangements, XXIII: 14–15 XXIV: 200 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 146 FA

146 Cumulative Index to Volumes 1–25

capped iron(II) porphyrin which binds spectroscopic (ESR) cytochrome c 2-aminoethanol and CO, oxidase model, XXIV: 206 XXIV: 191 stacked double macrocyclic iron(II) chiral bis-binaphthyl crowned iron(III) porphyrin, structure of, porphyrin, XXIV: 190 XXIV: 188 cobalt(III) porphyrin which binds KCN, substituted iron(III) porphyrin, XXIV: 207 XXIV: 199 cobalt(III) porphyrin which binds synthesis of iron(III) KSCN, XXIV: 208 porphyrin-copper(II) cyclam cyclam-capped iron(II) porphyrin, complex, XXIV: 189 XXIV: 192 tetrakis-crown ether iron(III) porphyrin, cyclophane-capped bromo iron(III) XXIV: 204 octamethylporphyrin, XXIV: 189 cyclophane-capped bromo iron(III) J octamethylporphyrin as Jablonski diagram, photophysical processes cytochrome P450 model system, after light absorption, VII: 268 XXIV: 188 Jacobi’s Sonogashira coupling–sulfide cytochrome c oxidase model contraction approach leading to corrins, compounds, XXIV: 195–196 XXV: 298–300 cytochrome c oxidase resting state B,D tetrahydrocorrins as byproducts of models, XXIV: 197 synthesis of bacteriochlorins, diaza 18-crown-6 capped cobalt XXV: 300 porphyrins, XXIV: 206 formation of amidine structure, XXV: 298 di-cobalt complex, XXIV: 204 synthesis of meso-substituted secocorrins, existing equilibria and superoxide XXV: 299 reaction of iron(II) porphyrin in J-aggregates, VII: 150–151 DMSO, XXIV: 203 doped polypyrrole/polythiophene films functional cytochrome c oxidase model, and, XII: 234 XXIV: 205 LBL deposition and, XII: 136–137 iron(III) porphyrin used as oxidation and UV spectral changes of acyclic anion catalyst, XXIV: 200 receptors, VIII: 225 isomeric low-spin end-on iron(II) J-aggregate spectroscopic bands superoxo and high-spin side-on octaethylporphyrins, fully synthetic iron(III) peroxo porphyrin, chlorophylls and, XI: 284 XXIV: 201 self-assembled TPPS nanostructures and, myoglobin model compounds, XI: 195–196 XXIV: 192 J allylic and benzylic coupling constants for N-methylated and S-methylated selected olefinic and aromatic P450cam active site analogs, structures, XVI: 23 XXIV: 199 oxygen binding site of cytochrome c K

oxidase: iron(II) porphyrin, K2Pc absorption spectra, IX: 17–21 XXIV: 192 Karenia mikimotoi, and determination of P450 cam active site analogs, XXIV: 198 absolute configurations of natural “proximal,” intermetallic face, products, VII: 233 XXIV: 205 Karlsruhe Synchroton (ANKA), I: 263 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 147 FA

Cumulative Index to Volumes 1–25 147

Kasha’s rule, XI: 9 as component of superfamily of animal KatG. See Catalase-peroxidases (KatGs) peroxidase, VI: 430 Kelvin probe, contact potential transducers resonance raman (RR) frequencies and, and, XII: 160–162 VI: 434–436 Kemp’s triacid, XXI: 114 Ladder geometry of 1D networks, Keto-products as meso-substituted porphyrins, coordination bonds for porphyrin-based XIII: 204 tectons, XIII: 311–312 Ketopyrrole complexes as analogs, BODIPYs Langmuir-Blodgett (LB)/Langmuir-Schaefer and, VIII: 143–144 (LS) films Ketopyrroles, and syntheses of unsymmetrical from achiral porphyrin derivatives, BODIPYs, VIII: 12 XII: 134–135 Killer beacons, IV: 394 and covalently linked amidophenyl- Kinase autophosphorylation, XV: 133–134 substituted porphyrin amphiphiles, Kinases of heme sensor output domains, XII: 130

XV: 125 and detection of gaseous NO2, XII: 131 Kinetic behavior and formation of zinc alkylamide- of ligand binding, V: 9 porphyrin derivatives, XII: 134 and photooxidation of Compound II with and meso-disubstituted porphyrins with ferric enzyme, V: 180 polar/hydrophilic groups, steady-state kinetics/uncoupling in catalytic XII: 129–130, XII: 129–130 cycle, V: 181–182 porphyrin with calix[8]arene-carboxylic Kinetic isotope effect (KIE) ratio, X: 122 acid derivative, XII: 131–132 manganese-oxo complexes (corrole porphyrins with hydrophobic carbon synthesis/reactivity) and, XIV: 550 chains/nitro- or amino groups, Kinetic mechanisms of FECH, XV: 87–90 XII: 131, XII: 133–134 Kirkwood model, and natural chlorophyll stability of, XII: 127–128 a/bacteriochlorophyll a and derivatives, Langmuir-Blodgett layers, as biomimetic VII: 180 membrane, V: 230–231 1,3,5,6-tetrastyryl-BODIPY dyes and, Lanthanide and actinide derivatives, VIII: 59–61 metalloporphyrin derivatives, 3,5-styryl-BODIPY dyes and, VIII: 52–59 XXIV: 125–126 Kohn-Sham (DFT-KS) orbitals, I: 314 Lanthanide elements absorption spectra, Kryptopyrrole, XVII: 268 IX: 28–37 Kuhn’s dissymmetry ratio, XXIII: 400 Lanthanide porphyrin complexes (group C), Kynurenine (Kyn) metabolic pathway, XVIII: 376–402 IDO/TDO and, V: 73 electron configuration of outer subshells of, XVIII: 378 L luminescence properties of lanthanides and, 21,21′-Linked NFTPP dimer, synthesis and XVIII: 376 ring-opening reaction of, II: 344, II: 345 synthesis of heterometal binuclear dyads 7Li (lithium-7), IV: 192 containing Yb, Zn, Pd, and Pt, Lactobacilus plantarum, XI: 305 XVIII: 389 Lactoferrin, and bacterial acquisition of iron, synthesis of lanthanide chelate complexes VI: 340–341 of zinc and copper porphyrins, Lactoperoxidase (LPO) XVIII: 391 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 148 FA

148 Cumulative Index to Volumes 1–25

synthesis of lanthanide complexes, Leishmania infantum, and heme/hemoglobin XVIII: 387 uptake in trypanosomatids, XV: 22 synthesis of tetra-meso-arylporphyrin Leishmania major, heme biosynthesis and, bearing diethyl malonate moiety, XV: 163 XVIII: 382 Leishmania major peroxidase structure (LmP), synthetic pathway for preparation of XIX: 66 double- and triple-decker, Lewis acidity, and determination of absolute XVIII: 379 configurations of natural products, trivalent ytterbium, XVIII: 400 VII: 238 yields of double- and triple-decker supramolecular porphyrin complexes and, structures, XVIII: 379 X: 215–216, X: 220 Lanthanide porphyrins, XXIII: 64 LH2 protein of purple photosynthetic bacteria, triple-decker sandwich complexes, XI: 228 XXIII: 64–67 Li(I) monobenziphthalocyanine, crystal Lanthanide tetraphenylporphyrin complexes, structure of, II: 165 infrared electroluminescence of, LiHPc absorption spectra, IX: 17–21 XVIII: 388 LiPc absorption spectra, IX: 17–21

Lanthanum derivative, XXIV: 20 Li2Pc/LiHPc/LiPc/Na2Pc/K2Pc absorption Laser flash photolysis (LFP) spectra, IX: 17–21 manganese-oxo complexes (corrole Library of compounds. See Combinatorial synthesis/reactivity) and, XIV: 537 chemistry of porphyrins

mononuclear terminal oxo corroles/ Lifetimes (τΤ) corrolazines and, XIV: 557 basic photophysical parameters of, Lasers, singlet-singlet absorption and, XI: 9–10 VII: 399–401 Layer-by-layer (LbL) carboxylated derivatives and, VII: 316–317

assembly MPc(SO3)mix complexes (sulfonated defined, V: 297 derivatives) and, VII: 315–316

as molecular self-assembly, V: 226–229 MPc(SO3)n complexes (sulfonated deposition derivatives) and, VII: 316 oppositely charged adsorbates and, quaternized derivatives and, VII: 317–318 XII: 136 Ligand binding. See Heme proteins as gas strategy of, XII: 136–138 sensors LC/ESI-MS/MS technology, and Mn peroxidases (plant/fungal/bacterial porphyrins in plasma/tissues, superfamily) and, VI: 403–410 XI: 350–351, XI: 353 Ligand selectivity of H-NOX domains, LC3-I protein lipidation, IV: 416–418 XV: 125, XV: 131–132 Lead poisoning, XV: 180 and H-NOX regulation of output domains, Lead, unsubstituted Pcs (UV-vis absorption XV: 132–135 data) and, IX: 134 Ligands Lectins, IV: 133, IV: 265, IV: 270 amino-/hydroxy-/vinyl-substituted See also Galectins porphyrins and, XII: 256 Legionella pheumophila, H-NOX and ligand aryl-amination and, III: 391–393 selectivity, XV: 131–132 axial, UV-vis absorption data of sub-/super- “Lego-type” key-hole organization principle, Pcs and, IX: 101. See also Dipyrrins XXII: 119 from biliverdin/bilirubin in preparation of Leishmania donovani, and heme/hemoglobin open-chain oligopyrroles, uptake in trypanosomatids, XV: 21–22 VIII: 361–362 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 149 FA

Cumulative Index to Volumes 1–25 149

and electropolymerization of amino-/ self-assembled porphyrin nanostructures hydroxy-/vinyl-substituted and, XI: 210–211 porphyrins, XII: 251–254 and water-splitting nanodevice for solar and diesters of protoheme IX in hydrogen production, XI: 209 apomyoglobin, V: 13 Light-harvesting chlorophyll-binding importance in synthesis of dipyrrinato complexes (LHC), XX: 229 complexes, VIII: 247 Light-harvesting complex 2 (LH2), and kinetic/thermodynamic behavior of, V: 9 spectra of natural chlorophyll meso-amination and, III: 380 a/bacteriochlorophyll a and derivatives, metal-ligand vibrations and, VII: 454–456 VII: 185–191 metallocenes and, III: 446 Light-harvesting complexes. See also N-heterocyclic carbenes as, III: 451 Self-assembled porphyrin arrays nitrous oxide for manganese-substituted and basics of photosynthetic bacteria, hemoproteins, V: 25 I: 223–228

O2 binding and 2-/4-position vinyl groups, crystal structure of, I: 2–4 V: 8 importance of chlorosome for, I: 299 palladium-catalyzed C-C reactions and, Light-harvesting, improving, XVIII: 109 III: 369–370, III: 372 Lignin peroxidase (LiP), XIX: 49, palladium complexes of bidentate nitrogen XIX: 72–73 donor, III: 372–373 Lindsey method porphyrazines and, III: 468 synthesis of meso-arylsubstituted rebinding and light-induced FTIR [14]triphyrin(2.1.1) using modified, difference spectroscopy, II: 34, II: 40 VII: 475–476 synthesis of meso-tetraarylporphyrin using, rebinding in cytochrome c oxidase, II: 34 VII: 476–479 a ‘thermodynamic nightmare’, II: 135 ring skeletal structures of tetrapyrrole Linear multi-porphyrin arrays ligands, VIII: 294–295 and bridging ethyne in ground/excited and solvent effects of natural chlorophylls, states, I: 9–10 XI: 235 chiroptical sensing of asymmetric tetradentate porphyrazine, III: 471 hydrocarbons, I: 24 zinc porphyrins and, III: 454 Glaser-Hay coupling reaction making Ligands from biliverdin/bilirubin butadiyne-linked porphyrin (tetrapyrroles), and preparation of oligomers, I: 11 open-chain oligopyrrole systems, meso-to-meso ethyne-bridged linkage, I: 8 VIII: 361–362 one-dimension linear (ZN and TN arrays), Ligand-to-metal charge transfer (LMCT) I: 443–448 transitions, between metal/ring symmetrical tridecyl substituents and, I: 16 π orbitals, XIV: 479 TPA and, I: 18–21 and open-shell substituted transition-metal Linear oligoenes, as light-harvesting pigments, phthalocyanines, III: 283 XI: 228 Ligation Linear one-dimensional porphyrin arrays, (diastereomeric) of BChls, I: 231–238 I: 458 Front/back face, I: 234 Linearly extended porphyrins Light-harvesting arrays for hydrogen carbonyl group condensations for production annelation of, XIII: 86–88 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 150 FA

150 Cumulative Index to Volumes 1–25

cycloaddition reactions for annelation of, Linkers in conjugates, IV: 164–169 XIII: 75–79 conjugation conditions, summary, electrocyclic reactions for annelation of, IV: 182–185 XIII: 73–75 dextran, IV: 153–155, IV: 166–167 free-radical cyclizations for annelation of, multiplying units, IV: 330–331, IV: 335, XIII: 88–90 IV: 342, IV: 369, IV: 374 modification of, XIII: 90–94 polyglutamic acid (PGA), IV: 169, olefin metathesis for annelation of, IV: 296, IV: 337–338 XIII: 85–86 polylysine, IV: 167–168, IV: 170, pericyclic reactions for annelation of, IV: 338–339 XIII: 73 polymeric linkers, overview, IV: 164, Soret bands and, XIII: 7 IV: 335 sulfolenopyrroles/sulfolenoporphyrins for polyvinyl alcohol (PVA), IV: 153–155, annelation of, XIII: 79–85 IV: 164–166, IV: 335–337 synthesis by template condensation sulfo-m-maleimidobenzoyl-N- cross-condensations, XIII: 31–34 hydroxysuccinimide ester (SMBS), dibenzopropentdyopents in template IV: 165–166 condensations, XIII: 34–37 See also Antibody conjugation with early methods by photosensitizers; Conjugates; Hellberger/Linstead/Vogler, Dendrimers XIII: 16–19 Linstead method of TBP synthesis, history, XIII: 12–15 XIII: 18–19 phthalocyanine-mimetic, XIII: 19–31 LiPc thin-films, XVIII: 216, XVIII: 218, synthesis from isoindoles XVIII: 224–226 general information, XIII: 37–41 as-prepared, oxidized, and re-reduced on in regular porphyrin synthesis, ITO XIII: 46–49 XPS, XVIII: 226 template co-pyrolysis, XIII: 41–46 XRD patterns, XVIII: 219 synthesis from masked isoindoles, crystallinity of, XVIII: 230 XIII: 49–50 cyclic voltammogram on ITO, XVIII: 224 synthesis from pyrrolic precursors, of α-form of, XVIII: 216 XIII: 37 in-situ UV-vis-NIR spectrum, XVIII: 225 synthesis via DHI derivatives Lipid-based delivery systems (LBDS), 4,7-DHI motif, XIII: 63–68 nanoparticles and, XII: 356 6,7-DHI motif, XIII: 60–63 Lipophilic conjugates, XVIII: 294 DHI synthons, XIII: 69–73 Lipophilicity general information, XIII: 60 partition coefficient between n-octanol/

synthesis via THI derivatives water, POW, XI: 347–348 process, XIII: 53–60 and physicochemical properties of SOD sources, XIII: 50–53 mimics, XI: 311–314 Linewidths. See Nuclear relaxation/linewidths Liposomes, as biomimetic membrane, V: 230, Linkage, covalently linked conjugates and, IV: 354, IV: 363–366 I: 146 chlorins in, IV: 34 Linkage between CNT/macrocycle: π–π 2,3-dihydro-5,15-di(3,5- interaction, and noncovalent linkage of dihydroxyphenyl)porphyrin, IV: 41 carbon nanotubes, X: 289–292 as drug carrier systems, IV: 124, IV: 329 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 151 FA

Cumulative Index to Volumes 1–25 151

naphthalocyanines (NPc) in, IV: 87, IV: 89 very low density lipoprotein (VLDL), phosphatidylcholine and phosphatidic acid IV: 126 (PC–PA) liposomes, IV: 366 Low-density lipoprotein-related receptor phosphatidylcholine and (LRP1), HPX and, XV: 254 phosphatidylglycerol (PC–PG) Lower base 5,6-dimethylbenzimidazole liposomes, IV: 366 (DMB) synthesis, XXV: 66–67 phthalocyanines in, IV: 73 L-threonine phosphate, XXV: 63 polycationic liposomes (PCL), IV: 363 Lowest unoccupied molecular orbital (LUMO) stratum corneum lipids liposomes (SCLL), energy IV: 364–365 dye-sensitized solar cells and, X: 157, structure and properties, IV: 354, IV: 363 X: 161 See also Micelles; Passive targeting effects of splitting, XIV: 470–471 Liquid crystalline mesophase, β-substitution in and historical aspects of porphyrinoid porphyrins and, II: 105 optical spectroscopy, XIV: 466 Liquid crystals of phthalocyanines MCD spectra and, VII: 392–397 abbreviations for, XII: 1–2 and origin of intensity of absorption, explanatory figure for molecular structure, XIV: 476–477 XII: 3 pentapyrrolic expanded porphyrins and, Liquid crystal porphyrins, melt casting I: 517 between two conductive ITO glass structural modification in Pcs and OPV by electrodes, XVIII: 73 vapor deposition and, X: 148–149 Liquid crystals of related compounds (not supramolecular dyads and, I: 314–315 Pc/Por) trends between calculated parameters/ Listeria monocytogens observed properties, XIV: 515–519 and gram-positive cell wall during bacterial Low-spin cation radicals, VII: 115–124 heme uptake, XV: 360 Low-spin complexes with rare electronic and gram-positive lipoprotein network in ground state 4 1 heme uptake, XV: 369 bis-imidazole adopting (dxz,dyz) (dxy) Lithium, unsubstituted Pcs (UV-vis absorption ground state, VII: 53–54 data) and, IX: 103 bis-tert-butylisocyanide adopting 2 3 Localized sextets, Clar’s (dxy) (dxz,dyz) ground state, aromaticity and, XIII: 4–5 VII: 54–57 incompletely annelated extended Low-spin ferriheme proteins, effect of axial porphyrins and, XIII: 9 ligand plane orientation on, VI: 50–55 Long-distance charge separation reactions, Low-spin Fe(III) porphyrin complexes ferrocene-porphyrin-fullerene and axial ligands effect on ground states, composites and, I: 11–12 VII: 26–31 Low density lipoprotein (LDL) bis-ammine/amino ester/phosphine benzoporphyrin derivative monoacid ring A complexes and, VI: 159–160 (BPD-MA) complex, IV: 126 effect of peripheral substituent on ground

chlorin e6 conjugates, IV: 345 states, VII: 31–39 covalent conjugation with photosensitizers, effect of porphyrin substituents on pattern IV: 151–152, IV: 156–157, IV: 345 of spin delocalization, VI: 147–150 hematoporphyrin (HP) conjugates, IV: 345 general considerations, VII: 22–26 noncovalent conjugation with and Griffith’s three-orbital theory/data for photosensitizers, IV: 125–127, low-spin iron(III) porphyrins, IV: 146, IV: 344–345 VI: 134, VI: 139–147 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 152 FA

152 Cumulative Index to Volumes 1–25

and g-values of low-spin Fe(III) nanoparticle–photosensitizer conjugates, porphyrins/ferriheme proteins, IV: 36, IV: 306, IV: 386 VI: 135–138 PEG-porphyrins, IV: 368 imidazolate ligands and, VI: 152 peptide–photosensitizer conjugates, and imidazole plane orientation, IV: 278–279, IV: 343, IV: 386 VI: 152–159 phthalocyanines (Pc), IV: 78, IV: 83, mixed-ligand complexes and, VI: 160–161 IV: 145, IV: 279–280 neutral imidazole ligands and, VI: 150–152 protoporphyrin-IX (PPIX), IV: 371 ruffled porphyrin ring deformation in, SMA-ZnPpIX micelles, IV: 383

VII: 39–45 tetravinyl-MPc(VS)4, IV: 70 saddled deformation in, VII: 45–47 TPP conjugates, IV: 144

and solvent effects on electronic ground Lysosomal cytochrome b561 (LCytb), states, VII: 47–53 XIX: 358–359 Low-temperature spectroscopy, of porphyrin electron acceptor for, XIX: 359 isomers, VII: 397–399 L-Tryptophan (Trp). See Tryptophan 2,3- M dioxygenase (TDO); Tryptophan 2′ (2-Methylmalonyl)-cobalamin, XXV: 155 catabolism (heme dioxygenases) 2-Methyl-1,3-cyclopentadiene, XVI: 23 Luminescence. See also Oxygen sensors, 2-Methyl-5,10,15,20-tetraphenylporphyrin, porphyrins/related compounds as optical NH tautomerization of, XVI: 24 films and, XII: 262–263 3-Methylpyrrole, XVI: 23 Luminescent markers, II: 2 5-Membered E-rings (semisynthetic Luminescent properties, of rhodamine- chlorophylls), XI: 266–267 phthalocyanine conjugates, III: 90–91 6-Membered E-rings (semisynthetic LUMO (egx, egy) transitions among, II: 2 chlorophylls), XI: 267–271 Lung cancer and olfaction, XII: 208–209 9-Methylphenanthrene, XVI: 23 Lung injuries, medical effects of water-soluble Meso-(1-anthryl)porphyrins, II: 60, II: 62 metalloporphyrins and, XI: 372–374 Meso-(2-iodophenyl)porphyrin, intramolecular Lung radioprotection, medical effects of cyclization of, II: 210 water-soluble metalloporphyrins, Meso-(4-methylphenyl)prophyrin, microwave- XI: 376–378 assisted synthesis of, II: 200 LURE (France), VII: 441 Meso-(9-anthryl)porphyrins, II: 60, II: 62 Lutetium, unsubstituted Pcs (UV-vis Meso-alkyl TBTAP, synthesis of, XVI: 342 absorption data) and, IX: 136 Meso-allyl porphyrins, Ruthenium-catalyzed Lutex, IV: 256, IV: 263–264, IV: 410–411 C-C coupling reactions and, III: See also Texaphyrins 353–354 LY294002, IV: 437–438 Meso-alkoxyphenylporphyrins, synthesis using Lysosome targeting by photosensitizers, microwave irradiation, II: 201 IV: 410–411 Meso-alkoxy-substituted TBP, synthesis of, amino group-appended polystyrene II: 5 microspheres, IV: 366 Meso-alkylidenyl corroles, and porphyrins antibody fragment–photosensitizer with double bonds at meso positions, conjugates, IV: 170 XIII: 247–248 HPPH–carbohydrate conjugates, IV: 36, Meso-alkylidenyl porphodimethenes, and IV: 271–272 porphyrins with double bonds at meso

mono-L-aspartyl chlorin e6, IV: 386 positions, XIII: 246–247 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 153 FA

Cumulative Index to Volumes 1–25 153

Meso-alkylidenyl sapphyrins Meso-di-substituted TBPs, electronic and porphyrins with double bonds at meso absorption maxima of, XIII: 105–107 positions, XIII: 243–246 Meso-etheration/hydroxylation (C–O synthesis of dithia analog of, II: 177–178 coupling), palladium-catalyzed, III: Meso-amination (C–N coupling), 404–413 palladium-catalyzed, III: 379–384 Meso-ethynylated porphyrins, I: 78 Meso-aromatic substituents on BODIPY core Meso-formylporphyrins, as precursors to and fluorescence control via photoinduced 1,3-dipole moiety, II: 267, II: 269 electron transfer, VIII: 18–24 Meso-octamethylcalix[4]pyrrole, XVIII: 143 general characteristics of, VIII: 15–18 Meso-phenyl derivatives conversion to Meso-aryl substituted [14]subporphyrin(1.1.1), palladium and platinum analogs, II: 34 XVI: 346 Meso-aryl substituted [14]triphyrin(2.1.1) Meso-phenyl hybrids, synthesis using modified Lindsey method and synthesis of, phthalimide, urea, and phenyl acetic II: 34, II: 40 acid under conventional or microwave molecular shape of, II: 34 heating, XVI: 347 Meso-arylporphyrins, II: 194 Meso-phenyl TBTAP, synthesis of, XVI: 343 Meso-borylation (C–B coupling), Meso-substituted porphyrins, rhodium palladium-catalyzed, III: 374–377 complexes of, XVIII: 317 Meso-borylporphyrins, II: 60 Meso-substituted TNTAPs, synthesis of, Meso-carboxyarylethynyl groups, porphyrins XVI: 344 anchored through, XVIII: 89–94 Meso-tetrakis[4-(3′-phosphonopropoxy)- substitution pattern and solar cell phenyl]porphyrin performances of fibers based on, XVIII: 30 meso-carboxyphenylporphyrins, formation of molecular wires using, XVIII: 87 XVIII: 31 Meso-carboxyarylethynylporphyrins, Meso-tetra-arylazuliporphyrins XVIII: 94 with copper(II) salts, oxidative metalation solar cell performances of, XVIII: 94 of, XVI: 86 Meso-carboxyarylethynylporphyrins, synthesis under Lindsey-type reaction XVIII: 92 conditions, XVI: 70 solar cell performances of, XVIII: 93 Meso-tetraarylbacteriochlorins, Meso-carboxy groups, porphyrins anchored functionalization of, XVII: 55–58 through, XVIII: 95–97 Meso-tetra-arylbenziporphyrins Meso-carboxyphenylethynylporphyrins, regioselective pyridination of, XVI: 107 XVIII: 91 selected proton NMR data for, XVI: 104 solar cell performances of, XVIII: 91 synthesis from benzene dicarbinols, Meso-carboxyphenyl groups, porphyrins XVI: 102 anchored through, XVIII: 86–89 synthesis of palladium(II) and platinum(II) Meso-carboxyphenylporphyrins, solar cell organometallic complexes of, performances of, XVIII: 87, XVIII: 89 XVI: 108 Meso-chlorinated complexes, XXI: 88 Meso-tetraaryl-derived bacteriochlorins, Meso-diethynylporphyrins, XVIII: 95 XVII: 52 solar cell performances of, XVIII: 95 Meso-tetra-aryldimethoxybenziporphyrins, Meso-disubstituted pyriporphyrin, synthesis proton NMR chemical shifts for, and protonation of, XVI: 194 XVI: 114 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 154 FA

154 Cumulative Index to Volumes 1–25

Meso-tetra-aryloxybenziporphyrins, synthesis Meso–meso-linked oligoporphyrin

of, XVI: 128 bis-malonates with C60, Bingel reaction Meso-tetra-aryl-p-benziporphyrins, synthesis of, I: 89–90 and metalation of, XVI: 158 Meso–meso-linked porphyrin array. See also Meso-tetra-arylporphyrins, synthesis of, Photophysical properties of porphyrin XVI: 18 arrays Meso-tetra-arylpyriporphyrin, synthesis, linear Zn(II) and, I: 441 protonation and metalation of, self-sorting systems from meso-meso- XVI: 187 linked diporphyrins, I: 101–110 Meso-tetraaryltetraolbacteriochlorins, synthesis of, I: 5 XVII: 51 Meso-nitrogen atoms, and transition-metal Meso-tetraaryltetraonebacteriochlorins, optical alkoxy-substituted phthalocyanines, properties of, XVII: 55 III: 169 Meso-tetramethylisobacteriochlorinato-Ni(II), Meso-octaaryl-bisporphyrins, chiral structure of, XVII: 14 β-pyrrolic-linked, II: 222, II: 224 Meso-tetraphenylbacteriochlorin, UV-vis data Meso-pentafluorophenyl-extended porphyrins, of, XVII: 53 II: 39, II: 44 Meso-tetraphenyl-2,3-dihydroxy- Meso-phenyl-tri(N-methyl-4-pyridyl)porphyrin bacteriochlorin, UV-vis data of, (PTMPP), IV: 285 XVII: 53 Meso-phosphoration (C–P coupling), Meso-tetraphenyl-2-oxa-3,3-diisopropyl-12,13- III: 417–421 cis-dihydroxybacteriochlorin, UV-vis Meso-pyridyl substituted porphyrins, data of, XVII: 53 XXII: 120 Meso-tetraphenyl-2-oxa-3-hydroxy-3- chemical structure, abbreviation, and isopropyl-12,13-cis- positions of meso-substituents for, dihydroxybacteriochlorin, UV-vis data XXII: 120 of, XVII: 53 influence of isopropyl groups in Meso-tetraphenyl-2,3,12,13- meso-phenyls, XXII: 124 tetrahydroxybacteriochlorin, UV-vis Meso-substituted porphyrin isomers, data of, XVII: 53 mathematical enumeration of, Meso-tetraphenyltetraone, synthesis, XVII: 66 XXIII: 35 Meso-tetraphenyl-2,3,12,13- application of Pólya’s theorem, tetraoxobacteriochlorin, UV-vis data of, XXIII: 38–41 XVII: 53 binomial treatment, XXIII: 36–38 Meso-(p-quinone) substituents, and porphyrins mixed-aldehyde condensation, with double bonds at meso positions, XXIII: 37 XIII: 228–233 meso-substituted porphyrin framework, Meso-/β-brominated porphyrins, transition square shaped, XXIII: 38 metal catalysts and, I: 7 Meso-substituted porphyrins, XXIII: 35 Meso-/β-doubly linked Ni(II) porphyrins, as distribution of, XXIII: 36

fused porphyrin array, I: 88–89 Meso-substituted-trans-A2B2- Meso-isopropylidene groups, and porphyrin tetraarylporphyrins, XXIII: 96 analogs with exocyclic double bonds, Meso-substituted XIII: 237–238 benzoporphyrins, II: 24, II: 28 Meso–meso-linked diporphyrins. See BODIPYs Meso-meso-linked porphyrin array porphyrins, II: 194 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 155 FA

Cumulative Index to Volumes 1–25 155

synthetic porphyrin dianion derivatives, Meso-tetrakis(3-hydroxyphenyl)porphyrin, metalloporphyrin structure/electron microwave-assisted synthesis and configurations and, VI: 12, VI: 16 complexation of, II: 197 Meso-sulfanylation/selenation, Meso-tetrakis(3-nitrophenyl)porphyrin, palladium-catalyzed, III: 413–415 microwave-assisted synthesis of, Meso-tethered porphyrins, ORR catalysis data II: 200 for, XXI: 90 Meso-tetrakis(4-azido-2,3,5,6-tetafluorophenyl)- Meso-tethered strapped dyads, XXI: 39–45 porphyrin, “click chemistry” reaction of Meso-tetrasubstituted porphyrins, XXI: 380 dimethyl acetylenedicarboxylate with, Meso-tetraarylporphyrins XXIII II: 275, II: 277 with eight sites of derivatization, Meso-tetrakis(4-chlorophenyl)porphyrin, XXIII: 68 microwave-assisted synthesis and mononitration of, XXIII: 115 complexation of, II: 197 Meso-tetrabromoporphyrin, direct arylation of, Meso-tetrakis(4-methoxyphenyl)porphyrin, XXIII: 147 microwave-assisted synthesis of, II: 200 Meso-tetrakis(2-aminophenyl)porphyrin, Meso-tetrakis(4-t-butylphenyl)porphyrin, XXIII: 67 microwave-assisted synthesis of, Meso-tetra(4-pyridyl)porphyrin, II: 196–197 microwave-assisted synthesis of, II: 200 Meso-tetrakis(p-chlorophenyl)porphyrin, Meso-tetra(4-sulfonatophenyl) porphyrin, IV: 14 cycloaddition of 2,6-dichlorobenzonitrile Meso-tetraarylcarbaporphyrins, approaches for to, II: 264, II: 266 synthesis of, II: 111, II: 112, II: 113 Meso-tetrakis(pentafluorophenyl)porphyrin, Meso-tetraarylporphyrins Diels-Alder cycloaddition of pentacene β-functionalization of, II: 206 to, II: 203–205 “click chemistry” mediated cotton fabric nucleophilic substitution of p-fluoro atoms grafted with, II: 281, II: 283 in, II: 202 cycloadditions of azomethine ylide vs. Meso-tetrakis[4-(terpyridin-4′-yl)phenyl]- nitrones with, II: 262 porphyrin, free-base and terpyridin- meso-tetrabromoporphyrin in alternative based Ru(II) complex microwave- synthesis of, II: 57 assisted synthesis of, II: 198–199 microwave-assisted synthesis of, II: 196 Meso-tetraphenylbenziporphyrin porphyrin synthesis and selective reactions of, XVI: 106 functionalization of, II: 55 reaction with iron(II) chloride and reaction of azomethine ylide with, II: 259, copper(II) chloride, XVI: 110 II: 260 Meso-tetraphenylporphyrin (TPP), IV: 14–16, reviews on the synthesis of, II: 194 IV: 40–41, IV: 144–148, IV: 193, standard Lindsey method for synthesis of, IV: 345 II: 34 kinetic study of microwave-assisted studies in bromination of, II: 206–207 synthesis of, II: 198, II: 200 Meso-tetraaryl-substituted porphyrin isomer, microwave-assisted synthesis and VII: 362, VII: 369–370 complexation of, II: 197 Meso-tetraaryltetraphenanthroporphyrins, synthesis of β-substituted arylethynyl, II: 47 II: 228, II: 229, II: 231–232 Meso-tetrakis(3,4,5-trimethoxyphenyl)- Meso-tetraphenyltetra(2,3-naphtho)porphyrin

porphyrin, microwave-assisted synthesis (Ph4TNP) Zn-complex, synthesis of, of, II: 200 II: 31 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 156 FA

156 Cumulative Index to Volumes 1–25

Meso-tetrapyridylporphyrin (TMPyP), nitric oxide, VII: 448–450 IV: 14 M(OEB), VIII: 310–318 Meso-tetrasubstituted benzocarbaporphyrins, MacDonald [2 + 2] condensation, XXIII: 93 metalation of, XVI: 46 scrambling in, XXIII: 95 Meso-to-meso ethyne-bridged linkage, linear trans-AB porphyrins by mixed multi-porphyrin arrays and, I: 8 aldehyde, XXIII: 98 Meso-tris(pentafluorophenyl)-corrolate MacDonald condensation/synthesis (TPFC), manganese-oxo complexes of [22]porphyrin(3.1.3.1), XVI: 280 (corrole synthesis/reactivity) and, synthesis of core modified porphyrins by XIV: 534–537 “3 + 1” variant on, XVI: 12 Meso-unsubstituted benzocarbaporphyrins, synthesis of porphyrin analogs using synthesis of silver(III) and gold(III) “3 + 1” variant on, XVI: 14 derivatives of, XVI: 44 MacDonald “2 + 2” methodology Meso-unsubstituted p-benziporphyrin, of hepta-alkyl N-confused porphyrin, attempted synthesis, XVI: 158 XVI: 209 Meso-unsubstituted calix[4]azulenes, for porphyrin synthesis, XVI: 10 formation of partially conjugated synthesis of oxophlorin analogs, XVI: 11 macrocycles from, XVI: 273 synthesis of porphyrins with exocyclic Meso-unsubstituted dimethoxybenziporphyrins rings using, XVI: 11 reactions of, XVI: 116 MacDonald-type “3 + 1” synthesis synthesis of, XVI: 111 of hexaalkyl NCPs, XVI: 219 Meso-unsubstituted dipyrenoporphyrins, of meso-unsubstituted NCPs, XVI: 210 XXIII: 102 of N-substituted pyrazoloporphyrins, Meso-unsubstituted TBPs, electronic XVI: 232 absorption maxima of, XIII: 96–102 of [22]porphyrin(3.1.1.3) and formation of Meso-unsubstituted 1,4-naphthiporphyrin, palladium(II) derivative, XVI: 283 attempted synthesis of, XVI: 171 of tropiporphyrins, XVI: 92 Meso-unsubstituted pyriporphyrin, attempted Macrocycle flexibility, Hückel and Möbius synthesis of, XVI: 178 molecular topology, meso substituted Meso-unsubstituted TBPs, synthesis of hexaphyrins and, II: 180 soluble, II: 15, II: 17 Macrocycle immobilization Meso-unsubstituted TNPs, synthesis of “click” coupling and, X: 265–267 soluble, II: 15, II: 17 complex porphyrin system immobilization Meso-unsubstituted NCPs and, X: 260–263 MacDonald-type “3 + 1” synthesis of, coordination bond coupling and, XVI: 210 X: 264–265 protonation of, XVI: 211 and modulation of surface/macrocycle Meso-η1-palladio intermediates, Pd-catalyzed linker, X: 256–259 C-C reactions and, III: 371–372 multi-linkage of surface/macrocycle and, Meso-η1-palladio-/platinoporphyrins, X: 259–260 metal-bridged porphyrin arrays and, TPP derivatives and, X: 253–256 I: 110–111 Macrocycle of phthalocyanine, preparation of M(II) porphyrins phthalocyanines with substituents axial ligand bands and connected to core via, III: 45, III: 61 carbon monoxide, VII: 446–448 Macrocycle protonation by HCl, UV dioxygen, VII: 444–445 irradiation of halogenated solvent imidazoles, VII: 444 solutions and, XII: 140–141 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 157 FA

Cumulative Index to Volumes 1–25 157

Macrocyclic aromatization, oxidation of heme-hemopexin complexes and, XV: 238 O- and S-confused porphyrins and, and historical aspects of porphyrinoid II: 119 optical spectroscopy, XIV: 465 Macrocyclic delocalization, pyridine moiety in and optical properties (summary) of pyriporphyrins and, II: 128–129 porphyrinoids, XIV: 480 Macrocyclizations (templated), and origin of intensity of, XIV: 471–476 coordination interactions. prototropic tautomer detection and, See Coordination chemistry of XIV: 483–485 open-chain oligopyrroles TPTANP spectral properties and Macromolecules, C–C coupling reactions and, calibration, XIV: 487 III: 348–352 See also Spectroscopy Macrophages as PDT targets, IV: 73, IV: 153, Magnetic circular dichroism (MCD) spectra, IV: 343 HOMOs/LUMOs and, VII: 392–397 Magnesium Magnetic circular dichroism (MCD) natural chlorophylls and, XI: 236 spectroscopy, XXIII: 287–291 NiTAP/MgTAP absorption spectra absorption of circularly polarized light, compared, IX: 4–5 XXIII: 291 unsubstituted Pcs (UV-vis absorption data) absorption of circularly polarized light, and, IX: 103 selection rules for, XXIII: 289 Magnesium chelatase (MgCh), XX: 9, XX: 148 cyclic polyene excited state can be derived activity regulation, XX: 158 from Ampere’s Rule for solenoid, redox state, XX: 191 XXIII: 288

catalytic Mg chelatase cycle, XX: 11 derivative-shaped Faraday A1 term, CHLI subunit of, XX: 176 XXIII: 288

identification of magnesium chelatase Faraday B0 terms, XXIII: 290

genes, XX: 10 Faraday C0 terms, XXIII: 290 subunits, XX: 157–158 magnetic dipole transition moment, Magnesium chelation, chlorophyllide a XXIII: 290 biosynthesis, XX: 113 MCD intensity equation, XXIII: 288 Magnesium insertion, chlorophyll biosynthesis Magnetic nanoparticles, XVIII: 192–193 identification of magnesium chelatase Magnetic resonance imaging (MR imaging, genes, XX: 10 MRI) occurrence, XX: 9–10 conjugates for magnetic resonance imaging subunit function and catalytic mechanism, and PDT, IV: 294–297 XX: 10–11 contrast-enhancing agents, IV: 294–295 Magnesium-substituted hemoproteins, fluorinated product use in 19F-MR imaging, myoglobin/hemoglobin/HRP and, V: 27 IV: 31–32, IV: 62 Magnesium-protoporphyrin IX (Mg-PROTO Gd(III)-based conjugates for MRI and IX), XIX: 146 PDT, IV: 294–297 Magnetic circular dichroism (MCD), IX: 5 Gd(III)-based contrast agents, IV: 294, and [2Fe-2S]+ cluster as cofactor of FECH, IV: 295–297 XV: 61 Gd(III)-based MRI contrast agents,

of cNOR/qNOR/qCuANOR, V: 134–135 IV: 294, IV: 295–297 and crystal structures of hemopexin, HPPH conjugates for MRI and PDT, XV: 228 IV: 294–297 and electronic transitions resulting in Q/B nanoparticles and, XII: 356 bands, XIV: 507–513 optical pH sensors and, XII: 181 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 158 FA

158 Cumulative Index to Volumes 1–25

polyacrylamide (PAA)-based nanoparticles amidation reactions catalyzed by for MRI and PDT, IV: 310–312 Mn(P*)(OH)(MeOH), XXI: 249 Magnetic structures. See Electronic/magnetic asymmetric amidations, XXI: 248 structures bimetallic µ-nitrido complex Magnetic transition moment (mij), circular intermediate, XXI: 250 dichroism (CD) and, VII: 148–149 intermolecular amidations of Magnetochemical series, for formation of pure hydrocarbons, XXI: 244 intermediate-spin complexes, VII: 58–60 aziridination, XXI: 238–243 Main-chain porphyrin polymers, organic asymmetric aziridination of aryl olefins, polymer solar cells, XVIII: 80–81 XXI: 240 Malacosteus niger, XIII: 257 asymmetric managanese porphyrin, MALDI. See also Spectroscopy XXI: 241 and mixed reactant approaches to solution manganese-catalyzed aziridination, phase combinatorial porphyrin XXI: 238 libraries, III: 489–490 of olefins, XXI: 239

and modification of porphyrin macrocycle, olefins and “PhI(OAc)2 and TsNH2” III: 511 catalyzed, XXI: 242 Mammalian heme-PAS-containing proteins, Manganese-oxo complexes heme-PAS domains and, XV: 139 catalytic applications of, XIV: 551–552 Mammals corrolazines, XIV: 544–547 heme export in, XV: 27–28 OAT/HAT reactivity and, XIV: 547–551 heme import in, XV: 26–27 synthesis/reactivity of corroles, heme iron recycling in humans, XV: 28–29 XIV: 533–543 metal ion substrate specificity and, XV: 86 theoretical calculations for, XIV: 543–544 nutritional iron deficiency and heme Marcus parabola, charge-recombination in, transport in, XV: 26 I: 142–144, I: 148–149 Mammalian peroxidases, XIX: 51–52 Manganese peroxidases (MNP), plant Manganese corrole, XXI: 37 peroxidases and, VI: 373 Manganese hemoproteins, reconstituted Manganese peroxidase, XIX: 71–72 hemoproteins and, V: 25–26 Manganese porphyrins, crowned Manganese-imido complexes (metallo)-porphyrins with, catalytic applications and electron-deficient XXIV: 186–188 imides, XIV: 579–581 acid/base catalysis of crown ether corrolazines and, XIV: 577–579 appended porphyrins, XXIV: 187 corroles and, XIV: 574–577 structures of crowned manganese(III) Manganese meso-substituted o-gable porphyrins, XXIV: 187 porphyrins, XXIV: 108 Manganese protoporphyrin IX, heme Manganese m-gable porphyrins, XXI: 105 substitution and, V: 7 Manganese-nitrido complexes Manganese, unsubstituted Pcs (UV-vis catalytic applications and electron-deficient absorption data) and, IX: 115 imides, XIV: 579–581 Marcus theory of electron transfer, I: 138–139, corrolazines and, XIV: 577–579 X: 184–186 corroles and, XIV: 574–577 Masked isoindoles, XIII: 49–50 Manganese, nitrogen-group transfers, pyrrole fused with bicyclo[2.2.2]- XXI: 238–250 octadiene(BCOD) as, II: 20–21 amidation/amination, XXI: 243–249 Mass transducers and sensors, XII: 156–160 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 159 FA

Cumulative Index to Volumes 1–25 159

Material-wave interactions, sickle-cell disease and, XI: 374 microwave-assisted reactions and, spinal cord injury and, XI: 359–360 II: 195 staurosporine-induced neurotoxicity and, Matrix metalloproteinase (MMP), IV: 281, XI: 363–364 IV: 427, IV: 435–437, IV: 440, stroke and, XI: 358–360 IV: 441, XV: 232–234 subarachnoid hemorrhage and, XI: 360 MAXLab (Sweden), VII: 441 and toxicity of Mn porphyrins, XI: 380 Mdm33, and maintaining morphology of and Zn porphyrins as photosensitizers, cristae during heme transfer, XV: 35 XI: 380–383 Measurement systems for optical oxygen Medicinal/spectroanalytical applications,

sensing vitamin B12 derivatives for, phosphorescence intensity measurement, XXV: 84–85 XII: 316–321 coordination chemistry of corrinoids, phosphorescence lifetime measurement, XXV: 85–86 XII: 321–324 spectroscopic properties of corrinoids, T-T absorption measurement, XII: 324–330 XXV: 89–92 MeCbl-cofactor in “base-off/His-on” form, structure, constitution and nomenclature

B12-binding domain of, XXV: 174 of corrinoids, XXV: 86–88 Media, of porphyrin-based oxygen sensors, optical/colorimetric detection with XII: 309–310 corrin-based chemosensors Mediator, V: 297 comparison with detection of cyanide Medical effects of water-soluble using porphyrins, XXV: 100–102 metalloporphyrins cyanide, XXV: 92–100 Alzheimer’s disease (AD) and, XI: 363 sulfite, XXV: 102

amyotrophic lateral sclerosis (ALS) and, vitamin B12 as carrier for targeted drug XI: 361–363 delivery and antioxidative mechanism of action for metallic cytotoxins, XXV: 120–123 cancer, XI: 365–368 organic cytotoxins, XXV: 118–120

cerebral palsy and, XI: 361 vitamin B12 for radioimaging and as carrier diabetes and, XI: 364–365 for targeted drug delivery XXV

imaging studies and, XI: 379–380 fluorescence labeling of vitamin B12, ischemia/reperfusion conditions and, XXV: 115–118

XI: 371–373 functionalization of vitamin B12, lung injuries and, XI: 372–374 XXV: 105–107 and MnP in molecular imaging, XXV: 103–105 57 brain cancer model, XI: 369 radiolabeling of vitamin B12: Co and breast cancer model, XI: 369 radioiodide, XXV: 107–110 99m prostate cancer model, XI: 369 radiolabeling of vitamin B12: Tc and skin cancer model, XI: 368–370 111In, XXV: 110–115 oxygen/glucose deprivation and, XI: 363 Mercury double-decker sandwich complexes, pain management and, XI: 374–375 XXIII: 61–64 Parkinson’s disease and, XI: 363 MCR, XIX: 4, XIX: 6–7 and pro-oxidative mechanism of action for active site, amino acids with cancer, XI: 370–371 post-translational modifications in, radiation injuries and, XI: 375–378 XIX: 17

sepsis and, XI: 379 and bound F430, structure of, XIX: 15–18 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 160 FA

160 Cumulative Index to Volumes 1–25

cellular location of, XIX: 7 Membranes/electrodes immobilization of different coordination and oxidation states hemoproteins, and nanobiomaterials, of, XIX: 18 V: 49–53

coordination and oxidation state of F430, Memory, hybrid electronics and, XIX: 18–19 X: 300–303 coordination and oxidation states of Mercaptoheptanoylthreonine phosphate. MCR, XIX: 19–25 See CoBSH EPR parameters of various states of, Mercaptoporphyrins. See Sulfanylation/ XIX: 20–21 selenation (C–S/C–Se coupling) genes encoding, XIX: 8 Mercuration of porphyrins, regioselectvity in, heterodisulfide product of, XIX: 14 II: 234 interconversion among various forms of, Mercury XIX: 15 optical sensors and, XII: 188–189 isolation and activation, XIX: 14–15 unsubstituted Pcs (UV-vis absorption data) isozymes, XIX: 8 and, IX: 134 pathways interface in methanogenesis/ Mercury-functioning porphyrins, and MCR catalyzed reaction, XIX: 4 peripherally metalated derivatives, properties of substrates, XIX: 9 III: 432–438 structure, XIX: 7 Merox process, III: 90 substrates and inhibitors, Michaelis Mesoheme parameters for, XIX: 10–13 heme substitution and, V: 7

MCRI, XIX: 8 monopropionate O2 affinities/autoxidation MCRII, XIX: 8 and, V: 13–14

MCRMe, XIX: 24–25 Mesoporphyrin (A4B2C2), XXIII: 25 MCRox, XIX: 23–24 “theoretical” isomers of, XXIII: 26 MCRox1-silent Mesoporphyrin IX, XXIII: 25 active site of, XIX: 37 Meta-benzi-24-oxaporphyrin, Pd(II) complex structure, HSCoM in, XIX: 16 and coordination cavity hydrogens of, MCRPS, XIX: 24 II: 146

MCRred1, XIX: 19, 22 Meta-benziphthalocyanines, II: 162 signal, XIX: 14 coordination modes of, II: 164

MCRred2, XIX: 22–23 Meta-benziporphyrins MCRsilent, XIX: 19 as carbaporphyrinoid with m-benzene MEK1/2 inhibitor PD98059, IV: 430, IV: 431 subunit, II: 106–107 Membrane trafficking and PDT, IV: 418–419 crystal structure of, II: 142 Membrane complexes, XIX: 205–207 internal reactivity of, II: 145 cytochrome c-associated membrane properties of, II: 137–138 complexes, XIX: 209–213 properties of coordination complexes of, Qmo and Dsr complexes, XIX: 207–209 II: 143, II: 144 Membrane-bound enzymes Meta-chloroperoxybenzoic acid and bacterial NOR, V: 132 P450cam Compounds I/ES and, electrometric measuring of, V: 139–140 V: 315–316 and respiratory nitrate reductase (Nar), of P450cam reaction with, V: 307 V: 128 Metal-catalyzed cross-coupling reactions structure comparison with soluble utilizing porphyrinylboronate cytochrome, V: 184–185 transmetalation reagent, XXIII: 143 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 161 FA

Cumulative Index to Volumes 1–25 161

Metal complexes, formylbiliverdin/related Metal ion substrate inhibition/selectivity of tetrapyrroles, VIII: 328–334 FECH, XV: 89, XV: 91 structural diversity in porphyrins vs. NCPs, Metal ion/spin state effects on bonding. See II: 303–304 Bonding, metal ion/spin state effects Metal coordination. See also Coordination Metal ion-binding sites of FECH, XV: 71–74 chemistry of open-chain oligopyrroles Metal ions bilirubin/biliverdin behavior toward metal macrocycle aromaticity and stabilization of ions and, VIII: 406–410 higher oxidation states of, II: 145 interaction of prodigiosenes with metal as templates in syntheses of TBPs and Pcs, ions, VIII: 377–378 II: 3 and organic capture of anions, Metallobacteriochlorins, XVII: 99–102 VIII: 166–167 chemistry of palladium and nickel tripyrrinone/tripyrrin metal chelates and, hydroporphyrins, XVII: 99 VIII: 378–389 HOMO–LUMO gap, XVII: 101 Metal corroles. See High-valent transition metalation of dioxobacteriochlorins, metal corroles/corrolazines XVII: 99 Metal free phthalocyanines, XXIV: 402 palladium bacteriochlorins, XVII: 100 peripherally octa-substituted, XXIV: 403 spectra of, XVII: 96 peripherally tetra-substituted, Metallocenes XXIV: 402–403 dimers/oligomers linked by metal ions, Metal-free porphyrins, XXIV: 126–133 III: 447–451 stereochemistry with various and dimers/oligomers linked by metal ions, substitution patterns, III: 476–477 XXIV: 129–131 mercury-functioning porphyrins and, β- and meso-substituted derivatives, III: 434–436 XXIV: 130–131 meso-tetraruthenocenylporphyrin, β-substituted derivatives, XXIV: 129 III: 437 meso-substituted derivatives, XXIV: with one porphyrin, III: 435–444 129 Metallic center, external (Mext), and double tetra-meso-tetra-β-substituted cycle, component systems of tectons, XXIV: 132 XIII: 317–347 tetra-meso-tetra-β-substituted cycle, Metallic chalcogenide nanoparticles, intra-ring distances in, biosensors and, V: 240–246 XXIV: 134 Metallic cytotoxins, XXV: 120–123

disordered H2(TPP) and porphine cobalamin-vanadium probe for treating structures, XXIV: 127 diabetes, XXV: 121 dominant resonance structures of, derivatization at 5′-OH site, with DTPA XXIV: 127 and TTHA, XXV: 121 monoacid formed by mono- Metallo dihydrocorphinols, XXV: 287 protonation, XXIV: 136 Metalloenzymes, ALAD as, XV: 6–7

tetragonal arrangement for H2(TPP), Metalloisobacteriochlorins XXIV: 128 formation of, XVII: 49 porphyrin acids and related species, spectrum, XVII: 7, XVII: 96 XXIV: 133–137 Metallooctaethylporphyrins (MOEP) on gold monoacid complexes, XXIV: 135 surfaces, XVIII: 42 + Metal ions including NH4 , crowned Metalloorganic Frameworks (MOFs), (metallo)porphyrins, XXIV: 224–242 coordination bonding and, XIII: 306 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 162 FA

162 Cumulative Index to Volumes 1–25

Metallopheophorbides, structural chemistry of, hydroxy MPc, IV: 70–71 XIII: 265, XIII: 272–274 IR spectroscopy and, VII: 443 Metallophthalocyanine (MPc) molecular structures of complexes, absorption spectra, IV: 4, IV: 5, VII: 263–267 IV: 261–262 mononaphthotrisulfobenzoporphyrazines aggregation behavior in, VII: 278–281, (M-NSBP), IV: 85–86, IV: 282 VII: 321–323 pegylated MPc, IV: 71–72, IV: 83 alkanes/alkenes (photocatalytic reactions) pegylated SiPc, IV: 127–128 and, VII: 347–348 phenols (photocatalytic reactions) and,

AlPcS4–bombesin conjugates, IV: 144, VII: 343–346 Φ IV: 279–280 photobleaching quantum yields ( P),

AlPcS4–monoclonal antibody conjugates, VII: 320–321 IV: 164, IV: 165, IV: 334–335 photocatalytic reactions of MPcs,

AlPcS4–protein conjugates, IV: 156–157 VII: 324–329 aluminum phthalocyanine (AlPcCl), photochemistry (CdPc complexes) and, IV: 64–65, IV: 344–345 VII: 336 amphiphilic derivatives of AlPcS4, IV: 70 photochemistry of group 14/15 Pc boronated Zn(II) phthalocyanines, IV: complexes, VII: 341 Φ 237–242 photodegradation quantum yields ( P), bovine serum albumin–conjugated MPc, VII: 273–275 IV: 83–84 photophysics of group 14/15 Pc complexes, cobalt phthalocyanine (CoPc), IV: 347 VII: 339–341 DNA binding by positively charged MPc, porphyrazines, IV: 73, IV: 79–80, IV: 80–82 IV: 82–83, IV: 85–88 DNA cleaving agents, IV: 63, IV: 80–82 positively charged MPcs binding to DNA

Φ∆ and, VII: 333–334 and mitochondria, IV: 80–82 fluorescence quantum yields (Φ ), and ring (R to R ) substituents of Pcs, F 1 4 VII: 275, VII: 281–314. See also VII: 251–260 Quantum yields silicon phthalocyanine–sugar conjugates, CdPc complexes, VII: 335 IV: 138, IV: 140 Φ Φ P and, VII: 334–335 singlet oxygen quantum yields ( ∆), Φ τ ( T)/( T) and, VII: 332–333 VII: 268–273, VII: 318–320 Φ τ ( T)/( T) (CdPc complexes) and, SiPc anti-HIV activity, IV: 78 VII: 335–336 SiPc derivatives, IV: 77–80, IV: 83–84 and general axial ligands (X1, X2), Si(IV)Pc derivatives, IV: 78, IV: 79, VII: 260–263 IV: 127–128 GePc derivatives, IV: 77 structure, IV: 329 gold nanoparticle–MPc conjugates, sulfonated MPc derivatives, IV: 65–69 IV: 84–85, IV: 313–314 sulfur-containing compounds group 12 Pc complexes (ZnPc complexes), (photocatalytic reactions) and, VII: 330–335 VII: 342–343 group 13 Pc complexes, VII: 337–339 synthesis, overview, IV: 62 group 14/group 15 Pc complexes, tetrabenzotriazacorrole (TBC), IV: 80, IV: 81 VII: 339–341 tetra(2-mercaptopyridino)-Pc, IV: 83 group 4 to 11 Pc complexes, VII: 330 tetravinylsulfonated MPc, IV: 68–70 Φ HgPc complexes (CdPc complexes) and, triplet quantum yields ( T) and lifetimes τ VII: 336–337 ( T), VII: 315–318 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 163 FA

Cumulative Index to Volumes 1–25 163

triplet state quantum yields (ΦT), ruthenium, XXI: 266–292 VII: 275–277 Metalloporphyrin catalyzed cyclopropanation, unmetalated, group 1/group 2 Pc XXI: 339 complexes, VII: 321–323 Metalloporphyrin core, dendrimers with, uses of, VII: 250 XXIII: 178–179 XAl(III)Pc complexes, VII: 337 Metalloporphyrin derivatives XXIV XGa(III)Pc and XIn(III)Pc complexes, lanthanide and actinide derivatives, VII: 337–339 XXIV: 125–126 zinc octakis-dodecyl Pc, IV: 76 main group derivatives, XXIV: 117–125 zinc octakis-pentyl Pc, IV: 76 five-coordinate thallium complexes, zinc octa-n-alkyl Pc, IV: 76 stereochemical parameters for, Zn-Pc–peptide targeted conjugates, XXIV: 120 IV: 279, IV: 280 group 1 species, XXIV: 117 See also Phthalocyanines (Pc) group 2 species, XXIV: 117–118 Metalloporphyrin-catalyzed asymmetric group 13 species, XXIV: 118–120 atom/group transfer reactions. See group 14 species, XXIV: 121–123 Asymmetric atom/group transfer group 15 species, XXIV: 123–125

reactions [Sn(TPP)(CRe(CO)3)2], XXIV: 122 Metalloporphyrin-catalyzed C–C bond porphyrin π-π interactions and π-radical formation, XXI: 323–324 complexes, XXIV: 102 carbene transfer reactions, XXI: 324–325 geometry of π-π interactions, C–H Bond Insertion, XXI: 346–352 XXIV: 102–104 cyclopropanation reactions, porphyrin π-radical complexes, XXI: 325–345 XXIV: 104–116 olefination, XXI: 361–365 Metalloporphyrin structure/electron ylide formation and subsequent configurations. See also Bonding, metal reactions, XXI: 353–361 ion/spin state effects cycloadditions, XXI: 365–367 2D 13C natural abundance HMQC spectra, epoxide isomerization and carbonylation VI: 59–62 reaction XXI 2D NMR techniques and, VI: 64–69 epoxide carbonylation reactions, axial ligand plane orientation and, XXI: 367–369 VI: 50–55 epoxide isomerization, XXI: 367 chlorin derivatives, VI: 14–16 oxidative coupling reactions, chlorins, VI: 10–11 XXI: 370–372 and complete 13C labeling of protohemin, Metalloporphyrin-catalyzed C and N group VI: 59–62 transfer reactions, XXI: 148 contact/pseudocontact shifts and carbon-transfer reactions, XXI: 148–149 temperature, VI: 31–33 cobalt, XXI: 206–222 contact shifts (proton chemical shifts) and, iron, XXI: 149–169 VI: 20–23 osmium, XXI: 203–206 coordination numbers for, VI: 18 rhodium, XXI: 223–237 corrole derivatives, VI: 14–16 ruthenium, XXI: 169–203 corroles, VI: 10–11 nitrogen-group transfers, XXI: 237–238 and curvature in Curie plot over cobalt, XXI: 292–312 temperature range of measurement, iron, XXI: 250–266 VI: 75–80 manganese, XXI: 238–250 deuteration of specific groups, VI: 58–59 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 164 FA

164 Cumulative Index to Volumes 1–25

dioxoisobacteriochlorin derivatives, 2D Hyperfine Sublevel Correlation VI: 14–16 spectroscopy for experiments of, dioxoisobacteriochlorins, VI: 10–11 VI: 9 empirical methods of spectral analysis, 5,10-bis(4-pyridyl) porphyrin and

VI: 80–82 RuCl2(DMSO)2(CO), I: 99, I: 102 etioporphycene, VI: 16–17 aggregate formation, IV: 261 g-tensor anisotropy and spectral analysis, Au(III) complexes, IV: 15–16 VI: 83 charge recombination and, XI: 11. See also general structures of porphyrins, VI: 10–11 Water-soluble metalloporphyrins “green hemes”, VI: 16 (chemistry/biology/medical effects) impact of solvent/anion/degree of chemical shift experiment for, VI: 8–9 aggregation on, VI: 18 Co(II) porphyrin and, I: 93, I: 96–97 isobacteriochlorin derivatives, VI: 14–16 common NMR/EPR experiments for isobacteriochlorins, VI: 10–11 paramagnetic insights, VI: 8–9 and measurement of magnetic and construction of chlorophyll square, susceptibility anisotropies of I: 99–100, I: 103 ferriheme proteins, VI: 26–29 continuous wave EPR for experiments of, mechanisms through chemical bonds, VI: 8 VI: 55–57 correlation spectroscopy for experiments meso-substituted synthetic porphyrin of, VI: 8 dianion derivatives, VI: 12, VI: 16 DABCO and, I: 93–94, I: 96–98 metal ion and, VI: 39–41 DNA cleavers, IV: 16–22 natural porphyrin dianion derivatives, effect of metalation in PDT, IV: 257–263 VI: 12 Electron Spin Echo Envelope Modulation NOE difference spectroscopy and, for experiments of, VI: 9 VI: 63–64 and hemopexin binding, XV: 248–250 and oxidation states of iron porphyrins, Heteronuclear Correlation spectroscopy for VI: 19 experiments of, VI: 8 phthalocyanines, VI: 16–17 Heteronuclear Multiple Bond Correlation porphyrazines, VI: 16–17 spectroscopy for experiments of, porphyrin ring and, VI: 40, VI: 42–50 VI: 8 and pseudocontact shifts of manganese porphyrin complexes, IV: 17 metalloporphyrin substituents, microwave-assisted synthesis of porphyrins VI: 23–26 and, II: 194 pyrrole-substituted synthetic porphyrin nanometer scale structures and, I: 136 dianion derivatives, VI: 13, VI: 16 naphthalene-1,8;4,5-bis(dicarboximide) and residual dipolar couplings of proteins, bridged porphyrin dimer and, I: 93, VI: 29–31 I: 97 resolution/assignment of spectral analysis, NOE difference spectroscopy for VI: 69–75 experiments of, VI: 8 saturation transfer NMR experiments and, Nuclear Overhauser and Exchange VI: 62–63 Spectroscopy for experiments of,

substitution of H by CH3/other substituents VI: 8 (H NMR spectra), VI: 55–57 olfaction and, XII: 208 texaphyrin, VI: 16–17 optical sensors and, XII: 315 Metalloporphyrins origin of, I: 93–94 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 165 FA

Cumulative Index to Volumes 1–25 165

oxidation/spin states of, VI: 41 Metal nanoparticles and porphyrins photodynamic therapy (PDT), IV: 13–25 discussion, XII: 361–370 Pt(II) complexes, IV: 15–16 introduction, XII: 358–361 pyridine ligands and, I: 93, I: 96 Metal nanoparticles, biosensors and, as radiosensitizers, IV: 96–98, IV: 97 V: 237–240 reconstitution into hemoproteins of, V: 4 Metal porphyrins ruthenium (Ru) porphyrins, IV: 15, IV: 20, electrocatalysts for fuel cells, XI: 216–218 IV: 22 as reductive photocatalysts, XI: 200–206 saturation transfer difference spectroscopy Metal substitution of hemes for experiments of, VI: 8 cobalt hemoproteins and, V: 24–25 self-assembling manganese hemoproteins and, V: 25–26 structure/electron configurations of, mixed-metal hybrid hemoproteins and, VI: 10–19 V: 27 supramolecular interactions and, I: 91–93 other metal hemoproteins and, V: 27–28 tin (Sn) porphyrins, IV: 13–14 and replacement of heme with other metal zinc insertion and, I: 93, I: 97 (general information), V: 24 See also Metalloporphyrin structure/ in tetrapyrrole framework, V: 5 electron configurations; Porphyrins; zinc hemoproteins and, V: 26–27 specific types Metal within the porphyrin cavity (Mint), and Zn(II) with pyrazol-4-yl substituent, I: 101, double component systems of tectons, I: 103 XIII: 346–354 Metalloporphyrins XXIV Metal(II) complex of, E- and Z-dimers of stereochemical parameters for typical NCP, II: 331–332 five-coordinate, XXIV: 176A Metalated NCPs, and tautomers of stereochemical parameters for 21-hydroxyNCP, XVI: 200 typical six-coordinate, Metalated porphyrin derivatives. See XXIV: 177A Peripherally metalated porphyrin principal structural features of, derivatives XXIV: 13 Metalation stereochemistry, features of, of Pacman bisporphyrins/biscorroles/ XXIV: 12–19 porphyrin-corroles, XI: 32–34 steric interactions between axial of porphyrin with heavy atom in ligand and core of, XXIV: 18 π-delocalization frame, XI: 10–11 Metalloporphyrins/porphyrins, stereochemical Metalation states systematics for. See XXIV porphyrins/ dendritic porphyrin arrays and, I: 38, I: 40 metalloporphyrins, stereochemical synthesis of oligophenyleneacetylenes and, systematics for I: 29–30 Metallo seco-corrins, XXV: 282 Metal-bridged porphyrin arrays Metallotetraazabacteriochlorin synthesis, azoporphyrin preparation and, I: 110–111 one-step, XVII: 31–33 bipyridylene-bridged dimers and, I: 112, Metallotetrapyrrole-fullerene dyads, via metal I: 115 ligand axial coordination, I: 311–322 bis(dipyrrinato)metal bridged dimer Metallotricarboxyphthalocyanine, XVIII: 268 preparation, I: 114, I: 117 Metallotriphyrins, II: 34, II: 41 bisporphyrinatoferrocene preparation and, Metal mediated C–H functionalization, I: 113, I: 116 heteroatom substituents with BODIPY dendritic porphyrin arrays and, I: 112–113 and, VIII: 32–36 meso-phosphanylporphyrin and, I: 117–118 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 166 FA

166 Cumulative Index to Volumes 1–25

and N-heterocyclic carbene ligand α,β-unsaturated ketone functionalized functionalization, I: 113–114, I: 116 porphyrins from reaction of ethyl Ni(II) porphyrin bridged by platinum- vinyl ketone with allylporphyrins diacetylene unit and, I: 112 catalyzed by second generation preparation of meso-η1-palladio-/ Grubbs catalyst, XXIII: 185 platinoporphyrins, I: 110–111 cross–metathesis of vinyl-chlorins ruthenoceneoporphyrin preparation and, and -porphyrins with olefins I: 113, I: 116 catalyzed by second generation tris(1,10-phenantrene) Ru(II)-centered Grubbs catalyst, XXIII: 182 porphyrin timer preparation, metathesis to give bisporphyrins, XXIII: 187 I: 117–118 formation of hollow porphyrin trigonal Metal-free hexadecafluoro phthalocyanines, as prism via templated olefin low-voltage thin-film transistors, III: 69 metathesis, XXIII: 268 Metal-ligand vibrations, FIR and, VII: 454–456 porphyrin ester supramolecule synthesis by Metal nanoparticles, XVIII: 176, XVIII: 193 self-assembling preorganization Ag nanoparticles, XVIII: 197–198 strategy, XXIII: 267 Au nanoparticles, XVIII: 193–196 reactivity of unsaturated acid and Pd nanoparticles, XVIII: 198 ester/porphyrins, XXIII: 186 Pt nanoparticles, XVIII: 196–197 ring–closing metathesis (RCM) using a structure of composite and TEM images second generation Grubbs catalyst, with size distribution, 177 XXIII: 183 Metal-mediated C–C coupling reactions solvents such as pyridine or methanol (porphyrins) between dimer or polymer, and copper/nickel/cobalt/rhodium, III: 354–360 corresponding monomeric form, ruthenium-catalyzed, III: 352–354 XXIII: 266 Meta meso-tethered cofacial porphyrins, synthetic route to water–soluble porphyrin XXI: 89 tetramer, XXIII: 265 Metal-metal bond of molecular tectonics, Metazoans, heme synthesis intermediate XIII: 305 transport in, XV: 7 Metal-NO bonding complexes, V: 126 Methane, XIX: 5 Metal-oxide nanoparticles, XVIII: 185–190 MCR-catalyzed synthesis of, XIX: 6

porphyrin/TiO2 for photoelectrochemistry, Methane formation by MCR, mechanism of, XVIII: 186 XIX: 25–30 Metal-oxygen bonding, metallotetrapyrrole- mechanism I, XIX: 26–27 fullerene dyads and, I: 322–325 feasibility, XIX: 26 Metal-to-ligand charge transfer (MLCT) mechanism II, XIX: 28–29 and open-shell substituted transition-metal feasibility, XIX: 29–30 phthalocyanines, III: 283 mechanism III, XIX: 30 transitions, between metal/ring π orbitals, mechanism IV, XIX: 30–32 XIV: 479 mechanism of MCR with substrate analogs, Metathesis reaction, tetrapyrrole macrocycle XIX: 32–38 derivatization by, II: 195 mechanisms and mechanistic Metathesis, XXIII: 181–189, 264–269 considerations, XIX: 30–32 of allylporphyrin with acrylate ester, studies with analogs that rapidly form XXIII: 185 Alkyl–Ni intermediates, boronation via 1,4-addition reactions, 185 XIX: 32–34 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 167 FA

Cumulative Index to Volumes 1–25 167

studies with CoBSH analogs to decrease Methyladeninylcobamide, XXV: 139 rate of decay of intermediate, Methylation of propionate side-chain, XIX: 34–35 XX: 11–12 presteady-state kinetic studies, XIX: 36–38 Methyl bacteriopheophorbide a, XVII: 10 steady-state kinetics, XIX: 35–36 Methylcobalamin (MeCbl), XXV: 162 Methanobacterium thermoautotrophicus, crystal structure of, XXV: 146 XIX: 3 superpositions, XXV: 158 Methanochlorin, II: 262, II: 264 Methylcobamides, XXV: 233 Methanogenic Archaea, XXV: 176 Methylcob(III)inamide, reduction of, Methanogenesis XXV: 167 HSCoM, essential in, XIX: 9 Methyl-Co(III)-corrinoids, XXV: 175

pathway, XIX: 5 Methyl-com reductase and coenzyme F430, Methanogens, XIX: 3–4 biochemistry of beneficial effects of, XIX: 5 different coordination and oxidation states

containing F430, XIX: 9 of MCR, XIX: 18

Methanogens and factor F430, XIX: 3–6 coordination and oxidation state of F430,

Methanopyrus kandleri, C5-pathway to ALA XIX: 18–19 formation and, XV: 170–172 coordination and oxidation states of Methicillin-resistant Staphylococcus aureus MCR, XIX: 19–25 (MRSA), IV: 285–286, IV: 388–389 discovery and biosynthesis of nickel

Methionine synthase (MetH), XXV: 170–175 coenzyme F430, XIX: 8–9 catalyzes Cbl-dependent formation of genes encoding MCR, XIX: 8 methionine (Met) from homocysteine isolation and activation of MCR, (Hcy) and demethylation of N 5- XIX: 14–15 methyltetrahydrofolate (MeTHFt) to MCR, XIX: 6–7 tetrahydrofolate (THFt), XXV: 173 mechanism of methane formation by MCR, catalyzes formation of methionine (Met) XIX: 25–30 from homocysteine (Hcy) and mechanism of MCR with substrate demethylation of N5-methyltetrahy- analogs, XIX: 32–38 drofolate (Me-THFt), XXV: 172 mechanisms and mechanistic Methoxy-23-carbabenziporphyrins, synthesis considerations, XIX: 30–32

and protonation of, XVI: 262 methanogens and factor F430, XIX: 3–6 Methoxy group, and semisynthetic BChl properties of MCR Substrates — mimics, I: 289 Methyl–SCoM and CoBSH, Methoxyoxybenziporphyrins, synthesis from XIX: 8–9, XIX: 14

dimethoxybenziporphyrins, XVI: 134 structure of MCR and bound F430, Methyl 32-substituted pyropheophorbides, XIX: 15–18 XI: 241–243, XI: 243–244 Methyl corrinoids, radical induced Methyl 3-carbonylated pyropheophorbides, demethylation of, XXV: 163 XI: 248 Methylene glutarate mutase (MGM), Methyl 3-ethynylated pyropheophorbides, XXV: 190–191 XI: 245–246 Methylimidazolyl-cobamide, XXV: 139 Methyl 3-substituted pyropheophorbides, Methylmalonyl CoA mutase (MCM), XI: 246–247 XXV: 183–186, 203 Methyl cis 32-phenyl-pyropheophorbides, interconverts (R)-methylmalonyl-CoA and XI: 244–245 succinyl-CoA, XXV: 185 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 168 FA

168 Cumulative Index to Volumes 1–25

structures of substrate-loaded, XXV: 186 Met8p, XIX: 119 Methyl pheophorbide, IV: 33, IV: 233–236 structures of, XIX: 119 Methyl pyropheophorbide a, XX: 66 Metvix (ALA-methyl ester), IV: 8 Methyl–SCoM Reductase (MCR). See MCR MgCh. see magnesium chelatase (MgCh)

Methyl , B12-dependent, Mg-dependent PBGS octamer of XXV: 170–181, 244A–245A P. aeruginosa, XXV: 17 corrinoid enzymes in radical methylation MgPc absorption spectra, IX: 21–24 reactions, XXV: 179–181 Mg-Proto IX methyltransferase (MgMT), corrinoid methyl transferases in acetate XX: 159 metabolism, XXV: 177–179 Mg-protoporphyrin IX, XX: 5, XX: 222 corrinoid methyl transferases in Mg-protoporphyrin IX monomethyl ester, methanogenesis, XXV: 175–177 XX: 5, XX: 222 heterolytic methyl group transfer in methyl Mg-protoporphyrin (Mg-Proto) IX group transferases, XXV: 171 monomethyl ester (ME) cyclase methionine synthase, XXV: 170–175 (MgCY), XX: 148, XX: 159 Methyltransferase, XX: 8 MgTBMAP reaction mechanisms of, XX: 12 Fluorescence spectra in pyridine, XVI: 366 Methyl transfer equilibrium of MeCbl, solubilities of, XVI: 353 XXV: 158 MgTBTAP Methyl transfer reactions Fluorescence spectra in pyridine, XVI: 366 methyl transfer to alkylthiols, X: 334–337 solubilities of, XVI: 353 methyl transfer to inorganic arsenics, Micelles, IV: 354, IV: 363–366 X: 337–338 block copolymer with tetraphenylporphyrin Methyl triethoxysilane (MTEOS), optical and galactoside, IV: 368–369 sensors and, XII: 172 micelle-forming detergents, IV: 329 Methylamine dehydrogenase (MADH), micelles as carrier systems, IV: 329 conversion to alanine via mutagenesis, paclitaxel in chlorin-based micelles, V: 218 IV: 372 Methylated-BSA (m-BSA), IV: 127, IV: 128, polyion complex micelles (PICM), IV: 156 IV: 371–372, IV: 380–382 Methylene group polymeric micelles, IV: 366, IV: 380–382, examples of phthalocyanines with IV: 384 substituents connected to core via, poly(N-isopropylacrylamide) (PNIPAM) III: 46–60 micelles, IV: 384 preparation of phthalocyanines with reverse micelles, IV: 308, IV: 365 substituents connected to core via, SN-38 (7-ethyl-10-hydroxy camptothecin) III: 45, III: 61 in chlorin-based micelles, IV: 373 Methylenephthalimidine, as precursor of TBP styrene–maleic acid copolymer micelles metal complexes, XIII: 17 containing ZnPP (SMA-ZnPPIX), Methylmalonyl-CoA mutase, electrochemical IV: 382–384 1,2-migration of functional groups and, tetraphenylchlorin-based dendritic system, X: 321–324 IV: 372–373 Methylmalonyl-CoA mutase-like reactions, See also Liposomes; Passive targeting

apoenzyme model/B12 model complexes Michaelis-Arbuzov reaction sequences, and and, X: 328–331 alkenyl/alkynyl substituents of Met1p, XIX: 119 phthalocyanines, III: 35 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 169 FA

Cumulative Index to Volumes 1–25 169

Michaelis-Menten parameters of IDO/TDO, cyanide of five-/six-coordinate Mn(II) V: 84 porphyrins (axial ligand bands), Michl’s perimeter model, XXIII: 291–296 VII: 448 complex and real wavefunctions, dioxygen of five-/six-coordinate Mn(II) XXIII: 293 porphyrins (axial ligand bands), HOMO/LUMO level, circulation, 295 VII: 444–445 UV-visible spectrum of benzene based on distinguished areas (general information), DFT geometry optimization and VII: 442–443 INDO/s calculation, XXIII: 292 imidazoles of five-/six-coordinate Mn(II) Microelectronics. See Conductors/ porphyrins (axial ligand bands), semiconductors for hybrid electronics VII: 444 Microorganisms, targeting of. See metal-sensitive bands (square planar Mn(II) Antimicrobial PDT porphyrins/analogs), VII: 443 Microperoxidases, XXI: 384 M(II)/M(III) porphyrins (redox-/spin- Microscopy. See Infrared spectroscopy/ state-sensitive bands), VII: 450–451 microscopy nitric oxide of five-/six-coordinate Mn(II) Microwave-assisted reactions porphyrins (axial ligand bands), metal complexes synthesis using, II: 196 VII: 448–450 monomode and multimode scientific porphyrin π-cation radicals, VII: 451–452 equipments for, II: 195 Mie theory, XII: 359 phthalocyanine synthesis using, II: 196 Migration reactions synthesis of porphyrins using, II: 196 1,2-migration of functional groups on traditional methods and, II: 195 cobalt complexes, X: 320–321 Microwave-assisted synthesis of artificial enzymes composed of apoenzyme

5-(4-aminophenyl)-10,15,20- model/B12 model complexes, triphenylporphyrin complexes, X: 327–334 II: 199–200 carbon-skeleton rearrangement reactions, β-formylated porphyrins, II: 202 X: 319–320 heptanitrated macrocycles, II: 201 electrochemical 1,2-migration of functional 5-(4-hydroxyphenyl)-10,15,20- groups, X: 321–326 tritolylporphyrin complexes, II: 197 Mimics of chlorosomal bacteriochlorophylls. meso-alkoxyphenylporphyrins, II: 201 See Bacteriochlorophylls (BChl); Fully meso-(4-methylphenyl)porphyrin, II: 200 synthetic self-assembling BChl mimic meso-tetraarylporphyrins, II: 196 Mimics. See Superoxide dismutases (SODs) meso-tetrakis(3-hydroxyphenyl)porphyrins, mimics

II: 197 MintPo/Mext, and double component systems of meso-tetrakis(3-nitrophenyl)porphyrins, tectons, XIII: 338, XIII: 340–347, II: 200 XIII: 371–380 meso-tetra(4-pyridyl)porphyrin, II: 200 Mitochondria targeting by photosensitizers, mono- and di-sulfonamidophenylporphyrins, IV: 385–386 II: 203–204 Bcl-2 localization, IV: 408, IV: 411 tetranaphthoporphyrins, II: 203, II: 205 binding by positively charged Mid-infrared (MIR) absorbance spectra metallophthalocyanines, IV: 80–82 carbon monoxide of five-/six-coordinate 9-capronyloxytetrakis (methoxyethyl) M(II) porphyrins (axial ligand porphycene (CPO), IV: 408–409, bands), VII: 446–448 IV: 410 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 170 FA

170 Cumulative Index to Volumes 1–25

chlorin conjugates, IV: 352 and transport of CPgenIII into/PPgenIX cytochrome c release in apoptosis, IV: 385, within mitochondria, XV: 12–13 IV: 405–406, IV: 408, IV: 409–410, and transport of heme precursors between IV: 416, IV: 419 cytosolic enzymes, XV: 10 – and biguanidine–porphyrin Mitochondrial-anchored protein conjugates, IV: 278–279 (MAPL), and cargo delivery during HPPH, IV: 259, IV: 271 heme transfer via MDVs, XV: 35–36 metallophthalocyanine (MPc), IV: 67, Mitochondrial-derived vesicles (MDVs), IV: 70, IV: 80, IV: 84 delivering cargo during heme transfer mitochondrial membrane integrity loss, via, XV: 35–36 IV: 409–410 Mitoferrin (Mfrn) PEG-porphyrins, IV: 368 and FECH interaction with iron-binding photodamage to Bcl-2, IV: 408–410, proteins, XV: 97–99 IV: 432 and FECH mechanism model, XV: 106

photodamage to Bcl-xL, IV: 408–409, Mitofilin, and maintaining morphology of IV: 412 cristae during heme transfer, XV: 35 positively charged dyes, IV: 80 Mitogen-activated protein kinase (MAPK), protoporphyrin-IX (PPIX), IV: 371 IV: 430–431, IV: 435 pyropheophorbides, IV: 35 Mixed aldehyde condensation, XXIII: 93 singlet oxygen, IV: 306 Mixed condensation of two Mitochondrial import of FECH, XV: 100–101 dipyrromethane–carbinols, XXIII: 110 Mitochondrial inner membrane (IM) Mixed high-spin/intermediate-spin complexes and crystal structures of FECH, XV: 67–68 axial ligands for formation of pure and heme synthesis intermediate transport, intermediate-spin complexes, XV: 7–9 VII: 58–61 and maintaining morphology of cristae and electronic ground state in during heme transfer, XV: 35 intermediate-spin complexes, subcellular localization of FECH activity VII: 70–75 and, XV: 54 and electronic ground states in and transport of ALA out of mitochondria, intermediate-spin complexes, VII: XV: 10 70–75 Mitochondrial intermembrane space (IMS), formation of pure intermediate-spin and maintaining morphology of cristae complexes, VII: 58–70 during heme transfer, XV: 35 general considerations, VII: 57–58 ∆ψ Mitochondrial membrane potential ( m), and porphyrin ring deformation for IV: 409–410 formation of pure intermediate-spin Mitochondrial outer membrane (OM) complexes, VII: 61–70 and heme synthesis intermediate transport, Mixed-metal anthracene-linked porphyrins, XV: 7–8 XXI: 93 and heme uptake in gram-negative bacteria, Mixed-metal hybrid hemoproteins, XV: 19 reconstituted hemoproteins and, V: 27 subcellular localization of FECH activity Mixed (phthalocyaninato) (porphyrinato) and, XV: 55 double-decker complexes tethering to ER, XV: 33–34 crystallographic molecular structure, as and transport of ALA out of mitochondria, sandwich-type tetrapyrrole rare earth XV: 10 complexes, XIV: 287–290 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 171 FA

Cumulative Index to Volumes 1–25 171

electrochemical properties of, (NCTPP)(NCTPPH2), II: 308 XIV: 427–431 (NCTPP)(py), II: 308 electronic absorption spectroscopy of, Mn(III) complex of XIV: 319–326 (NCTPP)Br, II: 306 infrared (IR) vibrational spectroscopy of, (NCTPP)(py) , II: 308 2 XIV: 365–368 Mn(III) N,N′-dialkylimidazolylporphyrins, resonance Raman (RR) spectra of, SOD mimics and, XI: 321 XIV: 398, XIV: 401–413 Mn(III) N,N′-dialkylpyramidazolylporphyrins, synthetic method, as sandwich-type SOD mimics and, XI: 321 = tetrapyrrole rare earth complexes, Mn(PFP)Cl (PFP F20TPP) catalyzed XIV: 265, XIV: 269–270 amidations and aziridinations, Mixed phthalocyanine-porphyrin structures, XXI: 246–247 XVIII: 39–42 MnP Mixed (phthalocyaninato) (porphyrinato) in brain cancer model, medical effects of triple-decker complexes water-soluble metalloporphyrins and, electrochemical properties of, XIV: XI: 369 436–441, XIV: 436–441 in breast cancer model, medical effects of electronic absorption spectroscopy of, water-soluble metalloporphyrins and, XIV: 331–342 XI: 369 Mixed porphyrinato/phthalocyaninato in prostate cancer model, medical effects of triple-decker complexes, as water-soluble metalloporphyrins and, sandwich-type tetrapyrrole rare XI: 369 earth complexes, XIV: 295–300 in skin cancer model, medical effects of Mixed pyrrole condensation, XXIII: 92 water-soluble metalloporphyrins and, MMACHC protein, XXV: 210 XI: 368–370 Mn(II)Hp(H O) complex, structure of, MnPc/TcPc/RePc/RePc absorption spectra, 2 2 XVII: 137 IX: 49–54 Mn porphyrins Möbius aromaticity, hexapyrrolic expanded in mitochondria, XI: 355–356 porphyrins, I: 519–528 in nucleus/cytosol, XI: 356 Möbius tape, expanded porphyrins and pharmacokinetics and, XI: 356–358 topology of, II: 108 purity/characterization of, XI: 337–344 Möbius topology, II: 108, II: 150, II: 180, SOD mimicking versus Mn-transporting II: 183 mechanisms (stability), XI: 345–347 Modification of extended porphyrins, synthesis of, XI: 334–336 annelation of aromatic rings by, toxicity as medical effect of, XI: 380 XIII: 90–94 in vivo. See Biology effects of Modification of porphyrin core XXIII water-soluble metalloporphyrins catalytic C–heteroatom bond formation, in vivo accumulation of Mn porphyrins XXIII: 189–211 affected by cellular reductants, alkoxylation. C–O bond formation, XI: 356 XXIII: 197–200 Mn(II) complex of amination (Ullmann, Buchwald– NCTPP, II: 307 Hartwig). C–N bond formation, (NCTPP)Br and reversible conversion XXIII: 190–197 between Mn(III)(NCTPP2−)Br, phosphorylation. C–P bond formation, II: 306–307 XXIII: 206–211 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 172 FA

172 Cumulative Index to Volumes 1–25

sulfonylation. C–S Bond Formation, metathesis, XXIII: 264–269 XXIII: 200–206 Sonogashira reaction, XXIII: 235–252 classical modifications of peripheral Suzuki/Stille coupling, XXIII: 218–235 functional groups, XXIII: 212–217 Ullmann coupling, XXIII: 252–253 combined microwave–assisted alkyloxy transition metal catalyzed reactions, porphyrins synthesis, XXIII: 212 XXIII: 130–189 extending conjugation in porphyrin dimer “click” reaction, XXIII: 169–181 carbocations, XXIII: 214–215 Heck reaction, XXIII: 166–169 glycoporphyrins using Sonogashira reaction, XXIII: 159–166 trichloroacetimidates as glycosyl Suzuki reaction, XXIII: 134–159 donors, XXIII: 216 Modified 5-membered E-rings (semisynthetic monocarborane and tetracarborane chlorophylls), XI: 266–267 substituted porphyrins, Modified 6-membered E-rings (semisynthetic XXIII: 216–217 chlorophylls), XI: 267–271 one–pot synthesis of β-carboxy- Modified tetrapyrroles, biosynthesis of tetraarylporphyrins, XXIII: 213 alternative heme b branch, XIX: 151–154 classical reactions, XXIII: 114–123 from δ-aminolevulinic acid to first cyclic electrophilic substitution, intermediate, XIX: 145–148 XXIII: 114–121 siroheme branch, XIX: 148–151 nucleophilic reactions, XXIII: 122–123 Modular carrier systems for tumor targeting, nucleophilic addition reactions with IV: 36, IV: 330–331, IV: 341, IV: 374 organometallic compounds, Molecular break-junction device, hybrid XXIII: 123–130 electronics and, X: 303–304 ABCD porphyrins from ABC Molecular capacitor memory cells, hybrid

porphyrins via SNAr, XXIII: 129 electronics and, X: 300–302 ABC porphyrins from AB porphyrins Molecular controlled semiconductor resistor

via SNAr, XXIII: 128 (MOCSER), for NO detection, XII: 154

A2B porphyrins from A2 porphyrins via Molecular design of artificial hemes, V: 5

SNAr, XXIII: 127 Molecular devices (based on systems in

one–pot SNAr conversion with photosynthetic bacteria)

PyMe2SiCH2Li into antenna effects. See Antenna effect meso-formylporphyrins, background information, XI: 5–8 XXIII: 128 cofacial bis-etioporphyrins (chemical reaction with LiR/R′I combination to models), XI: 98–99 give ABCD porphyrins, cofacial bisporphyrins held by XXIII: 129 calix[4]arene spacer, XI: 44–46 synthesis of ABC porphyrins, cofacial bisporphyrins held by XXIII: 128 calix[4]arene spacer (chemical

trans–A2BC porphyrins by models), XI: 91–97 addition–substitution reaction, cofacial bisporphyrins held by flexible XXIII: 130 chains (chemical models), XI: 57–66 oligoporphyrins, XXIII: 218–269 cofacial bisporphyrins held by rigid spacers catalytic C–heteroatom coupling, (chemical models), XI: 67–91 XXIII: 258 cofacial bisporphyrins in singlet-singlet “click” reaction, XXIII: 258–264 studies (chemical models), Heck coupling, XXIII: 254–258 XI: 97–103 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 173 FA

Cumulative Index to Volumes 1–25 173

cofacial bisporphyrins in triplet-triplet theoretical treatments of electronic studies (chemical models), properties, XVI: 357–360 XI: 98–103 UV-vis spectroscopy, XVI: 360 cofacial system (chemical models), Molecular self-assembly XI: 56–57 biosensors and, V: 223–226 DFT and transfer rates, XI: 100 defined, V: 297 electron/energy transfers and, XI: 8–18 Molecular semiconductors, direct C(aryl)-F and metalation of Pacman bisporphyrins/ bonds and halogen-substituted biscorroles/porphyrin-corroles, phthalocyanines, III: 64–68 XI: 32–34 Molecular structures, alkenyl/alkynyl modulation of Ct-Ct distance by choice of substituents of phthalocyanines, appropriate spacer, XI: 35–41 III: 36–40 parameters of face-to-face, XI: 34–35 Molecular tectonics. See Tectons, reaction center structures for, XI: 50–56 porphyrin-based and synthesis of biscorroles, XI: 21–26 Molecular wires and synthesis of bisporphyrins, XI: 20–22 multiply linked porphyrin arrays and, and synthesis of porphyrin-corroles, I: 82–83 XI: 24, XI: 26–28 in p-phenylenebutadiynylenes/ and synthesis of trimacrocycle, XI: 28–32 p-phenylenevinylene, I: 154–157 (TPP)Rh (chemical models), XI: 99–101 Molecular writing devices, XIII: 232–233 2− trisporphyrin (chemical model), Mo(II)(NCTPP )(piperidine)2, synthesis of, XI: 100–103 II: 306 X-ray characteristics of bismetalated Molybdenum biscorroles, XI: 48–50 nitrogen cycle and, V: 128–129 bisporphyrins, XI: 42–44 unsubstituted Pcs (UV-vis absorption data) porphyrin-corroles, XI: 48 and, IX: 127 X-ray characteristics of monometalated Molybdenum-oxo complexes bisporphyrins, XI: 41–42 meso-aryl derivatives of, XIV: 572–573 porphyrin-corroles, XI: 46–48 octaalkyl derivatives of, XIV: 571–572 Molecular dynamics (MD) simulations, Mono- and di-sulfonamidophenylporphyrins, non-covalently linked hybrids and, microwave-assisted synthesis of, I: 174 II: 203–204

Molecular films, XII: 127–136 Mono- and disubstituted cis-A2 porphyrins via “Molecular graphite,” XVIII: 219 tripyrrane condensation, XXIII: 104

Molecular orbital (MO) theory, XXIII: 284 Mono- and disubstituted trans-A2 porphyrins, Molecular nanotechnology, XII: 352 synthesis of, XXIII: 104 Molecular self-assembly, XXII: 69 Mono-amine functionalized phthalocyanines, Molecular properties, hybrid phthalocyanine- XVIII: 272 tetrabenzoporphyrin macrocycles Monoanthraporphyrin, II: 32, II: 39 electrochemistry and spectroelectrochemistry, Monoazaporphyrin analogs. See TAPs and XVI: 372–375 mono-/di-/triaza porphyrin analogs, general solution phase properties and UV-vis absorption data reactivities, XVI: 352–356 Monobenzoporphyrin Magnetic Circular Dichroism (MCD), Diels-Alder reaction on sulfolenoporphyrin XVI: 363–364 in synthesis of, II: 85, II: 86 photophysics, XVI: 365–371 use of Ni β-formylTPP in synthesis of, spectroscopies, XVI: 371–372 II: 79, II: 80 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 174 FA

174 Cumulative Index to Volumes 1–25

Mono-bromo functionalized porphyrin, chlorin e6–linker–MAb conjugates, breaking Br–C bond for, XVIII: 32 IV: 166–169, IV: 337–339

Mono-(CaTBPP), XVIII: 16 chlorin e6–MAb conjugates, IV: 159, Monocarbaporphyrins, II: 113 IV: 160, IV: 330, IV: 335

Monocarboxylic acid (C1R3) derivatives, conjugation conditions, summary, XVIII: 19 IV: 182–185 on HOPG, XVIII: 21 diarylporphyrins with 4- Monocarboxyphenyl-triarylporphyrins in isothiocyanatophenyl, IV: 160–163, DSSCs, XVIII: 88 IV: 162–163 Monoclonal antibodies (MAb), IV: 332–343 5,15-disubstituted porphyrins with 5E8 MAb, IV: 335–336 phosphate groups, IV: 163–164 9.1 anti-BSA MAb, IV: 337 hematoporphyrin, IV: 158–159, IV: 170

17.1A MAb, IV: 161, IV: 167, IV: 170, mesochlorin e6–MAb–linker conjugate, IV: 338–339 IV: 339–340 35A7 (CEA) MAb, IV: 161–162, IV: 164 multiplying units, IV: 330–331, IV: 335, 425 mMAb, IV: 160, IV: 164, IV: 333–334 IV: 342, IV: 369, IV: 374 anti-CD3ε MAb, IV: 163 photoimmunotherapy, overview, IV: 330, anti-CD104 MAb, IV: 162 IV: 332–333 anti-HER2 MAb, IV: 160, IV: 343 pyropheophorbide a (Ppa), IV: 159–160 anti-Leu-1 MAb, IV: 166, IV: 167, IV: 337 tetra(meta-hydroxyphenyl)chlorin, anti-M1 tumor MAb, IV: 158 IV: 160–161, IV: 333–334 anti-mOGG1 MAb, IV: 159 See also Active targeting; Conjugates B16G MAb, IV: 158–159 Monoelectronic oxidation of pyrrole- BIWA 4 MAb, IV: 334–335 containing derivatives, formal potentials C225 anti-EGFR MAb, IV: 159, IV: 335, for, XVII: 330–360 IV: 338 Monogalactosyl diglyceride (MGDG), micelle chimeric monoclonal antibody (cMAb), formation and BChl self assembly, IV: 160, IV: 164, IV: 333, IV: 338 I: 245 E48 mMAb, IV: 160, IV: 164, IV: 334 Mono-glycosylated phthalocyanines, EpCAM MAb, IV: 162 XVIII: 253 FSP 77 anti-ErbB2 MAb, IV: 161–162, Monoheme cytochrome c, XIX: 160–163, IV: 164 XIX: 374 L19 MAb, IV: 160 3D structures of, XIX: 161 OC125 MAb, IV: 169, IV: 338, IV: 342 Monomer vs. dimer porphyrins, and artificial OV-TL MAb, IV: 339–340 photosynthetic systems, X: 190–196 phage antibody libraries, IV: 170, IV: 332, Monomeric biliverdin complexes, IV: 342 M(II)(OEB), VIII: 312–318 Rituximab, IV: 340–341 Monomeric macrocycles, XXI: 11 U36 cMAb, IV: 160, IV: 164, IV: 333 corroles, XXI: 33–39

See also Antibody fragments (Fab) H2O2 dismutation chemistry, Monoclonal antibody (MAb)–photosensitizer XXI: 38–38 conjugates, IV: 157–164, IV: 332–343 oxygen evolving reaction (OER) aluminum phthalocyanine tetrasulfonate chemistry, XXI: 37–38

(AlPcS4), IV: 164, IV: 165, oxygen reduction reaction (ORR) IV: 334–335 chemistry, XXI: 35–37 benzoporphyrin derivative (BPD), IV: 159, synthesis and structure, XXI: 33–35 IV: 165–166, IV: 335–337, IV: 338 superstructured porphyrins, XXI: 12–32 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 175 FA

Cumulative Index to Volumes 1–25 175

H2O2 dismutation chemistry, XXI: 32 Mono-pyridine functionalized porphyrin, oxygen reduction reaction (ORR) XVIII: 26 chemistry, XXI: 23–32 MoPc absorption spectra, IX: 45–49 synthesis and structure, XXI: 12–23 Mosher, chiral amide (chiral picket fence Monomeric porphyrins, XXI: 40, 89 porphyrins) of, X: 25 Monomers, antenna pigments and, XI: 7 Mössbauer experiments, Compounds I/ES and alkylammonium, for electrochemical freeze-quench, V: 310–313 polymerization, XII: 237–238 Mössbauer spectroscopy, and [2Fe-2S]+ cluster Monometalated bisporphyrins, X-ray as cofactor of FECH, XV: 62–63 characteristics of, XI: 41–42 Motexafrin (Xcytrin), IV: 47, IV: 49 Monometalated porphyrin-corroles, X-ray Motivation for reaction-induced FTIR characteristics of, XI: 46–48 difference spectroscopy, VII: 462–463 Mononaphthoporphyrin, II: 31, II: 37 MPc complexes, XXIV: 403–404 Mononaphthotrisulfobenzoporphyrazines MPc. See Metallophthalocyanine (MPc) (M-NSBP), IV: 85–86, IV: 282 MPc thin-films, XVIII: 222–224 Mononitration, example, XXIII: 124 color change of films, XVIII: 223 Mononitrosyl species, XXII: 268 cyclic voltammograms, XVIII: 223 heme nitrosyls, XXII: 268–279 MPer2, heme sensor proteins and, XV: 419 non-heme nitrosyls, XXII: 279–280 MPyP, XVIII: 27 Mononuclear terminal of iron-oxo complexes, chemical structures of, XVIII: 29 XIV: 556–560 on Cu(111), XVIII: 29

Mononuclear tetrapyrrole L1M1 complexes/ MtaC, B12-binding domain, XXV: 177 associates, coordination chemistry of MTTDPz, XVIII: 217 open-chain oligopyrroles and, polymorphs, XVIII: 219 VIII: 410–428 resolved crystal forms for, XVIII: 218 Monooxygenases. See also Cytochrome P450 m-THPC. See Tetra(meta-hydroxyphenyl)- enzymes chlorin (m-THPC) oxygen rebound mechanism of catalysts in, Multifrequency electron paramagnetic V: 190 resonance spectroscopy, peroxidases Monooxygenase enzymes of cytochrome and, VI: 370–372 P450, and need for mimicking Multifunctional agents, IV: 288 enzymatic systems, XII: 229 5-aminolevulinic acid (ALA) derivatives, Mono-α-protected pyrrole XXIII IV: 10

A2B2 porphyrin starting from, conjugates for chemotherapy and PDT, XXIII: 100 IV: 339–340 Monoprotonated carbaporphyrins, relative conjugates for fluorescence imaging and energies of, XVI: 34 PDT, IV: 289–293 Monosaccharides, conjugates with conjugates for magnetic resonance (MR) carbohydrates, XVIII: 242–259 imaging and PDT, IV: 294–297 Monosubstituted-alkyl substituents conjugates for nuclear imaging and PDT, semisynthetic chlorophylls, IV: 297–302 XI: 250–253 folic acid conjugates, IV: 35 Monosubstituted-methyl substituents HPPH conjugates for MRI and PDT, (semisynthetic chlorophylls), XI: 250 IV: 294–297 β Mono- -substituted trans-A2B porphyrin, HPPH conjugate with cyanine dye (CD), XXIII: 105 IV: 290–293 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 176 FA

176 Cumulative Index to Volumes 1–25

HPPH nanocrystals, IV: 307 Multiporphyrin self-assembled complexes, 123 I-based photosensitizers for PET and XXII: 77 PDT, IV: 302, IV: 303–304 Multistate extension MS-CASPT2, XXII: 172 124 I-based photosensitizers for PET and Multistep photoinduced electron transfer

PDT, IV: 299–303 and driving force dependence of log ket, killer beacons, IV: 394 X: 206–208 nanoparticles, IV: 304–305 and energy levels/spectra of PhCN, organically modified silica (ORMASIL)- X: 209–211

based nanoparticles, IV: 307–310 and ferrocene unit attached to ZnImP–C60, polyacrylamide (PAA)-based nanoparticles X: 203–206 for MRI and PDT, IV: 310–312 quantum yield and, X: 208–209 See also Tumor imaging time profiles of, X: 205–207 Multiheme cytochromes Multi-wall carbon nanotubes (MWCNTs), class III cytochrome family, XIX: 167–196 V: 246–249 cytochrome c nitrite reductase NrfHA, amperometric sensors and, XII: 196–197 XIX: 196–199 as electron-donor-acceptors, I: 135 dimeric diheme split-soret cytochrome c, Mus musculus, and [2Fe-2S]+ cluster as XIX: 163–167 cofactor of FECH, XV: 63 BLAST search, XIX: 165 Mutagenesis, epPCR and, V: 217–218 Multiple wall carbon nanotubes (MWNT), Mutant porphyrinoids, II: 298 electron transfer systems and, Mutations. See also Heme biosynthesis I: 203–204 congenital erythropoietic porphyria (CEP), Multiply linked porphyrin arrays, and XV: 186 conjugated porphyrin arrays, I: 78 erythropoietic protoporphyria and, Multiplying units in PS–antibody conjugates, XV: 101–104 IV: 330–331, IV: 335, IV: 342, erythropoietic protoporphyria (EPP) and, IV: 369, IV: 374 XV: 203 See also Dendrimers; Linkers in GAF domains and, XV: 151–152 conjugates; Monoclonal antibody iron metabolism-related disorders and, (MAb)–photosensitizer conjugates XV: 104–106 Multi-porphyrin arrays, XVIII: 33–35 knockout (KO)/knockin (KI) models and, Multiporphyrin arrays, cross-metathesis in XV: 105–106 synthesis of, II: 237 variegate porphyria (VP), XV: 199 meso-/β-brominated porphyrins and Mulzer’s synthesis of monocyclic building

synthesis of, I: 7 blocks for vitamin B12, XXV: 300–301 reviews of, I: 5 formation of A–B component for cobyric See also Cyclic multi-porphyrin arrays; acid from common precursor, Linear multi-porphyrin arrays; XXV: 301 Porphyrin arrays MXCXXC motif, XXV: 52 Multiporphyrin complexes containing Mycobacterium tuberculosis, IV: 284–285 Cu-porphyrin, energy-level diagram of and [2Fe-2S]+ cluster as cofactor of FECH, excited states for, XXII: 111 XV: 63, XV: 66 Multiporphyrin noncovalent syntheses. See FECH activity and, XV: 54 Noncovalent syntheses of FECH purification and, XV: 57 multiporphyrin species in aqueous GAF domains and, XV: 148, XV: 151 solution KatGs from, VI: 394–396, VI: 427 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 177 FA

Cumulative Index to Volumes 1–25 177

Myeloperoxidase (MPO), XIX: 51 N,N-Bidentate diphenyl boron chelates as as component of superfamily of animal analogs, BODIPYs and, VIII: 145–148 peroxidase, VI: 430–431 N-bromosuccinimide, as a brominating agent resonance raman (RR) frequencies and, of choice, II: 206–207 VI: 431–435, VI: 437 N-confused and N-fused sapphyrins, synthesis structure of, 52 of, XVI: 289 Myoglobin model compounds, XXIV: 192 N-confused Myoglobin, VII: 360–361 bilane, oxidative cyclization to give 3D structure of sperm whale, V: 12 N-confused corrole, and biosensor fabrication and, V: 264–266 neo-confused corrole, XVI: 307 and ligand diffusion regulation in horse diselenasapphyrin, II: 351, II: 353 heart, V: 13 dithiasapphyrin, X-ray structure of, II: 351,

O2 affinity and, V: 9 II: 353 reconstitution with rMb, V: 7 gable porphyrin, X-ray structure of sperm whale heme plane and, V: 17–18 rhodium-fastened, II: 317, II: 318, Spirographis heme and, V: 8 II: 319 Myoglobin function regulation heteroporphyrins, II: 133 corrphycene and, V: 33 isoquinoporphyrin, II: 248,II: 249 hemiporphycene and, V: 33–34 m-pyriporphyrins, II: 129–130 porphycene and, V: 32–33 aromatization of N-acetylderivative of, Myxococcus xanthus II: 130 FECH purification and, XV: 57 meso-tetra-arylpyriporphyrins, synthesis and UROGEN conversion to heme, and related thia-analogs, XVI: 188 XV: 187 “porphine,” synthesis of, XVI: 220 UROGEN conversion to heme (PPO) and, oxaporphyrins, II: 134 XV: 197–199 tetrakis(pentafluorophenyl)porphyrin, one-pot vs. condensation-based N synthesis of, II: 299 1,4-Naphthiporphyrin N-confused calix[n]pyrroles, XVIII: 144–145

in CDCl3, 500 MHz proton NMR spectrum N-confused porphyrin (NCP), II: 106, II: 107, of, XVI: 173 III: 430–432, IV: 55–56, XVI: 4, interconversion via teeter-tottering process, XVI: 197–221, XVI: 241 XVI: 171 as a carbaporphyrin, II: 298 synthesis with exocyclic double bonds, alkylation and nitration of, XVI: 202 XVI: 176 cis-doubly NCPs 5-Nitroporphyrins, nucleophilic substitution protonation and deprotonation of, reactions of, XXIII: 123 XVI: 253 2,3-Naphthoporphyrins, II: 31–32, II: 37 core modified N-(2-Cyclohexyloxy-4-nitrophenyl)-methane further synthesis of, XVI: 207 sulfonamide (NS-398), IV: 428–429 synthesis, tautomerization and N-Alkylated corroles, XVIII: 159–160 protonation of, XVI: 205 tautomerism, XVIII: 160 bridged, synthesis, XVI: 230 tautomers of oxocorrologen, XVIII: 159 delocalization pathways of porphyrins, N-Alkylated porphyrins, XVIII: 157–158 m-benziporphyrin and, II: 109 N-arylquinolino[2,3,4-at]porphyrins, II: 241, etheno-bridged, synthesis, XVI: 203 II: 244 etheno-bridged NCPs, synthesis of, XVI: 203 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 178 FA

178 Cumulative Index to Volumes 1–25

evidence of aromaticity of, II: 114 reaction of Cu(OAc)2 under aerobic and hexaalkyl NCPs, MacDonald-type “3 + 1” anaerobic conditions with, synthesis of, XVI: 219 II: 326–327 21-hydroxyNCP, metalated NCPs and reactions of Co(II) complex of, II: 315–317 tautomers of, XVI: 200 reactions of Co(III) complex of, II: 311–315 iron complexes, reduction of, II: 315 reactions of Co(NO ) .6H O with, II: 311, 3 2 2 ligands II: 316 deprotonation of, II: 304 synthesis and anion binding of tin flexibility toward metal oxidation states complexes of, II: 336 and, II: 304 synthesis and reactions of zinc complexes meso-unsubstituted NCPs of, II: 329–330, II: 331 MacDonald-type “3 + 1” synthesis of, synthesis of, II: 299 XVI: 210 X-ray structure of Co(III) complex, II: 316 protonation of, XVI: 211 X-ray structures and reactivity of nickel metalated NCPs, and tautomers of complexes of, II: 322–324 21-hydroxyNCP, XVI: 200 N-confused thiaporphyrins, II: 134 metal complexes N-domain, hemopexin and, XV: 246–248 agostic interactions and, II: 304, II: 305 N-end rule pathway, heme sensor proteins and, periodic table of elements and, II: 302 XV: 425 modifications of, II: 114, II: 115 N-ethylporphyrinoids, upfield region for Nickel(II) derivatives of, XVI: 200 500-MHz proton NMR spectrum of, ORTEP III drawings, XVI: 193 XVI: 147 as porphyrin isomer in standard N-fused isophrolin P(V) complex, X-ray condensation reaction, II: 111 structure of, II: 347, II: 349, II: 350 silver(III) and gold(III) complexes of, N-fused pentaphyrins/metalation, XVI: 201 pentapyrrolic expanded porphyrins, 2-substituted I: 514–515 metalation of, XVI: 216 N-fused phrolin P(V) complex, synthesis of, and related carbaporpholactams, II: 349, II: 350 synthesis and protonation of, N-fused porphyrin (NFP) XVI: 214 constitutional isomers of, II: 115–116 synthesis of aromatic, XVI: 195 coordination of constitutional isomers of tautomeric equilibrium of, II: 109 porphyrin derived from, II: 116–117 tautomers of, XVI: 199 as a ‘mutant’ of NCP, II: 298 tetra-aryl-NCPs shrinked coordination cavity of, II: 115 synthesis and protonation of, XVI: 198 synthesis and ring opening of, XVI: 202 trans-doubly NCPs N-fused porphyrin/acetylene derivative synthesis and metalation of, XVI: 250 coupling, Sonogashira C-C coupling N-confused sapphyrin, reactions and, III: 344 crystal structure of, II: 178 N-fused porphyrinato ligands X-ray structure of tetrabutyl ammonium cyclopentadienyl(Cp) ligands and, II: 347, salt of, II: 354 II: 348 N-confused tetra(4-tolyl)porphyrin (NCTTP) tris(pyrazolyl)borate(Tp) ligands and, nickel complex, synthesis of, II: 320 II: 347, II: 348 N-confused tetraphenylporphyrin (NCTPP) N-fused porphyrins (NFPs), ring-opening iridium complexes of, II: 318–319, II: 321 reactions to NCP derivatives of, iron complexes of, II: 309–315 II: 339–341 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 179 FA

Cumulative Index to Volumes 1–25 179

N-fused sapphyrin Re(I) complex, synthesis functionalized with PAMAM dendrimers, of, II: 354, II: 355 I: 194–195 N-fused sapphyrin, synthesis of, II: 354, and grafting to form SWNT-PVP/ZnP II: 355 nonohybrids, I: 193–194 N-(Porphyrin-2-ylmethyl)glycine, as a placing pyridyl isoxazolino functionalities precursor to 1,3-dipole moiety, II: 267, along sidewalls of, I: 190 II: 269 RuP functionalization and, I: 190–191 n-Heptane as BChl mimic solvent, I: 256–257, using surface to integrate I: 259–260 porphyrins/phthalocyanines as n-Hexane as BChl mimic solvent, I: 256, I: 258 chromophores, I: 186–190 N-Hydroxyalkylated pyrrole-bearing short Nanomaterials chains, XVII: 304 application/use of, V: 236–237 N-Hydroxysuccinimide (NHS) esters and carbon nanotubes and, V: 246–249 conjugates, IV: 143, IV: 150, IV: 153, importance of, V: 229, V: 236–237 IV: 159–160, IV: 170–173 metal nanoparticles and, V: 237–240 N-Methylated and S-methylated P450cam metallic chalcogenide nanoparticles and, active site analogs, XXIV: 199 V: 240–246 N-Methyltetraphenylporphyrins, crystal nanocomposite materials and, V: 249–251 structures of, XVIII: 158 and sol-gel process, V: 234–235 N-phenylquinolino[2,3,4-a,t]porphyrins, Nanometer-scale particles, nanoparticles (NP), β-nitroTPP in synthesis of, II: 77 XVIII: 172 N-substituted pyrazole porphyrins, selected 1H Nanometer scale structures NMR shifts, XVI: 235 defined, I: 133 N-substituted pyrazoloporphyrins, nanotubules, I: 174–175 MacDonald-type “3 + 1” synthesis, regulatory forces of, I: 135–137 XVI: 232 rotaxanes/catenanes and solar energy, η1-Palladio/platinio porphyrins, XVIII: 336 I: 178–179 η1-palladioporphyrin, iodination of, XXIII: 121 Nanoparticles (NPs), IV: 374–385 Na Pc absorption spectra, IX: 17–21 biodegradable nanoparticles, IV: 380–385 2 NADPH, rapid-scanning stopped-flow studies ceramic nanoparticles doped with drugs or of P450BM3 and, V: 322–323 dyes, IV: 376 Nafion ℘ as polymeric matrix coating, delivery across blood–brain barrier, IV: 59 XII: 138, XII: 284–285, XII: 311 as drug carriers, overview, IV: 303, Nafion, XXI: 31, 130 IV: 306, IV: 374–376 Nanobiomaterials EPR effect (enhanced permeability and design/preparation of biocatalysts and, retention), IV: 314, IV: 376–377 V: 48–49 gold nanoparticles coated with hemoprotein assembly and, V: 53–57 phthalocyanines, IV: 84–85, and immobilization of hemoproteins on IV: 312–314, IV: 376–378 membranes/electrodes, V: 49–53 human serum albumin (HSA), IV: 384–385 Nanocarbons, X: 227. See also inorganic nanoparticles, IV: 376–380 Porphyrin–nanocarbon composites lysosome targeting by conjugates, IV: 36, Nanocomposite materials, biosensors and, IV: 306, IV: 386 V: 249–251 as multifunctional agents, IV: 304–305 Nanoconjugates — carbon nanotubes nanocrystals, IV: 306–307, IV: 314 applying Suzuki coupling reactions, organically modified silica (ORMASIL)- I: 191–192 based nanoparticles, IV: 307–310 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 180 FA

180 Cumulative Index to Volumes 1–25

PEGylated gold nanoparticles, porphyrins/titania nanocomposites IV: 313–314, IV: 377–378 dye-semiconductor bond and efficiency pentafluorophenylcorrole derivatives, of DSSCs, XII: 389–391 IV: 59 interface design at nanoscale level, pentafluorophenylcorroles, IV: 59 XII: 387–389 photon upconverting nanoparticles introduction, XII: 384–387 (PUNP), IV: 379–380 morphology/supramolecular

pH-sensitive drug delivery systems, IV: 384 organization on TiO2 surface, polyacrylamide (PAA)-based nanoparticles, XII: 391–393 IV: 310–312 possible hazards of, XII: 353–356 poly(D,L-lactide-co-glycolide) (PLGA), as preferable to simple metallic surface, IV: 384 XII: 364–365 polymer nanofibers, IV: 387 silica nanoparticles poly(N-isopropylacrylamide) (PNIPAM), fluorescent probes, XII: 399–400 IV: 379, IV: 384 introduction, XII: 393–396 quantum dots (QD), IV: 378–379 PDT agents, XII: 396–399 styrene–maleic acid copolymer micelles photodevices, XII: 400–401 containing ZnPP (SMA-ZnPpIX), unique photophysical properties of, IV: 382–384 XII: 357–358 See also Liposomes; Micelles; Passive Nanoreactors, XII: 394–395 targeting Nanoscale engineering, XII: 352 Nanoparticles with porphyrins/related systems Nanosized heterocomposites containing QD (applications) and multiporphyrin complexes, creation, general information/historical aspects of, XXII: 129 XII: 352–358 Nanostructures, plant, I: 225–226 general overview of applications, XII: 354 Nanostructures, self-assembled porphyrin

phototherapy and imaging on hybrid and CO2 reduction to CO, XI: 211–212 nanoparticles, XII: 368–370 coordination polymerization for synthesis polymeric nanoparticles of, XI: 188–190 fluorescent probes, XII: 402–403 importance of, XI: 182–183 introduction, XII: 401 ionic self-assembly for synthesis of, PDT, XII: 401–402 XI: 184–188 supported catalysts, XII: 404–405 as light-harvesting arrays for hydrogen porphyrins/carbon nanostructures production, XI: 210–211 carbon nanoparticles, XII: 381–384 and novel electrocatalysts for fuel cells, graphene, XII: 378–381 XI: 214–218 introduction, XII: 378 photoconductivity of, XI: 196–200 porphyrins/metal nanoparticles photovoltaics/dye-sensitized solar cells discussion, XII: 361–370 and, XI: 212–214 introduction, XII: 358–361 reductive photocatalysis/metal growth of, porphyrins nanoparticles, XII: 405–406 XI: 200–205, XI: 200–206 porphyrins/semiconductor nanocrystals reprecipitation for synthesis of, XI: 190–194 as sensors, XII: 375–378 solar hydrogen production and, introduction, XII: 370–371 XI: 205–210 PDT, XII: 374–375 UV-vis absorption/emission spectra of, quantum dots, XII: 371–373 XI: 194–196 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 181 FA

Cumulative Index to Volumes 1–25 181

Nanotechnology, XII: 352 synthesis and protonation of, XVI: 163 overview, IV: 302–306 Naphthohexaphyrin, II: 248, II: 249 Nanotechnology Consumer products Naphthoporphyrins Inventory, XII: 354 isoindole equivalents and oxidative method Nanotubes, dendrimers/conjugated polymers of synthesis of, II: 8–19 (macromolecules) and, III: 348 zinc template strategy and synthesis of, Nanotubules, non-covalently linked hybrids II: 7

(H2P/C60) and, I: 174–175 Native chromophore in biliproteins, Naphthalene-containing porphyrinoid systems, XXII: 39–41 XVI: 161–177 change, aspects, XXII: 39 Naphthalene dialdehydes, synthesis of, conformation, XXII: 42–47 XVI: 166 15E-isomer, XXII: 44 Naphthalene diamide chromophores, conformational freedom, XXII: 49 semisynthetic BChl mimics and, I: 294, deprotonation, XXII: 41 I: 296 mobility, XXII: 47–49 Naphthalene units linked with bis-porphyrins, protonation, XXII: 41 VII: 205–208 Natural abundance 1H{13C} -HMQC Naphthalene-1,8;4,5-bis(dicarboximide) bridged experiment porphyrin dimer, self-assembling 2D 13C natural abundance HMQC spectra, metalloporphyrins and, I: 93, I: 97 VI: 64–69 Naphthalenedicarboximide, and synthesis of 2D NMR techniques and, VI: 64–69

extended porphyrins by template Natural B12-riboswitches, XXV: 227–229 condensation, XIII: 29–30 Natural chlorophylls. See also Semisynthetic Naphthalocyanine (NPc), II: 42–43, II: 46, chlorophylls IV: 86–90 π-skeletal effect in organic solvents, absorption spectra, IV: 4, IV: 5 XI: 229–231 alkoxyl and alkyl derivatives, IV: 87–90 peripheral substituent effect, XI: 231–234 brominated NPc, IV: 90 photosynthetic antennas, XI: 226, metallonaphthalocyanine (MNPc), XI: 228–229 IV: 87–90, IV: 261–263 solvent effects, XI: 234–236 mononaphthotrisulfobenzoporphyrazines Natural heme (M-NSBP), IV: 85–86, IV: 262 and bovine liver catalase in near-IR region, sulfonated MNPc derivatives, IV: 87 VII: 162 synthesis, IV: 87 CD spectra human hemoglobin, Naphthalocyanine analogs, XVIII: 244–245 VII: 153–155 Naphthalocyanine/anthracocyanine/ and CD spectra of ring-expanded Pc analogs, UV-vis carbomonoxymyoglobin, absorption data, IX: 383–396 VII: 159–160, VII: 162 numbering system used in absorption equine hemoproteins and, VII: 156–158, database for, IX: 100–101 VII: 160 Naphthiporphyrin and human hemoproteins in near-IR region, proton NMR data for, XVI: 164 VII: 160–162

in TFA-CDCl3, 500 MHz proton NMR and vibrational CD (VCD), VII: 163–165 spectrum of, XVI: 164 and X-ray spectroscopy of CD spectra, reaction with palladium(II) acetate, VII: 155–156 XVI: 165 Natural photosynthesis, XXII: 70 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 182 FA

182 Cumulative Index to Volumes 1–25

Natural porphyrin dianion derivatives, meso-tetraphenylporphyrin-induced tumor metalloporphyrin structure/electron necrosis, IV: 40 configurations and, VI: 12 Neisseria gonorrhoeae, and bacterial NOR, NbPc absorption spectra, IX: 42–45 V: 132–133 “NB-cluster” in Rba. Capsulatus, XX: 162 and metalloporphyrin inhibitors of heme NCC (Nonfluorescent Chlorophyll Catabolite), uptake, XV: 389 XX: 232 post-transcriptional heme regulation and, Near Edge X-ray Absorption Fine Structure XV: 384 (NEXAFS), XVIII: 39 vaccine development and, XV: 388–389 Near-field scanning optical microscopy Neisseria meningitidis, and bacterial (NSOM), XVIII: 26 acquisition of iron, VI: 341 Near-infrared (NIR) absorptions bacterial HOs and, XV: 376 and bridging ethyne in ground/excited and bacterial NOR, V: 132 states, I: 10 extracellular signaling mechanisms and, carbocation bridged porphyrin dimers and, XV: 388 I: 19 and metalloporphyrin inhibitors of heme conjugated porphyrin arrays and, I: 4 uptake, XV: 389 ethyne-bridged polymersomes/amphiphilic post-transcriptional heme regulation and, diblock copolymers and, I: 10 XV: 384 expanded porphyrins and dyes, I: 508 transcriptional heme regulation and, hydrophilic conjugated porphyrin dimers XV: 383 and, I: 18 vaccine development and, XV: 388–389, photosynthetic autotroph and, I: 223 XV: 388–389 squarine bridged porphyrin dimers and, Neodymium, unsubstituted Pcs (UV-vis I: 19 absorption data) and, IX: 134

Near-infrared (NIR) developments, Neocoenzyme B12, XXV: 143 VII: 452–453 Neo-confused phlorin, XVI: 242 Near-infrared spectroscopy (NIR) Neo-confused porphyrins, XVI: 241–244 nanoparticles and, XII: 356–357 benzo-fused, synthesis of, XVI: 242 optical sensors and, XII: 169–170 metalation and protonation of, XVI: 244 Near-IR phosphors, brightest, II: 15 UV-vis spectrum in chloroform, XVI: 243

Near-iron transport (NEAT) domains, and Neovitamin B12, XXV: 143, 150 gram-positive lipoprotein network in Neudesin, heme sensor proteins and, XV: 425 heme uptake, XV: 367–369 Neuronal nitric oxide synthase (nNOS) heme Necator americanus, heme-binding domain dimer cytoplasmic proteins and, XV: 30 structure of, XIX: 95 Necrosis Neuronal NOS (nNOS), XIX: 77, XIX: 94 apoptosis vs. necrosis, IV: 414 active site of, XIX: 95

chlorin e6–induced necrosis, IV: 37 structure of nNOS reductase domain,

chlorin e6–induced tumor necrosis, IV: 37 XIX: 97 lysosome-localized photosensitizers, Neutral (metal-free) and doubly deprotonated IV: 385 TNTAP derivative, fluorescence octaethylporphyrin (OEP)-enhanced emission spectra of, XVI: 367 photonecrosis, IV: 131 Neutral porphyrins, XI: 327–328 Photofrin-containing nanoparticles Neutron boron capture therapy (NBCT). See necrosis, IV: 312 Boron neutron capture therapy (BNCT) b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 183 FA

Cumulative Index to Volumes 1–25 183

NhcA cytochrome, XIX: 212 Nickel(II) pre-seco-corrin, XXV: 290 Nhc complex, XIX: 205, XIX: 211–212 Nickel-substituted hemoproteins, NH tautomerization myoglobin/hemoglobin/HRP and, V: 28 in benzocarbaporphyrins, XVI: 30 Nicotiana tabacum in porphyrin, XVI: 22 and FECH interaction with PPIX oxidase, of 2-methyl-5,10,15,20- XV: 95 tetraphenylporphyrin, XVI: 24 and UROGEN conversion to heme, NH tautomers in N-confused porphyrins XV: 187 (NCPs) Nicotinamide adenine dinucleotide phosphate inner-3H form (NCP3H) and inner-2H (NADP), reaction center structures and, form(NCP2H) and, II: 300, II: 301 XI: 50–51 solvents and color changes of, II: 302 synthesis of, I: 225

Ni(II) azuliporphyrin, crystal structure of, Nine-heme cytochrome c3, XIX: 186–189 II: 159 amino acid sequence alignment of, Ni(II) monobenziphthalocyanine, crystal XIX: 190 structure of, II: 165 amino acid sequence comparison, XIX: 187 Ni(II) vacataporphyrin complexes 3D structures of, XIX: 187 1H NMR spectra of, II: 148 electron transfer coupling factors, XIX: 188 six coordinated, II: 149 redox-Bohr effect, XIX: 189 Nickel structural similarity to D. desulfuricans NiTAP/MgTAP absorption spectra ATCC 27774 cytochrome, XIX: 188 compared, IX: 4–5 Niobium porphyrins, XVIII: 305 unsubstituted Pcs (UV-vis absorption data) NiPc/PdPc/PtPc absorption spectra, IX: 68–72 and, IX: 120 NIR (near infrared) optical tomography, IV: 289 Nickel(II) Nir proteins and putative pathway

complex of hepta-alkyl N-confused intermediates, biosynthesis of heme d1, porphyrin, synthesis and protonation XIX: 128 of, XVI: 213 nirD, nirL, nirG, nirH, XIX: 131–132 dimethoxybenziporphyrin, ORTEP III cellular localization of, XIX: 132 drawing, XVI: 119 nirE, XIX: 128–130 neo-confused porphyrin, ORTEP III similar to structures of CobA and SUMT drawing, XVI: 245 module of CysG, XIX: 129 oxypyriporphyrin, formation by structure from P. aeruginosa, XIX: 129

intramolecular aldol cyclization of as SUMT during heme d1 biosynthesis, diacylsecochlorin, XVI: 183 XIX: 128 Nickel and open-chain oligopyrrole systems, nirF, XIX: 130 VIII: 335–338 nirJ, XIX: 130–131

Nickel coenzyme F430, XIX: 8–9 classified as “Radical SAM” protein, absorption spectrum/spin state/EPR XIX: 130 spectrum, XIX: 18 sequence similarity to PqqE Nickel C–C coupling reactions, III: 355–356, (pyrroloquinoline quinone III: 358 biosynthesis), XIX: 131 Nickel porphyrins in alkaline solution, Nitrate reductase (Nar), and fungal NO XII: 263–267 reductase, V: 143 Nickel porphyrins, III: 459–461 Nitration, and electrophilic substitution Nickel porphyrins, crowned reactions of BODIPYs with heteroatom (metallo)porphyrins with, XXIV: 208 substituents, VIII: 25–26 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 184 FA

184 Cumulative Index to Volumes 1–25

Nitrene sources and aziridination systems, and anaerobic respiration/proton X: 68, X: 75–76 pathways in NorBC, XIV: 92–93 Nitric oxide (NO), XIX: 93 β-cys93-nitrosylated Hb crystal chemistry by heme-enzymes structure (hypoxic vasodilation) and active site of NOR (bacterial), and, XIV: 46–48 V: 137–138 bacterial NOS and, XIV: 20–21 axial ligand bands and M(II) binding to ferrous (deoxy) Hb/Mb, porphyrins, VII: 448–450 XIV: 38–42 CooA and, XV: 145 biosynthesis overview, XIV: 9–10 dynamics of gas molecules and, corresponding model complexes for, V: 137–138 XIV: 119–121 and electron/proton transfer to active and crystal structures of nitrite/nitrosyl

site (bacterial), V: 138–140 adducts of cd1/NIR, XIV: 28–30 and enzymes of nitrogen cycle, dependent mechanism of sGC activation V: 128–131 by NO, XIV: 62–66 heme-containing proteins in NO and electron transfer pathway in signaling, V: 149–155 NorBC, XIV: 93–94 and heme-ligand regulation of kinase and Fe(III)-NO complex activity, XV: 136–137 characterization, XIV: 113–114

heme sensor protein requirements and, Fe(III)-NO2-crystal structures (hypoxic XV: 125–126 vasodilation) and, XIV: 51–54 mammalian heme-PAS-containing and five-coordinate NO adduct of proteins and, XV: 139 ferrous sGC, XIV: 58–61 metal-NO complexes and, V: 126 fungal NO reductase (P450nor) molecular evolution of NOR (bacterial), (overview) and, XIV: 108 V: 141–142 heme nitric oxide/oxygen (HNOX) and nitrogen cycle, V: 127–128 binding domains (overview) and, NOR general information XIV: 66–67 bacterial, V: 132–133 and interaction of NO with cytochrome fungal, V: 142–143 c′, XIV: 72–73 and oxidized form of NOR (bacterial), and interaction of NO with cytochrome V: 133–136 P450 monooxygenases, properties/reactions of, V: 124–126 XIV: 117–118 reaction mechanism of NOR and mechanism of NO reduction by bacterial, V: 140–141 cytochrome P450nor, fungal, V: 147–149 XIV: 114–117 reduced form of NOR (bacterial), mechanism of NO synthesis by NOS, V: 135, V: 137 XIV: 16–21 sGC and H-NOX domains and, and mechanism of NO transport by XV: 128–130 nitrophorins from C. lectularius, structural characteristics of NOR XIV: 85–87 (fungal), V: 144–147 nitrophorins from R. prolixus, unique properties of fungal NOR, XIV: 82–85 − V: 143–144 and mechanism of NO2 reduction in

in biological systems cd1/NIR, XIV: 30–32 alternative bacterial NORS (qNOR/ and mechanism of NO reduction by

qCuANOR) and, XIV: 107 NorBC, XIV: 98–102 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 185 FA

Cumulative Index to Volumes 1–25 185

model complex studies of NO and S-nitrosylation of cysteine, reduction, XIV: 105–107 XIV: 42–43 and NIR activity of Mb/Hb, XIV: 32 SNO mechanism for sensing (hypoxic nitric oxide dioxygenation (NOD) and, vasodilation), XIV: 43–46 XIV: 33–36 soluble guanylate cyclase (sGC) nitric oxide synthase (NOS) overview, overview and, XIV: 54–55 XIV: 10–11 and spectroscopic characteristics of

nitric oxide synthase (NOS) protein cd1/NIR, XIV: 27–28 structure, XIV: 11–16 spectroscopic characterization of ferrous nitrite reductase/anhydrase mechanism sGC, XIV: 57–58 for sensing (hypoxic and structure of catalytically active site vasodilation), XIV: 48–51 of NorBC, XIV: 94–97 and nitrite reductases (NIRs) overview, structure of P450nor, XIV: 109–112 XIV: 23 transport (overview), XIV: 73 nitrophorin protein structure, two-step activation process of sGC by XIV: 74–82 NO, XIV: 61–62 and NO in biological catalysis Nitric oxide dioxygenation (NOD) (overview), XIV: 90–91 NO binding to ferrous (deoxy) Hb/Mb, and NO reductase from denitrifying XIV: 38–42 bacteria (NorBC) (overview), NOD process, XIV: 33–36 XIV: 91–92 oxidative denitrosylation and, XIV: 36–38 and NOS inhibition by NO, XIV: 22–23 and peroxynitrite sources, XIV: 38 NOR-activity of heme-copper oxidases and S-nitrosylation of cysteine, XIV: 42–43 (HCOs) and, XIV: 102–105 Nitric oxide (NO) reductase oxidative denitrosylation and, XIV: activity of heme-copper oxidases (HCOs) 36–38 and, XIV: 102–105 and peroxynitrite sources, XIV: 38 and active site of bacterial, V: 137–138 protein sequences/gene structure of alternative bacterial NORS

fungal NOR, XIV: 108–109 (qNOR/qCuANOR) and, XIV: 107 and protein speciation/sequences of and anaerobic respiration/proton pathways nitrophorins, XIV: 73–74 in NorBC, XIV: 92–93 protein structure of soluble guanylate from denitrifying bacteria (NorBC) cyclase (sGC), XIV: 55–57 (overview), XIV: 91–92 and protein structures of cd /NIR, dynamics of gas molecules and, V: 137–138 1 XIV: 23–27 electron/proton transfer to active site protein structures of heme nitric oxide/ (bacterial), V: 138–140 oxygen (HNOX) binding and electron transfer pathway in NorBC, domains, XIV: 67–72 XIV: 93–94 and resting state of NorBC, XIV: 97–98 and fungal NO reductase, V: 143–144 and role of heme ruffling for Fe(III) general information (bacterial), V: 132–133 stabilization, XIV: 87–90 and mechanism of NO reduction by sensing overview, XIV: 54 NorBC, XIV: 98–102 and sGC activation implications due to model complex studies of NO reduction, HNOX protein structures, XIV: 105–107 XIV: 67–72 molecular evolution of bacterial, S-nitrosocysteine activation of sGC by V: 141–142 NO, XIV: 66 nitrogen cycle and, V: 128 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 186 FA

186 Cumulative Index to Volumes 1–25

and NO in biological catalysis (overview), protein structure of soluble guanylate XIV: 90–91 cyclase (sGC), XIV: 55–57 and NO reductase from denitrifying protein structures of heme nitric bacteria (NorBC) (overview), oxide/oxygen (HNOX) binding XIV: 91–92 domains, XIV: 67–72 NOR-activity of heme-copper oxidases S-nitrosocysteine activation of sGC by NO, (HCOs) and, XIV: 102–105 XIV: 66 oxidized form of bacterial, V: 133–136 and sGC activation implications due to reaction mechanism of bacterial, HNOX protein structures, V: 140–141 XIV: 67–72 reduced form of bacterial, V: 135, V: 137 soluble guanylate cyclase (sGC) overview and resting state of NorBC, XIV: 97–98 and, XIV: 54–55 and structure of catalytically active site of spectroscopic characterization of ferrous NorBC, XIV: 94–97 sGC, XIV: 57–58 Nitric oxide (NO) reductase, fungal two-step activation process of sGC by NO, and Fe(III)-NO complex characterization, XIV: 61–62 XIV: 113–114 Nitric oxide signaling fungal NO reductase (P450nor) (overview) and bacterial NO-binding hemoprotein and, XIV: 108 structures, V: 154–155 and interaction of NO with cytochrome P450 soluble guanylate cyclase and, V: 149–154 monooxygenases, XIV: 117–118 Nitric oxide synthase (NOS), XIX: 77, and mechanism of NO reduction by XIX: 93–94 cytochrome P450nor, XIV: 114–117 active site, XIX: 95–96 protein sequences/gene structure of fungal interactions holding substrate, L-Arg, NOR, XIV: 108–109 XIX: 96 structure of P450nor, XIV: 109–112 bacterial NOS and, XIV: 20–21 Nitric oxide reductase (NOR). see Bacterial catalysis, XIX: 96 nitric oxide reductase (NOR) XXII mechanism, XIX: 97–99 Nitric oxide reductase, XXII: 239 H B radical mechanism, XIX: 98 4 modeling of active site, versions for, traditional P450-like mechanism, XXII: 293 XIX: 98 models of, XXII: 245 mechanism of NO synthesis by NOS, bioengineered models, XXII: 266–268 XIV: 16–21 computational models, XXII: 246–247 nitric oxide synthase (NOS) overview, synthetic models, XXII: 247–265 XIV: 10–11 Nitric oxide (NO) sensing nitric oxide synthase (NOS) protein and five-coordinate NO adduct of ferrous structure, XIV: 11–16 sGC, XIV: 58–61 and NOS inhibition by NO, XIV: 22–23 heme nitric oxide/oxygen (HNOX) NO signaling and, V: 149–150 binding domains (overview) and, and oxygen binding/autoxidation in XIV: 66–67 catalytic cycle, V: 174–175 and interaction of NO with cytochrome c′, reactions catalyzed by, XIX: 94 XIV: 72–73 reductase, XIX: 96–97 NO dependent mechanism of sGC domain, XIX: 97 activation by NO, XIV: 62–66 structure of heme domain, XIX: 94–95 NO sensing overview, XIV: 54 Nitric oxide synthase (NOS), b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 187 FA

Cumulative Index to Volumes 1–25 187

Nitric oxide (NO) transport amidation/amination, XXI: 243–249 and mechanism of NO transport by aziridination, XXI: 238–243 nitrophorins from C. lectularius, ruthenium, XXI: 266–292 XIV: 85–87 amidation/amination, XXI: 276–292 and mechanism of NO transport by aziridination, XXI: 266–276 nitrophorins from R. prolixus, Nitrogen oxide XIV: 82–85 electropolymerized porphyrin films as nitrophorin protein structure, XIV: 74–82 electrochemical sensors for, NO transport (overview), XIV: 73 XII: 284–286 and protein speciation/sequences of LB/LS films and, XII: 131 nitrophorins, XIV: 73–74 mass transducers and, XII: 158–159 and role of heme ruffling for Fe(III) MOCSER transduction mechanism for stabilization, XIV: 87–90 detection of, XII: 154 Nitrification optical sensors and, XII: 172 nitrogen cycle and, V: 127–128 sensors, XII: 173–174 reaction mechanism of, V: 130–131 Nitrogenase, V: 131 Nitrile oxides, XVII: 85–86 Nitrophthalocyanine, XVIII: 270–271 reaction of meso-tetraarylporphyrins with Nitropolythiophenyl porphyrins, Suzuki-type 2,6-dichlorobenzonitrile oxide, C–C coupling reactions and, III: XVII: 85 338–339 Nitrite reductases (NIRs) Nitroporphyrins, synthesis of porphyrins from, and crystal structures of nitrite/nitrosyl II: 70–78

adducts of cd1/NIR, XIV: 28–30 Nitroreductase (NTR), and protein engineering electrocatalysis/electroanalysis and, application, V: 218 XII: 286–287 Nitrosation, XI: 331 and fungal NO reductase, V: 143 Nitro-substituted phthalocyanines, III: 79–83 − and mechanism of NO2 reduction in spectra, III: 227–230

cd1/NIR, XIV: 30–32 Nitrous oxide (N2O), biosensors and, V: 207, and NIR activity of Mb/Hb, XIV: 32 V: 209

and nitrite reductases (NIRs) overview, Nitrous oxide reductase (N2OR), XIV: 23 denitrification and, V: 130

and protein structures of cd1/NIR, NMR of Ga(III) derivative, heme-loaded XIV: 23–27 HasA and, VI: 344 and spectroscopic characteristics of NMR spectroscopy, VI: 10 13 cd1/NIR, XIV: 27–28 C-NMR and heteronuclear detection, Nitrogen cycle, V: 127–131 VI: 346–349 Nitrogen cycle, XXII: 239 13C-NMR spectroscopy to determine Nitrogen-doped multi-walled carbon electronic structures, VII: 15–20 nanotubes (CNx-MWNT), XVIII: 175 15N-NMR and heteronuclear detection, Nitrogen-group transfers, XXI: 237–238 VI: 349–350 cobalt, XXI: 292–312 1H-15N NMR spectra (HasA–HasR amidation/amination, XXI: 300–312 interaction), VI: 353–358 aziridination, XXI: 292–299 1H-NMR of Fe(III) derivative, VI: 344–346 iron, XXI: 250–266 1H-NMR spectroscopy to determine amidation/amination, XXI: 257–265 electronic structures, VII: 12–15 aziridination, XXI: 250–257 2D 13C natural abundance HMQC spectra, manganese, XXI: 238–250 VI: 59–62 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 188 FA

188 Cumulative Index to Volumes 1–25

2D NMR techniques and, VI: 64–69 linkage between CNT/macrocycle: π–π and complete 13C labeling of protohemin, interaction, X: 289–292 VI: 59–62 Noncovalent syntheses of multiporphyrin concept of operation of, VI: 9–10 species in aqueous solution deuteration of specific groups, VI: 58–59 and calixarenes as templates for array NOE difference spectroscopy and, formation, XIII: 173–188. See also VI: 63–64 Calixarenes orbital interactions to determine electronic dimers/trimers syntheses with structural structures, VII: 7–11 modifications, XIII: 157–160 overview of, VI: 7, VI: 9 discrete species syntheses with templating saturation transfer NMR experiments and, units (general information), VI: 62–63 XIII: 160–162

substitution of H by CH3/other substituents, general information, XIII: 153–157 VI: 57–58 porphyrin aggregation and, XIII: NMR studies of low-spin Fe(III) porphyrins 152, XIII: 157 2 3 with (dxy) (dxz,dyz) ground state porphyrin-cyclodextrin complexes and, bis-ammine/amino ester/phosphine XIII: 162–173 complexes and, VI: 159–160 step-by-step assembly of, XIII: 181–182 effect of porphyrin substituents on pattern Non-covalently linked hybrids, fullerenes, of spin delocalization, VI: 147–150 I: 178–179 imidazolate ligands and, VI: 152 “cyclic-dimer”/porphyrin “jaw” and, and imidazole plane orientation, I: 183–184 VI: 152–159 molecular recognition principles (crown mixed-ligand complexes and, VI: 160–161 ether complexation) and, I: 170–171 neutral imidazole ligands and, VI: 150–152 rotaxanes and, I: 178–179, I: 182–183 NO binding to ferrous (deoxy) Hb/Mb, NOD singlet-singlet and electron transfer and, XIV: 38–42 reactions, I: 175–176 Noble metal oligonuclear species, coordination and SnP platform, I: 169–170

chemistry of open-chain oligopyrroles synthesis of ZnP–C60 and, I: 175–178 and, VIII: 432–437 Watson-Crick bonding paradigm and. See NOE difference spectroscopy, VI: 63–64 also Covalently linked conjugates, for experiments, VI: 8 fullerenes

NO gas coadsorption, XVIII: 45–46 ZnP-C60 hybrids and, I: 167–169 monolayer of CoTPP on Ag(111), Non-covalently linked nanohybrids — carbon XVIII: 45 nanotubes Nomenclature of chlorophylls, XI: 225–226 ammonium ion-crown ether interaction Nonadiabatic intramolecular electron transfer, and, I: 205–206 I: 138–139 future outlook and, I: 206–208

Non-aromatic porphyrinoid, synthesis with and H2P interactions with SWNT, pyridine subunits using Suzuki–Miyaura I: 199–200

cross-coupling reaction, XVI: 197 H2P/SWNT composites and, I: 196–197 Non-Aufbau orbital filling, VI: 42, VI: 44 ionic pyrene derivatives and, I: 201–202 Noncovalent bonding, supramolecular and negatively charged pyrene derivatives porphyrin complexes and, X: 212 (π−π), I: 204 Noncovalent linkage of carbon nanotubes noncovalent hybridization of carbon diamond functionalization via C–C nanotubes/porphyrins and, I: 201 linkage/amide coupling, X: 293–294 pyropheophorbide and, I: 205 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 189 FA

Cumulative Index to Volumes 1–25 189

solubilization/dispersion of SWNT with Non-planar tetrapyrroles, structures and protoporphyrin IX, I: 200–201 properties of, XVIII: 124–126 SWNT and dendritic porphyrins, N-alkylated corroles, XVIII: 159–160 I: 198–199 N-alkylated porphyrins, XVIII: 157–158 and SWNT interaction with ZnP-polymer, oxoporphyrinogens and similar I: 197–198 macrocycles, XVIII: 152 SWNT/PVBTAn+ composites and, I: 197 donor–acceptor compounds, SWNT/ZnNc and, I: 204–205 XVIII: 154–155 Non-Fischer protoporphyrins XXIII oxoporphyrinogens, XVIII: 152–154 with propionic acid substituents flanking 5,15-substituted oxoporphyrinogen, meso-position, XXIII: 53 XVIII: 156 with propionic acid substituents on same supramolecular complex, pyrrole ring, XXIII: 54 XVIII: 155–156 Non-heme nitrosyls, XXII: 279–280 peripheral substitution of tetrapyrroles/ non-heme iron (18-NO), XXII: 279–280 porphyrins, XVIII: 126–127 β tailed heme-zinc/non heme-iron ZnHFeB -substitution of tetraphenylporphyrin, (24-NO), XXII: 279 XVIII: 128–130 Nonlinear optical materials, II: 2 dodecaphenylporphyrin, Nonlinear optical (NLO) properties XVIII: 130–132 devices, I: 4 oxidized persubstituted tetraphenylpor- dihedral angle control and, I: 466–467 phyrin, XVIII: 133–134 pentapyrrolic expanded porphyrins, pH sensing by non-planar tetrapyrrole, I: 513–514 XVIII: 132–133 Nonlinear optics, expanded porphyrins and, pH sensing by, XVIII: 132–133 II: 176 structures of, XVIII: 132, XVIII: 157 Non-mammalian peroxidases, XIX: 48–51 porphyrinogens, XVIII: 141–142 Asp residue, XIX: 50 anion binding in calix[n]pyrroles, Non-peripherally substituted octaalkylhybrids, XVIII: 144 controlled synthesis of full range of, calix[n]phyrins, XVIII: 143–144 XVI: 351 calix[n]pyrroles with peripheral fused Non-planar porphyrin, dendronized, rings, XVIII: 148–149 XVIII: 137–138 expanded calix[n]pyrroles, Non-planar porphyrinoids, XXIII: 320–326 XVIII: 146–148 absorption/MCD spectra of ZnPc and Znα N-confused calix[n]pyrroles,

(C6H5)8Pc in pyridine, XXIII: 324 XVIII: 144–145 frontier MO energy diagram, XXIII: 324 substituted calix[n]pyrroles, HOMOs and LUMOs of ZnTPTANP, XVIII: 145–146 XXIII: 322 supramolecules with calix[n]pyrroles, α molecular structure of H2 (C6H5)8Pc, XVIII: 150 XXIII: 323 protonated porphyrins, XVIII: 134 non-planarity of ligand π-system, chiral recognition in porphyrin XXIII: 322 dications, XVIII: 140–141 spectral deconvolution analyses of dendronized non-planar porphyrin, absorption and MCD spectra of zinc XVIII: 137–138 octaethylporphyrin dication of dodecaphenylporphyrin, (ZnOEP)/ZnTPTANP, XXIII: 321 XVIII: 137 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 190 FA

190 Cumulative Index to Volumes 1–25

TPP and OEP dications, Nor-pseudo-vitamin B12, XXV: 140

XVIII: 134–137 Nor-vitamin B12, XXV: 140 Non-propionate substituted hemes, crystal structures of, XXV: 140 reconstituted hemoproteins and, Nostoc sp., and H-NOX regulation of output V: 21–22 domains, XV: 134 NO sensor proteins Novel electrocatalysts for fuel cells, DNR, XV: 442–443 self-assembled porphyrin nanostructures Gyc-88E, XV: 442 and, XI: 214–218 H-NOX, XV: 441–442 NPAS2 sGC, XV: 441 heme sensor proteins and, XV: 415–419 SONO, XV: 442 mammalian heme-PAS-containing proteins Non-water soluble Pcs and, XV: 139 aggregation behavior in, VII: 321–323 NPc. See Naphthalocyanine (NPc)

Φ∆ and, VII: 333–334 NrfA nitrite reductase, XIX: 196–199 Φ F and, VII: 293–312 3D structure of, XIX: 196–197 Φ fluorescence quantum yields ( F) (CdPc D. vulgaris Hildenborough in complex complexes), VII: 335 with HQNO, XIX: 198 Φ P and, VII: 334–335 menaquinol binding cavity, XIX: 199 (Φ )/(τ ) and, VII: 332–333 NrfH subunit, XIX: 198 T T (Φ )/(τ ) (CdPc complexes) and, structure of D. vulgaris, XIX: 198 T T VII: 335–336 X-ray structure of Desulfovibrio vulgaris group 12 Pc complexes (ZnPc complexes), Hildenborough, XIX: 199 VII: 330–335 Nrf2, heme sensor proteins and, XV: 421 group 13 Pc complexes, VII: 337–339 Nuclear factor kappa B (NFκB), IV: 430 group 14/group 15 Pc complexes, inhibitor SN50, IV: 430 VII: 339–341 Nuclear localization sequences (NLS), groups 4 to 11 Pc complexes, VII: 330 IV: 141, IV: 142, IV: 144–146, HgPc complexes (CdPc complexes) and, IV: 222, IV: 349 VII: 336–337 Nuclear magnetic resonance (NMR). See photocatalytic reactions of MPcs, NMR spectroscopy VII: 324–329 calixarenes and, XIII: 183 photochemistry (CdPc complexes) and, and crystal structures of hemopexin, VII: 336 XV: 228 photochemistry of group14/15 Pc and molecular chirality in quinoid complexes, VII: 341 porphyrins, XIII: 232 photophysics of group14/15 Pc complexes, oxophlorins and, XIII: 200–201, XIII: 207 VII: 339–341 thiaphlorins and, XIII: 227–228 unmetalated, group 1/group 2 Pc Nuclear Overhauser and Exchange complexes, VII: 321–323 Spectroscopy for experiments, VI: 8 XAl(III)Pc complexes, VII: 337 Nuclear Overhauser Enhancement (NOE), XGa(III)Pc and XIn(III)Pc complexes, cofacial bisporphyrins held by flexible VII: 337–339 chains and, XI: 62 Nonzero intercepts of the Curie plot, and and Chemical Exchange Spectroscopy curvature in Curie plot over temperature (NOESY/EXSY), VI: 33 range of measurement, VI: 79–80 2D NMR techniques and, VI: 66–69 Normal-coordinate structural decomposition Nuclear relaxation/linewidths (NSD) technique, XVIII: 125 chemical exchange line broadening, VI: 33 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 191 FA

Cumulative Index to Volumes 1–25 191

τ electron spin relaxation times (T1e or s) synthesis of lower base and, VI: 34 5,6-dimethylbenzimidazole (DMB), EXSY cross peaks and, VI: 33 XXV: 66–67

nuclear spin-lattice relaxation times (T1) Nucleus-Independent Chemical Shift (NICS) and, VI: 34–37 expanded porphyrins and, I: 509–510

nuclear spin–spin relaxation times (T2) and, pentapyrrolic expanded porphyrins and, VI: 38–39 I: 518–519 Nuclear-Independent Chemical Shift (NICS) values, II: 110 O Nucleobases, conjugates with, XVIII: 265–268 2-Oxybenziporphyrin Nucleophiles, and modification of porphyrin macrocycle aromatization and, II: 138–139 macrocycle, III: 512 tetraaryl and core modified derivatives of, Nucleophilic aromatic substitution II: 138–140 and electron-donating/electron- 2,3,7,8,12,13,17,18-Octaaryl-5,10,15,20- withdrawing substituents in same tetraphenylporphyrins, II: 216 benzene ring, III: 190, III: 195–198 8-Oxoguanine DNA glycosylase 1 (OGG1), for introduction of ArO/ArS into IV: 159 phthalonitriles and phthalocyanines, 21-Oxa-/21-thiaporphyrins, XVI: 8 III: 171 22-Oxacarbaporphyrin and precursor phthalonitriles, III: 173 formation of palladium(II) complex of, for preparation of dialkylamino-substituted XVI: 59 phthalocyanines, III: 120–121 metalation of, XVI: 54 and tetrafluorophthalonitrile/alcohols in synthesis using fulvene dialdehyde

DMF/K2CO3, III: 171–172 strategy, XVI: 55 Nucleophilic attacks tautomerization and protonation of, on halogenated BODIPYs, VIII: 28–32 XVI: 57 on halogenated water-soluble BODIPYs, 23-Oxa-azuliporphyrins, synthesis of, XVI: 89 VIII: 28–32 23-Oxa-carbaporphyrins, synthesis and on meso-position in BODIPYs, VIII: 36–39 protonation of, XVI: 52

on meso-position of water-soluble O2 sensor proteins BODIPYs, VIII: 36–39 AppA, XV: 440

Nucleophilic reactions, modification of GAF domain as O2-sensing site, porphyrin core, XXIII: 122–123 XV: 438–440

SN1, XXIII: 123 globin coupled sensors, XV: 435–438

SNAr, XXIII: 122 Gyc-88E, XV: 440–441 Nucleophilic substitution reactions of H-NOX, XV: 441 5-nitroporphyrins, XXIII: 123 Hap1, XV: 440

Nucleosides, conjugates with, XVIII: 265–268 PAS fold as O2-sensing site, XV: 430–435 Nucleotide cyclases of heme sensor output O- and S-confused heteroporphyrins, domains, XV: 125 XVI: 221–230 Nucleotide-free heptacarboxylic acid, XXV: 267 O-confused dioxacorrole, attempted synthesis

Nucleotide loop assembly, vitamin B12 of, XVI: 309 biosynthesis, XXV: 64 O-confused oxaporphyrin synthesis of adenosylcobinamide-GDP, Cu(III) pyrrole appended, II: 123 XXV: 64–66 crystal structure and properties of silver(III) synthesis of α-ribazole, XXV: 67 pyrrole appended, II: 121–122 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 192 FA

192 Cumulative Index to Volumes 1–25

dication, synthesis and addition reactions Octaethylporphyrin (OEP), IV: 131, IV: 134, of, XVI: 226 IV: 225, IV: 227, XIV: 119–121 molecular structure of Ni(II) pyrrole derived BChl mimics, I: 273–276 appended, II: 123 fully synthetic chlorophylls and, Ni(II) and Pd(II) pyrrole appended, II: 122 XI: 283–284 peripheral activity of silver(III) pyrrole hydrogen peroxide/sulfuric acid oxidation appended, II: 121–122 of, XVII: 45–46 preparation of, II: 118–119 Soret band of, II: 45, II: 47 reactivity and ESR parameters of structures of, XVIII: 19, XVIII: 128 copper(II) pyrrole appended, trans-reduction of, XVII: 41 II: 123–124 Octaethylporphyrin, XXIII: 62 reactivity of ethoxy derivatives of, II: 119 Octaethylporphyrinogen, XXIII: 16 O-confused porphyrinoid, preparation and Octafluorophthalocyanines, halogen-substituted oxidation of copper derivatives of, phthalocyanines and, III: 68–69

XVI: 225 Octaheme cytochrome c3, XIX: 183–186 Oblique exciton coupling, VII: 150–151 amino acid residue Tyr73 in OCPP, and noncovalent syntheses of D. norvegicum, XIX: 186 multiporphyrin species in aqueous amino acid sequence alignment of, XIX: 184 solution, XIII: 159–160 3D structures of, XIX: 185 Octaalkyldioxobacteriochlorin, molecular Octahydroxyphthalocyanine, XVIII: 256 structure, XVII: 63–64 Octakis(propargyloxymethyl)phthalocyanine, Octaalkylporphyrins XVIII: 258 chlorin dihydroxylation reaction, XVII: 51 Octamers, template-directed synthesis of, diimide reaction and, XVII: 41 I: 30–32 Octaalkynylporphyrinic enediynes Octameric DPOR complex, XX: 31 geometrical distortion and conugated Octaphyrins, II: 183 alkyne units in, II: 213–214 as dipolarophile in 1,3-dipolar synthesis of, II: 213 cycloaddition of azomethine ylide, Octabromophthalocyanines, III: 71 II: 264–266 Octabromotetraphenylporphyrin, synthesis of, Octapyrrolic (Möbius aromaticity), II: 207–208 heptapyrrolic expanded porphyrins, Octacholesteryl zinc(II) analog, XVIII: 289 I: 544–546 photophysical properties of, XVIII: 290 Octasubstituted compounds of phthalocyanines Octachloromethylphthalocyanine precursor, 1,2,8,9,(10,11),15,16(17,18),22,23(24,25)- and preparation of water-soluble octasubstituted compounds of cationic phthalocyanines, III: 62–63 phthalocyanines, III: 17 Octadehydrocorrin systems, XXV: 289 1,3,8,10(11,9),15,17(18,16),22,24(25,23)- Octaestrone-conjugated phthalocyanine, octaaminophthalocyanines, III: 119 structure of, XVIII: 296 1,3,8,10,(9,11),15,17(16,18),22,24(23,25)- Octaethyl-2,3-12,13-tetrahydroxybacteriochlorin, octasubstituted compounds of UV-vis data of, XVII: 53 phthalocyanines, III: 17–18 Octaethylbacteriochlorin, UV-vis data of, 1,4,8,11,15,18,22,25-octasubstituted XVII: 53 compounds of phthalocyanines, Octaethyl derivatives of porphyrin isomers, III: 18–23 MCD spectra and, VII: 392–393 2,3,9,10,16,17,23,24- Octaethylisobacteriochlorinato-Pd(II), octahexanoylphthalocyanines, structure of, XVII: 43 III: 120 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 193 FA

Cumulative Index to Volumes 1–25 193

2,3,9,10,16,17,23,24- Oligomers octalaurylamidophthalocyanines, of BChl, I: 238–245 III: 120 chiral binaphthyl and π-conjugation, 2,3,9,10,16,17,23,24-octasubstituted I: 158–159 compounds of phthalocyanines, coordination complexes linked by metal III: 23–31 ions, III: 451–463 and plethora of alkoxy-/aryloxy-substituted covalently linked conjugates and, phthalocyanines, III: 121 I: 158–159 Octasubstituted tetrabenzoazaporphyrins, with diarylethynyl linkers using comparison of mesophase transition Sonogashira reaction, I: 13 temperatures for, XVI: 388 linked by metal ions, III: 472–477 Octyltriethoxysilane (OTES), XII: 395 long hole polaron delocalization length in, OECor (2,3,7,8,12,13,17,18-b- I: 9 octaethylcorrolate), iron-oxo complexes metallocenes linked by metal ions, and, XIV: 554 III: 447–451 OEOP (monoanion of octaethyloxaporphyrin), organic molecular solar cells, VIII: 296–302 XVIII: 76–79 OEP Oligomeric porphyrin systems dianion of octaethylporphyrin, amino acid-bridged zinc porphyrin VIII: 296–302 dimer/ethylene diamine non-Aufbau orbital filling and, VI: 42 structure/spectra, VII: 225–227 Olefin metathesis, annelation of aromatic rings BINAP structure/spectra, VII: 221–222, by, XIII: 85–86 VII: 224–225 covalently linked porphyrin arrays and, and CD behavior in third generation dendron I: 47–50 zinc porphyrin, VII: 229–230 Olefins. See also Chiral strapped porphyrins and cyclic dipeptides as linking units, and 1,2-dihydronaphthalene catalyzed by VII: 227–228 [MnCl] chiral strapped porphyrins, meso-cinchomeronimide diporphyrin and X: 35–36 atropisomers structure/spectra, catalyzed by VII: 219–220 [FeCl] chiral strapped porphyrins, meso-pyridine porphyrin dimer X: 27–31, X: 33, X: 38, X: 40–44 structure/spectra, VII: 221, VII: 223 [MnCl] chiral strapped porphyrins, structures/spectra of R-7 complexes, X: 38–39 VII: 219–222

[Ru(O)2] chiral strapped porphyrins, Oligomeric structure, of FECH, XV: 60–61 X: 35, X: 37–38 Oligomers/dimers of Pcs, UV-vis absorption epoxidation catalyzed by data, IX: 538–578 [FeBr] chiral picket fence porphyrins, Oligomerization, XVII: 293–294 X: 18–19 of bipyrroles and longer oligomers, [MnCl] chiral picket fence porphyrins, XVII: 302–304 X: 8–9, X: 15, X: 17, X: 20–21 of carbazoles and tetrahydrocarbazoles, [RuCO] chiral picket fence porphyrins, XVII: 297–298 X: 15–16 of indoles and indolizines, XVII: 298–302

[RuCl2] chiral picket fence porphyrins, of pyrroles, XVII: 295–297 X: 14 Oligonuclear noble metal species, coordination Olfaction, XII: 207–208 chemistry of open-chain oligopyrroles Olfactory receptor neurons (ORNs), XII: 211 and, VIII: 432–437 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 194 FA

194 Cumulative Index to Volumes 1–25

Oligonucleotides, conjugates with, bis(oxazolinyl)pyrroles [H(bop)] XVIII: 268–280 (tripyrroles) and preparation of, Oligonucleotides, for photosensitized/catalytic VIII: 359, VIII: 361 DNA modifications, III: 88, III: 90 cationic species of pincer-like palladium Oligophenylene-diporphyrins, Suzuki coupling complexes and, VIII: 437–441 and formation of, II: 225 coordination behavior. See Coordination Oligoporphyrins, XXIII: 218–269 chemistry of open-chain catalytic C–heteroatom coupling, oligopyrroles XXIII: 258 coupling of dipyrrolic building blocks “click” reaction, XXIII: 258–264 (tetrapyrroles) and preparation of, Heck coupling, XXIII: 254–258 VIII: 365–373 metathesis, XXIII: 264–269 coupling two pyrrole units with dipyrrole Sonogashira reaction, XXIII: 235–252 (tetrapyrroles) and preparation of, Suzuki/Stille coupling, XXIII: 218–235 VIII: 371, VIII: 373–376 Ullmann coupling, XXIII: 252–253 dinuclear complexes of, VIII: 332–334 Oligopyrroles direct metalation of 2,2′-bidipyrrins dimerization rate constants of olygopyrrole (biomimetic iron complexes), radical cations, XVII: 244 VIII: 452–456 formal potentials for oxidation of, XVII: 245 fluorescent boron derivatives monoelectronic oxidation of, (oligoBODIPYs) and, VIII: 456–461 XVII: 358–359 historical aspects of study, VIII: 347–348 Oligopyrrolic systems, II: 298 intermediates/products from ring-opening Oligopyrromethane, XXIII: 13 reactions (biomimetic iron One-dimension linear porphyrin arrays, complexes), VIII: 447–452 I: 443–448 intramolecular CH activation of pincer-like One-electron-oxidized products of Fe(III) palladium complexes and, porphyrins VIII: 441–444 4 1 with (dxz, dyz) (dxy) electrons, ligands from biliverdin/bilirubin VII: 117–124 (tetrapyrroles) and preparation of, electronic structures of, VII: 6 VIII: 361–362 with Fe(IV)=O bond, VII: 124–127 and macrocyclization reactions to give with low-spin cation radicals, corrins/hydroporphyrins, VIII: 467–470 VII: 115–124 corroles with direct pyrrole–pyrrole without Fe(IV)=O bond, VII: 127–129 bond, VIII: 463–467 One–pot meso-iodination, XXIII: 121 porphyrins, VIII: 461–463 O–O scission, in catalytic cycle of miscellaneous complexes and, VIII: 335–338 cytochromes P450, V: 179 oxidative ring-opening of tetrapyrroles and Open-chain oligopyrrole systems. preparation of, VIII: 363–365 See also Verdohemes prodigiosenes (tripyrroles) and preparation active catalysts of pincer-like palladium of, VIII: 352–353 complexes and, VIII: 443, stepwise coupling of pyrrolic precursors VIII: 445–447 (tetrapyrroles) and preparation of, bis(arylimino)isoindolines [H(bai)] VIII: 376–377 (tripyrroles) and preparation of, tetrapyrroles from ring opening of VIII: 356–360 verdohemes, VIII: 301–307 bis(arylimino)isoindolines in dendrimers, tetrapyrroles in supramolecular assemblies, VIII: 478–482 VIII: 483–485 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 195 FA

Cumulative Index to Volumes 1–25 195

tripyrrin-/bai-based coordination polymers Optical sensors. See also Oxygen sensors, and, VIII: 470–478 porphyrins/related compounds as optical types of tri-/tetrapyrrolic species, anions and, XII: 189–191 VIII: 348–352 and consumer electronics, XII: 192–194 Open-chain tetrapyrroles, as light-harvesting heavy metal ion sensors, XII: 180–189 pigments, XI: 228 nitrogen oxide (NOx) sensors,

Open-circuit voltage (Voc) condition for XII: 173–174 molecule-based solar cell, XVIII: 64 other analytes for, XII: 191–192 “Opened” triad vs. “closed” triads, XXII: 117 other gases, XII: 174–176 Open-shell substituted transition-metal oxygen sensors, XII: 164–173. phthalocyanines, spectra and, III: 283 See also Oxygen sensors, porphyrins/ opp-dibenzodicarbaporphyrin, synthesis of, related compounds as optical II: 166 pH sensors, XII: 177–180 opp-dibenzoporphyrin, Heck protocol in and porphyrin-based electronic noses, synthesis of functionalized, II: 234, XII: 208–209 II: 236 Optical spectroscopy of porphyrinoids. opp-dicarbaporphyrin, XVI: 246 See Porphyrinoids, optical spectroscopy synthesis, XVI: 246 Optically active porphyrin systems opp-dicarbaporphyrins, coordinated complexes circular dichroism (CD) defined, VII: 148 of, II: 167, II: 168, II: 169 and determination of absolute opp-dicarbaporphyrinoids, XVI: 245–252 configurations of natural products, Optic atrophy protein (OPA), and maintaining VII: 232–239 morphology of cristae during heme and determination of helicity of transfer, XV: 35 polyisocyanides, VII: 230–232 Optical/colorimetric detection with and fundamentals of circular dichroism corrin-based chemosensors XXV (CD), VII: 148–153 comparison with detection of cyanide using and natural BChl c, d, e and g, porphyrins, XXV: 100–102 VII: 184–185 cyanide, XXV: 92–100 and natural chlorophyll a/ sulfite, XXV: 102 bacteriochlorophyll a and Optic fibers as pH sensors, electrocatalysis/ derivatives, VII: 173–184 electroanalysis and, XII: 287 natural heme systems, VII: 153–165 Optical band gaps Eop. See HOMO-LUMO and natural light harvesting complex 2

gaps Eeg (LH2), VII: 185–191 Optical data storage/limiting, expanded and synthetic chlorins/bacteriochlorins and porphyrins and, I: 508 dimeric/aggregated systems, Optical limiters, II: 2 VII: 191–196 Optical pH sensors, XII: 177–180 and synthetic dimeric porphyrins without Optical properties of self-assembled porphyrin optically active substituents, nanostructures VII: 208–219 photoconductivity, XI: 196–200 synthetic heme systems, VII: 165–173 reductive photocatalysis/metal growth, synthetic monomer systems, VII: 196–205 XI: 200–206 and synthetic naphthalene units linked with UV-vis absorption/emission spectra of, bis-porphyrins, VII: 205–208 XI: 194–196 synthetic oligomeric porphyrin systems, Optical properties, nonlinear, dihedral angle VII: 219–230 control and, I: 459–461 Optoelectronic applications, I: 79, I: 88–89 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 196 FA

196 Cumulative Index to Volumes 1–25

Orbital interactions of iron/porphyrins, formation principles, XXII: 72–77 VII: 7–11 interaction of porphyrin triads and pentads Organelles. See Interorganellar heme transfer with molecular oxygen in liquid Organic ammonium ions, crowned solutions, XXII: 114–118 (metallo)porphyrins, XXIV: 242–254 quenching exchange d-π effects in Organic cytotoxins, XXV: 118–120 self-assembled complexes containing cobalamin conjugation of colchicines to Cu-porphyrins, XXII: 106–114 cobalt by alkylation and at 5′-OH Organic photovoltaic (OPV) cells, XXIV: 416 position respectively, XXV: 120 Organic photovoltaic cells (OPV), XVIII: 61 Organic field effect transistor (OFET), Organic photovoltaics (OPV), II: 2, II: 21 tetrapyrrole rare earth pyrroles and, Organic polymer solar cells XIV: 448–451 copolymers, XVIII: 82–84 Organic field effect transistors (OFET), II: 2, main-chain porphyrin polymers, II: 21 XVIII: 80–81 Organic halide reduction porphyrins or phthalocyanines dechlorination by other cobalt complexes, incorporated into polymer solar X: 349–350 cells, XVIII: 79–80

electrocatalytic reduction by B12 Organic solar cells derivatives, X: 344–346 commercial use, challenge in, XVIII: 68

photocatalytic reduction by B12 derivatives, increasing solar spectral response of X: 346–349 photoactive layer, importance of,

reduction by B12 derivatives, X: 339–344 XVIII: 65–67 Organic light-emitting device (OLED), optical irradiation at AM1.5G, XVIII: 66 sensors and, XII: 172–173 phthalocyanines and related compounds Organic molecular solar cells, XVIII: 61–63 used for, XVIII: 62 dyads, triads, and oligomers, XVIII: 76–79 porphyrin/phthalocyanine-based dyads and evaporated thin films — phthalocyanine: oligomers for, XVIII: 78

C60 single solar cells, XVIII: 63–68 irradiation at AM1.5G, XVIII: 79 self-assembled film solar cells, XVIII: 73–76 self-assembled porphyrins and fullerenes solution-cast porphyrin-based for, XVIII: 74 donor/acceptor thin films, XVIII: 71 thin-film solution-cast, XVIII: 71 tandem solar cells, XVIII: 68 Organic solar cells, phthalocyanines in thin porphyrin or phthalocyanine films with bilayer heterojunctions fabricated using

C60 or PCBM, XVIII: 71–73 two different processing techniques Organic nanocomposites based on tetrapyrrole and OPV by vapor deposition, compounds XXII X: 149–150 competition of energy and electron transfer hybrid planar-mixed molecular in porphyrin triads, XXII: 77–91 heterojunctions and OPV by vapor pathways and mechanisms of excitation deposition, X: 146–147 energy relaxation, XXII: 84–91 incorporation of Pcs into organic spectral and kinetic data, XXII: 77–84 photovoltaic devices by solution dynamics and mechanisms of relaxation processing, X: 153–157 processes in triads with electron introduction of exciton-blocking layers into acceptors, XXII: 91–101 OPV by vapor deposition, electronic energy relaxation in complexes X: 146–147 containing fluorinated extra-ligands, organic photovoltaic (OPV) devices and, XXII: 101–106 X: 143–145 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 197 FA

Cumulative Index to Volumes 1–25 197

structural modification in Pcs and OPV by adenosyltransferases, XXV: 206–208 vapor deposition, X: 148–149 cobalamin processing enzymes, tandem solar cells and OPV by vapor XXV: 203–206

deposition, X: 150–152 Organometallic B12-derivatives XXV Organic solvents and electrodes, biosensors as cofactors in enzymes, XXV: 168–170

and, V: 235–236 B12-dependent dehalogenases, Organic synthesis, transition metal derivatives XXV: 201–203

and, II: 194 B12-dependent methyl transferases, Organic thin films, electrostatic/electrochemical XXV: 170–181

carrier injection into, XVIII: 215 enzymes dependent on coenzyme B12, Organic thin-film transistors (OTFT), XXV: 181–200 XVIII: 214, XVIII: 230–231 electrochemical studies of, XXV: 165 chemical sensors and, XII: 152–153 formation and cleavage of (Co–C)-bond in, Organically modified silica (ORMASIL)- XXV: 156–163 based nanoparticles, IV: 307–310 Organometallic catalysts, cofactors and Organically modified sol-gel films (ormosils), ligands of bio-macromolecules, optical sensors and, XII: 168 XXV: 135–137

Organic–inorganic hybrid solar cells. See B12-derivatives as ligands in B12-binding Dye-sensitized solar cells nucleic acids XXV

Organoboron polymer (BODIPY-based), B12-aptamers, XXV: 230–231

VIII: 89–90 B12-riboswitches and reversed Organocobalamins (R-Cbl), (Co-C)-bond of, riboswitches, XXV: 227–230

XXV: 157, 167 B12-derivatives as ligands in B12-binding Organolithium (RLi) and organometallic proteins XXV

transformations B12-antibodies, XXV: 226

and hydroporphyrin preparation, B12-bioconjugates, XXV: 224–226

III: 332–334 B12-uptake and transport in and porphyrin preparation, III: 326–332 gram-negative bacterium, synthetic applications for, III: 334–335 XXV: 217–224

Organolithium compounds, reaction with, B12-uptake and transport in mammals, XXIII: 124 XXV: 208–207

Organometallic and redox-chemistry of modified B12-derivatives from “organic”

B12-derivatives, 156 transformations of vitamin B12, formation and cleavage of (Co–C)-bond in XXV: 137–141

organometallic B12-derivatives, organometallic and redox-chemistry of

XXV: 156–163 B12-derivatives, XXV: 156 homolytic mode, XXV: 157–159 formation and cleavage of (Co–C)-bond

nucleophile-induced heterolytic mode, in organometallic B12-derivatives, XXV: 159–162 XXV: 156–163

radical-induced (Co–C)-bond redox-chemistry of B12-derivatives, cleavage of organocorrinoids, XXV: 163–168

XXV: 162–163 organometallic B12-cofactors from

redox-chemistry of B12-derivatives, biosynthetic transformation of XXV: 163–168 cobalamins, XXV: 203

Organometallic B12-cofactors from adenosyltransferases, XXV: 206–208 biosynthetic transformation of cobalamin processing enzymes, cobalamins, XXV: 203 XXV: 203–206 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 198 FA

198 Cumulative Index to Volumes 1–25

organometallic B12-derivatives as cofactors Ortho-fusion in enzymes, XXV: 168–170 acenaphthoporphyrins and, XIII: 10–11

B12-dependent dehalogenases, as conjunction of aromatic systems by XXV: 201–203 single common bond, XIII: 4

B12-dependent methyl transferases, Ortho-iodinated meso-phenyl porphyrins, XXV: 170–181 intramolecular transformations of,

enzymes dependent on coenzyme B12, II: 64, II: 65, II: 66 XXV: 181–200 Orzias latipes, hemopexin and, XV: 234

structure of B12-derivatives in crystal and in Osmium, carbon-transfer reactions, solution, XXV: 141 XXI: 203–206 “base-on/base-off” constitutional switch bulkier metalloporphyrin carbenes, of “complete corrinoids,” XXI: 206 XXV: 153–156 cyclopropanation of alkenes and alkynes, “complete” corrinoids, XXV: 143–152 XXI: 204 “incomplete” corrinoids, XXV: 142–143 intramolecular cyclopropanation with Organometallic C–C coupling reactions osmium porphyrins, XXI: 205 (porphyrins). See also Palladium- osmium-catalyzed cyclopropanation, catalyzed carbon-heteroatom C–C XXI: 203 reactions Osmium-catalyzed cyclopropanation, X: 45 See Peripherally metalated porphyrin Osmium porphyrins, XXI: 339–341 derivatives Osmium-substituted hemoproteins, myoglobin/ copper/nickel/cobalt/rhodium, III: 354–360 hemoglobin/HRP and, V: 28 dendrimers/conjugated polymers Osmium, unsubstituted Pcs (UV-vis absorption (macromolecules) and, III: 348–352 data) and, IX: 134

Heck and Stille, III: 345–348 OsO4-mediated dihydroxylation reactions, and hydroporphyrin preparation, XVII: 46–55 III: 332–334 OsPc absorption spectra, IX: 54–64 metal-mediated, III: 352–360 Outer membrane (OM) palladium-mediated, III: 335–352 heme specificity/affinity/dynamics and, and porphyrin preparation, III: 326–332 XV: 370 ruthenium-catalyzed, III: 352–354 and tonB-dependent receptors of gram- Sonogashira, III: 341–344 negative organisms, XV: 361–364 Suzuki-type, III: 336–341 Output domains of heme-based sensor proteins synthetic applications for, III: 334–335 bacterial H-NOX domains, XV: 130–135 transformations with RLi, III: 326–335 requirements of, XV: 125–127 Orotidine-5′-monophosphate (OMP), sGC and H-NOX domains, XV: 128–130 XIX: 296 Overpotential effect, XVIII: 227 Ortho- and meso-chiral cobalt(II) porphyrin Oxabenziporphyrin/oxapyriporphyrins, complexes, XXI: 209 structures of, XIII: 239–240, Ortho cationic Fe(III) N-substituted XIII: 242–243 pyridylporphyrins, SOD mimics and, Oxacalixarene-bridged porphyrin dimer, I: 45, XI: 318–319 I: 47, I: 49 Ortho cationic Mn(III) N-alkylpyridyl- Oxacarbaporphyrins, ORTEP III drawings, porphyrins, SOD mimics and, XVI: 58–59 XI: 310–317 Oxa-crown-substituted phthalocyanines, Ortho cationic oxygen-derivatized porphyrins, synthesis of, XXIV: 276 SOD mimics and, XI: 317–318 Oxazolochlorins, XVII: 48 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 199 FA

Cumulative Index to Volumes 1–25 199

Oxidants, and porphyrin array synthesis, I: 5 and planar vs. nonplanar porphyrins in Oxidase, protonation sites in cytochrome c artificial photosynthetic systems, oxidase, VII: 468–472 X: 193–194 Oxidation Oxidation states and isolated form of NOR, V: 133–135 of iron porphyrins, VI: 19 and metallocene-appended porphyrins, of metalloporphyrins with reported NMR III: 440–441 spectra, VI: 41 palladium-catalyzed C–C reactions and, Oxidative aromatization III: 370–373 dihydro- vs. tetrahydro-isoindoles in, II: 17

photooxidation of Compound II with ferric synthesis of 5,15-Ph2TBP using, II: 18–19 enzyme, V: 180 TBP synthesis and, II: 10, II: 17, II: 18 pro-oxidative action and, XI: 334 Oxidative catalysts, Fe(III) complexes of and porphyrins as catalysts, III: 486 meso-substituted porphyrins as, II: 200 and porphyrins bearing fused rings, Oxidative coupling III: 389 effect of central metals and peripheral role of cytochrome P450 enzymes, V: 166 substituents on, II: 67 and SOD reactivity/targets, XI: 306 product composition and strength of and transition-metal complexes of oxidizing agent in, II: 65–66, II: 68 octanitrophthalocyanines, III: 82–83 product composition and zinc porphyrins and water-splitting nanodevice for solar vs. other metalloporphyrins in, hydrogen production, XI: 209 II: 65–66, II: 68 Oxidation reactions, water-soluble synthesis of directly linked and fused metalloporphyrins, XXI: 382 porphyrins and, II: 65 alkene cleavage, XXI: 396 Oxidative coupling reactions, XXI: 370–372 C–H hydroxylation, XXI: 390–392 Oxidative cyclization of 1,19-disubstituted– epoxidation, XXI: 384–390 biladienes-a,c, XXIII: 111 lignin oxidation, XXI: 396–397 Oxidative electropolymerization, XII: 257. mechanisms of epoxidation and See also Electropolymerized thin films hydroxylation, XXI: 392–394 of metalloporphyrins oxidation of alcohols, XXI: 395 amino-/hydroxy-/vinyl-substituted chemoselective aerobic oxidation, porphyrins and, XII: 251–256 XXI: 395 PPy and manganese porphyrin as catalyst oxidation of terminal alkene of allyl for, XII: 280 group, XXI: 395 strategy of, XII: 230–231 oxidation of chlorophenol, XXI: 397–398 Oxidative method, isoindole precursors and photofunctional magnetic nanoparticles synthesis of TBPs and TNPs using, preparation, XXI: 397 II: 8–19 oxime oxidation, XXI: 396 Oxidative ring-opening of tetrapyrroles, and sulfoxidation, XXI: 382–384 preparation of open-chain oligopyrrole Oxidation (coupled), verdohemes and, systems, VIII: 363–365 VIII: 296 Oxidative stress, chemistry effects of Oxidation of hydrazine for decreasing water-soluble metalloporphyrins, overpotential of carbon electrodes, XI: 297–299 electrocatalysis/electroanalysis and, Oxide surface functionalization XII: 288 overview, X: 294–295 Oxidation potentials phosphonate linkage and, X: 297–298 chlorophyll analogs and, X: 196–197 silanization and, X: 295–297 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 200 FA

200 Cumulative Index to Volumes 1–25

Oxidized benziporphyrins analogs, MacDonald “2 + 2” synthesis of, metalation and alkylation of, XVI: 146 XVI: 11 synthesis from tripyrrane analog, XVI: 140 analogs with modified skeletons, synthesis of core modified, XVI: 143 XIII: 220–222 Oxidized persubstituted tetraphenylporphyrin, and carbon-carbon bond formation, XVIII: 133–134 XIII: 218–220 bond length analyses of 16π-electron and chemistry of transformation to system, XVIII: 133 porphyrins, XIII: 210–214 crystal structure of oxidized form, and cobalt oxidation, XIII: 208 XVIII: 133 dipyrroketone preparation and, oxidation of persubstituted porphyrin, XIII: 215–216 XVIII: 133 general discussion, XIII: 199–200 Oxidized products of Fe(III) porphyrin heme-protein models and, XIII: 202–206 complexes historically, XIII: 199 with Fe(IV)=O bond, VII: 124–127 ligand-based transformations and, one-electron-oxidized products XIII: 208–209 general information and, VII: 108–109 and manganese/nickel/copper/zinc high-spin cation radicals and, complexes, XIII: 208, XIII: 214, VII: 109–113 XIII: 222–223, XIII: 226–227 2 3 Fe(III) with (dxy) (dxz, dyz) electrons and meso-substituted porphyrins treated and, VII: 116–117 with hydrogen peroxide, 4 1 Fe(III) with (dxz, dyz) (dxy) electrons XIII: 207–208 and, VII: 117–124 and meso-substituted porphyrins with aryl low-spin cation radicals and, substituents, XIII: 216–218 VII: 115–124 NMR and, XIII: 200–201, XIII: 207, mixed high-spin/intermediate-spin XIII: 210 cation radicals and, VII: 114–115 organic peroxides and, XIII: 209–210 two-electron-oxidized products and palladium catalysis, XIII: 224–225 general considerations, VII: 129 percent yield of meso-substituted, Fe(III) N-oxides, VII: 134 XIII: 207–208 Fe(III) porphyrin dications, VII: 134 pyrazole-containing analogs of, XVI: 237 Fe(V) porphyrins, VII: 134 thiaphlorins and, XIII: 227–228 oxoiron(IV) cation radicals, VII: 130–134 via cyclization of b-oxobilane, without Fe(IV)=O bond, VII: 127–129 XIII: 214–215 Oxo-bridged dimers/derivatives, xanthoporphyrinogen and, XIII: 201–202 XIV: 552–556 Oxophosphorus porphyrins, structures/CD Oxoglutarate carrier (OGC), and transport of spectra of, VII: 201, VII: 202, VII: 204 CPgenIII into/PPgenIX within Oxoporphyrinogens, XVIII: 126, mitochondria, XV: 13–14 XVIII: 152–154 Oxo-hydroxo tautomerism, XXI: 382 structures of, XVIII: 153–154 Oxoiron(IV) cation radicals, VII: 130–134 Oxoporphyrinogens and similar macrocycles, Oxoisobacteriochlorin dimer, doubly linked, XVIII: 152 XVII: 57 donor–acceptor compounds, XVIII: 154–155 Oxone, diporphyrins and, I: 19 optimized structure [B3LYP/3–21G(*)] Oxophlorins of porphyrinyl substituted aminoporphyrins and, XIII: 222–227 derivatives, XVIII: 155 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 201 FA

Cumulative Index to Volumes 1–25 201

5,15-disubstituted oxoporphyrinogen, corroles, XXI: 37–38 XVIII: 156 Pacman scaffolds, catalysis, XXI: 103–111 supramolecular complex, XVIII: 155–156 Oxygen optical sensors, XII: 164–173 Oxopyridochlorin, preparation of, II: 64, Oxygen rebound mechanism of catalysts in II: 67 heme monoxygenases, V: 190 Oxybenziporphyrins, XVI: 4 Oxygen reductases of bd type, XIX: 213–214

in CDCl3, 500 MHz proton NMR spectrum spectra of, XIX: 214 of, XVI: 121 Oxygen reduction reaction (ORR) chemistry 500 MHz proton NMR spectrum of, XXI XVI: 122 corroles, XXI: 35–37 with fused benzene, phenanthrene and Pacman scaffolds, catalysis, XXI: 81–103 acenaphthylene rings, XVI: 124 superstructured porphyrins, XXI: 23–32 palladium(II) and platinum(II) derivatives Oxygen sensors, porphyrins/related of, XVI: 125 compounds as optical preparation of silver(III) organometallic advantages, XII: 299–300 complexes of, XVI: 128 and amplification of indicator dye output protonation of, XVI: 122 (new advances), XII: 330–331 synthesis and tautomerization of, XVI: 120 and cadmium telluride (CdTe) quantum dots synthesis of core modified, XVI: 131 (QDs) (new advances), XII: 337 UV-vis spectra of, XVI: 123 electropolymerized Pt porphyrin films (new

Oxygen (O2), XV: 136–137 advances) and, XII: 333 EcDos and, XV: 139 gas permeability (new advances) and, globin coupled sensors and, XV: 139 XII: 332–333 heme sensor protein requirements and, historical aspects of, XII: 302–304 XV: 125–126 immobilization matrices and, XII: 312–314 mammalian heme-PAS-containing proteins optical properties, XII: 309–310 and, XV: 139 phosphorescence intensity measurement, sGC and, XV: 128 XII: 316–321 Oxygen and electrophilic addition, in living cells (new advances) and, dioxygenase reaction and, V: 115–118 XII: 321–324, XII: 340–342 Oxygen atom transfer (OAT), manganese-oxo principles, XII: 300–302 complexes (corrole synthesis/reactivity) and PtTPP/PdTPP as biological probes and, XIV: 533, XIV: 547–551 (new advances), XII: 338–340 Oxygen binding/autoxidation, in catalytic and reagents for luminescence sensing, cycle of cytochromes P450,V: 174–178 XII: 304–311 Oxygen-dependent isocyclic ring formation, response times (new advances) and, XX: 15 XII: 330–333 Oxygen evolution reaction (OER) chemistry SAMs (new advances) and, XII: 335–336 XXI and sensor platform using fiber optic probe corroles, XXI: 37–38 (new advances), XII: 342–343 Pacman scaffolds, catalysis, XXI: 103–111 structures of solid materials for, Oxygen-evolving complex (OEC) of XII: 313–314 Photosystem II (PSII), XXI: 8 surface pressure measurement on wind catalysis, XXI: 8–9 tunnels/flight vehicles (new structure of active site of, XXI: 8 advances) and, XII: 343 Oxygen evolution reaction (OER) chemistry T-T absorption measurement for, XXI XII: 324–330 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 202 FA

202 Cumulative Index to Volumes 1–25

temperature/pressure sensors (new advances) 5′-Pyridoxamine phosphate (PMP), XXV: 13 and, XII: 334–335, XII: 337 6-/7-Propionate side chains in heme and tissue oxygen distribution under framework, reconstituted hemoproteins fluorescence microscope (new and, V: 12–17 advances), XII: 342 [22]Porphyrins(3.1.3.1) Oxygen/glucose deprivation, medical effects synthesis from vinylogous pyrrole of water-soluble metalloporphyrins and, aldehyde, XVI: 281 XI: 363 22-Pyridiniumyl-m-benziporphyrin, II: 145 Oxygenation reactions. See also High-valent [26]Porphyrin(3.3.3.3), XVI: 25 iron-oxo porphyrins in oxygenation [34]Porphyrin(5.5.5.5), XVI: 25 reactions P(V) N-fused phlorin and Fe(IV)-oxo porphyrin π-cation radical crystal structure of, II: 152 complexes, X: 93–97 formation of, II: 151 Oxygen-derivatized porphyrins, SOD mimics p38 MAPK inhibitors SB203580 and and, XI: 317–318 SB202190, IV: 430, IV: 431 Oxyindolophyrins, synthesis of, XVI: 312 P450. see peroxidase(s) (P450) Oxynaphthiporphyrin, II: 160 P450BM3, XIX: 81, XIX: 91–93 Ag(III) coordinated complex of, II: 161 structure of complex formed between UV-vis spectra of, XVI: 169 P450BM3 and FMN module of synthesis and protonation of, XVI: 167 reductase domain, XIX: 92 tautomeric equilibrium for, II: 161 P450BSβ, XIX: 80 Oxyporphyrins. See Oxophlorins P450cam active site analogs, XXIV: 198 Oxypyriporphyrins, XVI: 8 P450cam, XIX: 76, XIX: 81, XIX: 84–86 nickel(II) oxypyriporphyrin formation by mutants of, XIX: 85 intramolecular aldol cyclization of oxy complexes of, XIX: 85 diacylsecochlorin, XVI: 183 structure of, XIX: 78 synthesis, tautomerization and protonation Thr252, role of, XIX: 86 of, XVI: 179 P450cam-putidaredoxin, XIX: 88–89 core-modified, XVI: 182 hypothetical model of, XIX: 88 Oxytitanium phthalocyanines (TiOPc), structure of L358P–CO complex, insights XVIII: 67 on Pdx binds, XIX: 89 P450cam Compounds I/ES, rapid-scanning P stopped-flow studies of, V: 314–322, 1*PChlide a, XX: 52–53 V: 325 decay, XX: 65 P450nor, XIX: 79–80. See also Fungal nitric 109Pd-labeled porphyrins, IV: 95 oxide (NO) reductases

2-Phenylindolizine, XVII: 275 formation of N2O, V: 147–148 3,4,9,10-Perylenetetracarboxylic resonance Raman spectra of, V: 147–148 bisbenzimidazole (PTCBI), XVIII: 61 structure compared with fungal NOR, 31,10R-di-Cys-phycocyanrubin (PCR), V: 143, V: 145 XXII: 19 P450eryF, oxy complexes of, XIX: 85 31R,10S-di-Cys-phycocyanrubin (PCR), P450-flavin reductase interactions, XIX: 92 XXII: 19 FAD, XIX: 91–92 31R-Cys-phycocyanobilin (PCB), XXII: 19 FMN, XIX: 91–92 5-Phenyl-10,15,20-tris(N-methyl-4-pyridyl)- P450 reductase (CPR), XIX: 91 porphyrin chloride 3(Py+–Me), IV: 393 and P450BM3, XIX: 91–93 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 203 FA

Cumulative Index to Volumes 1–25 203

structure of mammalian, XIX: 92 corrole dyads, XXI: 74–79 yeast-human P450 reductase hybrid, porphyrin–corrole dyads, XXI: 71–74 XIX: 92 Pain management, medical effects of p53 tumor suppressor protein, IV: 394 water-soluble metalloporphyrins and, p-(Chloromethyl)phenyl trichlorosilane XI: 374–375 (CPTS), XVIII: 29 Palladation of meso-bromoporphyrin to Pacacoccus pantotrophus, nitrous oxide meso-η1-palladioporphyrin, XXIII: 117 reductase (N2OR) and, V: 130 Palladium acetate, reaction products of Paclitaxel, IV: 372 NCTTP with, II: 323, II: 324, II: 325 Pacman macrocycle dimers, XXI: 39 Palladium(II) carbaporphyrins, mechanism for Pacman porphryin complexes/special pairs/ formation of, XVI: 161 chemical models Palladium-centered 21H, 23H-5-(4-pyridyl)- cofacial bisporphyrins held by 10,15,20-tris(4-hexadecyloxyphenyl)- calix[4]arene spacer, XI: 44–46 porphyrin dimer, chemical structure of, and metalation of Pacman XVIII: 27 bisporphyrins/biscorroles/ Palladium complexes (pincer-like) porphyrin-corroles, XI: 32–34 active catalysts of, VIII: 443, VIII: 445–447 modulation of Ct-Ct distance by choice of cationic species of, VIII: 437–441 appropriate spacer, XI: 35–41 intramolecular CH activation of, overview of, XI: 19–20 VIII: 441–444 parameters of face-to-face, XI: 34–35 Palladium complex of N-phenylquinolino[2,3,4]- and synthesis of porphyrin, XVIII: 323 biscorroles, XI: 21–26 Palladium derivatives, porphyrin luminophores bisporphyrins, XI: 20–22 and, XII: 303–304, XII: 310 porphyrin-corroles, XI: 24, XI: 26–28 Palladium organometallic complex, XVIII: 329 trimacrocycle, XI: 28–32 Palladium porphyrins X-ray characteristics of aromaticity of, XVIII: 332–333 bismetalated biscorroles, XI: 48–50 cation-binding ability of expanded bismetalated bisporphyrins, XI: 42–44 porphyrins and structure of, bismetalated porphyrin-corroles, XI: 48 XVIII: 333 monometalated bisporphyrins, chelate complexation by meso-pyridyl- XI: 41–42 substituted porphyrins, XVIII: 343 monometalated porphyrin-corroles, chemical transformations and use as XI: 46–48 catalysts, XVIII: 324–328 Pacman porphyrins XXI complexes with palladium above porphyrin mixed valent cleft of, XXI: 99 plane, XVIII: 334 synthesis of, XXI: 118 diazuliporphyrin macrocycle, atypical, Pacman scaffolds, XXI: 39 XVIII: 331 catalysis, XXI: 79–111 formation of alkynyl-Pt(II)-linked oxygen evolution reaction (OER) porphyrin dimer, XVIII: 336 chemistry, XXI: 103–111 formation of palladium acyl complexes on oxygen reduction reaction (ORR) interaction with CO, XVIII: 334 chemistry, XXI: 81–103 η1-palladioporphyrin, XVIII: 337 synthesis and structure, XXI: 39–79 formation of, XVIII: 335 bis-porphyrin cofacial systems, reaction with diphenylphosphine oxide, XXI: 39–70 XVIII: 338 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 204 FA

204 Cumulative Index to Volumes 1–25

meso-iodination of 5,15-diarylporphyrins, Palladium(II) diazuliporphyrin, ORTEP III XVIII: 337 drawing, XVI: 266 metal porphyrin molecular tweezers, Palladium(II) expanded porphyrin complex, XVIII: 342 ORTEP III drawing, XVI: 283 monobromination of 5,15-diarylporphyrins, Palladium π-expanded porphyrins, XVIII: 323 XVIII: 337 Palladium(II) 21-methylbenzocarbaporphyrin, mono-meso-bromodiarylporphyrins, in CDCl3 500 MHz proton NMR XVIII: 336 spectrum of, XVI: 49 palladium complexes of modified Palladium(II) 1,4-naphthiporphyrin porphyrins, XVIII: 328–334 conversion into palladium(II) derivatives of peripherally palladated porphyrins, benzocarbaporphyrins, XVI: 176 alternative route, XVIII: 338 Palladium(II) naphthiporphyrin, ORTEP III phenyl-(benziporphyrin) or drawing, XVI: 166 pyridyl-(pyriporphyrin) moieties and Palladium(II) oxacarbaporphyrin, ORTEP III stability, XVIII: 330 drawing, XVI: 54 photocatalytic activity of, XVIII: 328 Palladium(II) oxybenziporphyrins, reactions photooxidation of phenols, XVIII: 335 of, XVI: 127 photophysical properties of, Palladium(II) p-benziporphyrin complex, XVIII: 322–324 addition reactions to, XVI: 162 porphyrins with peripheral palladium Palladium(II) p-benziporphyrin derivative, moieties, XVIII: 334–343 base-promoted ring contraction to give Pt NMR spectroscopy, XVIII: 341 palladium(II) carbaporphyrins, reversible interactions of bisporphyrins XVI: 160 with palladium compounds, Palladium(II) pyrazoloporphyrin, ORTEP III XVIII: 344 drawing, XVI: 240 supramolecular porphyrin arrays containing Palladium(II) tetrakis(4-chlorophenyl)- palladium, XVIII: 343–348 azuliporphyrin ORTEP III drawing, Suzuki cross-coupling in, XVIII: 327 XVI: 85 synthesis of bis(phenyldipyrromethene)- Palladium, unsubstituted Pcs (UV-vis linked porphyrin dimers, XVIII: 345 absorption data) and, IX: 130 synthesis of nanomer containing 12 Palladium-catalyzed carbon-heteroatom C–C palladium cations, XVIII: 347 reactions synthesis of Pd(II)–porphyrin nanoscale aryl-amidation (C–N coupling) and, framework, XVIII: 348 III: 401–404 synthesis of Pd/Pt heterometallic pincer aryl-amination (C–N coupling) and, complexes, XVIII: 342 III: 389–395 tetraaryloxybenziporphyrin and stability, background/use (C–B coupling) of, XVIII: 331 III: 373–374 with thionyl chloride, chlorination of background/uses of, III: 368–369 Pd-porphyrins, XVIII: 325 β-amidation (C–N coupling) and, transformation of Pd-OEP into III: 398–401 Pd-isoporphyrin salt, XVIII: 326 β-amination (C–N coupling) and, vs. platinum porphyrin, XVIII: 348 III: 385–389 Palladium tetrakis(diaza-anthraceno)- β-borylation (C–B coupling) and, porphyrins, XVIII: 323 III: 377–378 Palladium uroporphyrin III, XVIII: 322 β-etheration (C–O coupling) and, III: 413 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 205 FA

Cumulative Index to Volumes 1–25 205

β-sulfanylation/selenation (C–S/C–Se Heck and Stille, III: 345–348 coupling) and, III: 415–417 Sonogashira, III: 341–344 haloporphyrins addition and, III: 370–373 Suzuki-type, III: 336–341 mechanistic overview of, III: 369–370 Para/meta Mn(III) N-alkylpyridylporphyrins, meso-amidation (C–N coupling) and, SOD mimics and, XI: 321–323 III: 395–398 Para-benziporphyrin meso-amination (C–N coupling) and, coordination complexes and construction III: 379–384 of, II: 146–147 meso-borylation (C–B coupling) and, crystal and resonance structures of, III: 374–377 II: 141–142 meso-etheration/hydroxylation (C–O Para-Boronophenylalanine (BPA), IV: 192 coupling) and, III: 404–413 Paracoccuc halodenitrificans, MCD spectra of meso-phosphoration (C–P coupling) and, cNOR from, V: 133–134 III: 417–421 Paracoccus denitrificans meso-sulfanylation/selenation (C–S/C–Se and bacterial NOR, V: 132 coupling) and, III: 413–415 MCD spectra of cNOR from, V: 133–134 and oxidative addition of Pd with nitrous oxide reductase (N2OR) and, V: 130 porphyrin halides, III: 370–373 and reduction of NOR, V: 137 Palladium-catalyzed C–B coupling Paramagnetic metalloporphyrins. β-borylation and, III: 377–379 See Metalloporphyrins; NMR meso-borylation and, III: 374–377 spectroscopy Palladium-catalyzed C–N coupling Para-N-confused pyriporphyrin, synthesis of, aryl-amidation and, III: 401–404 II: 129 aryl-amination and, III: 389–395 Pariser-Parr-Pople (PPP)-SCF-MO method of β-amidation and, III: 398–401 Q transition TAP calculation, IX: 9 β-amination and, III: 385–389 Parkinson’s disease, Medical effects of meso-amidation and, III: 395–398 water-soluble metalloporphyrins and, meso-amination and, III: 379–384 XI: 363 Palladium-catalyzed C–O coupling Partially reduced oxygen species (PROS), β-etheration and, III: 413 XXI: 27 meso-etheration/hydroxylation and, Partial molecular orbital energy diagram, III: 404–413 XVI: 359

Palladium-catalyzed coupling reactions at PAS fold as O2-sensing site 3-/5-positions, VIII: 61–65 AxPDEA1, XV: 433–435 Palladium-catalyzed C–P coupling, Ec DOS, XV: 432–433 meso-phosphoration and, III: 417–421 FixL, XV: 432 Palladium-catalyzed C–S/C–Se coupling Passive targeting, IV: 331, IV: 354, IV: 363–385 β-sulfanylation/selenation and, III: 415–417 antimicrobial PDT, IV: 389–393 meso-sulfanylation/selenation and, EPR effect (enhanced permeability and III: 413–415 retention), IV: 314, IV: 330–331, Palladium-catalyzed cyanation, with IV: 340, IV: 354, IV: 376–377 cyanoethylzinc bromide, II: 1, II: 2, polymer carrier systems, IV: 366–369 II: 210 See also Active targeting; Cellular Palladium-mediated C–C coupling reactions targeting; Dendrimers; Liposomes; dendrimers/conjugated polymers Micelles; Nanoparticles (NPs) (macromolecules) and, III: 348–352 Patent Storm US database, VII: 361 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 206 FA

206 Cumulative Index to Volumes 1–25

Pauson-Khand reaction, III: 358–359 Pd and Pt pincer–porphyrin complexes, PBG deaminase (PBGD), XX: 153, XX: 220 XXIII: 119 PBG deaminase (PBGD), XXV: 22 Pd-Co heterobimetallic porphyrin, XXI: 50 actions of, XXV: 22 Pd(II) expanded porphyrins, crystal structure deficiency, XXV: 26 of, II: 183 from E. coli, crystal structure of, XXV: 25 Pd(II)/Pt(II) links, and deposition on glass mechanism of, XXV: 23 surfaces, XII: 139–140 PBGS octamer XXV Pd (palladium) nanoparticles, XVIII: 198 active site structure with late-stage PD98059, IV: 430, IV: 431 intermediate covalently attached to PdPc absorption spectra, IX: 68–72 Lys-263, XXV: 21 PDT. See Photodynamic therapy (PDT) comparison, from P. aeruginosa with Pd(II) vacataporphyrin levulinic acid (LA) bound, XXV: 18 Möbius or Hückel topologies and flexible of E. coli, Mg-dependent, XXV: 17 butadiene fragment in, II: 150 of E. coli, Zn-dependent, XXV: 17 reactivity of, II: 148–150 synthesis of PBG by, XXV: 21 PduX gene, XXV: 63 PBG synthase. see ALA dehydratase (ALAD) PEB biosynthesis, XXII: 28 PBG synthesis by PBGS, XXV: 21 PEG. See Polyethylene glycol (PEG) PChlide a moiety, photoexcitation of, XX: 74 Pendant-capped porphyrins, XXI: 23 PChlide a–PChlide a, XX: 56–57 Pentafluorophenyl substituted porphyrin-free PChlide a–PPhide a, XX: 57 bases, XXII: 102 PChlideoxido reductase (POR), XX: 160–161, Pentalysine-conjugated phthalocyanine, XX: 226 structure of, XVIII: 284 PChlide/PPhide a monomer, XX: 67 Pentamer with dithiaporphyrin core, I: 49, “PChlide translocon complex,” XX: 161 I: 54 PbPc absorption spectra, IX: 86–95 Pentaphyrins, II: 181–182 Pc analogs with heteroatoms inside aromatic Pentapyrrolic expanded porphyrins skeleton, UV-vis absorption data, excited state dynamics, I: 512 IX: 415–448 N-fused pentaphyrins/metalation, I: 514–515 Pc analogs with triazole units, UV-vis nonlinear optical properties, I: 513–514 absorption data, IX: 579–584 overview, I: 510–511 PCBM, XVIII: 61–62, XVIII: 72–73, quantum mechanics, I: 513–514 XVIII: 75, XVIII: 84 steady state spectroscopy, I: 511–512

Pc derivatives with crown-ether units, UV-vis Peptide-B12, XXV: 140 absorption data, IX: 449–479 Peptide combinatorial libraries, III: 519–523 Pc dimers/oligomers, UV-vis absorption data, Peptide-conjugated phthalocyanines, XVIII: IX: 538–578 280–284 Pc polymers, UV-vis absorption data, Peptide–photosensitizer conjugates, IX: 585–601 IV: 141–149 Pc. See Phthalocyanines (Pc) activated ester formation method,

PC4, IV: 256, IV: 262 IV: 143–144

P-confused porphyrinoid, preparation and AlPcS4 conjugate with bombesin, IV: 144, crystal structure of, II: 132–133 IV: 279–280 Pd(II) adj-diazuliporphyrin, II: 168 benzotriazole (BOP) coupling method, canonical structure and aromatic character IV: 144–145 of, II: 168 coupling method, crystal structure of, II: 169 IV: 141–144 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 207 FA

Cumulative Index to Volumes 1–25 207

cell penetrating peptide (CPP), IV: 144–145, Pericyclic reactions, annelation of aromatic IV: 147, IV: 220, IV: 278 rings by, XIII: 73

chlorin e6–peptide conjugates, IV: 141–143, Peri-fusion, acenaphthoporphyrins and, IV: 151–155, IV: 280–281 XIII: 10–11 conjugation conditions, summary, Perhalosubstituted TPP, electronic spectra of, IV: 180–182 XVIII: 130 epidermal growth factor (EGF), Peripheral benzodiazepine receptor (PBR), IV: 153–155, IV: 280–281 IV: 35 guanidine–porphyrin conjugate targeting of Peripheral substituents modification mitochondria, IV: 278–279 fluorinated peripheral substituents and, HIV-1 transactivator protein (HIV-1 Tat) in V: 19 targeted conjugates, IV: 278, IV: 279 heme disorder and, V: 17–19 protoporphyrin IX (PPIX) conjugates, nonpropionated hemes and, V: 21–22 IV: 145–146, IV: 147–148, IV: 150 other peripheral substituents, V: 22–23 pyropheophorbide–peptide–folate conjugates propionate positions and, V: 19–21 (PPF), IV: 35, IV: 171–173 and role of 2-/4-substituents in heme RGD peptide conjugates, IV: 143–146, framework, V: 7–12 IV: 148, IV: 150–151, IV: 276–278 and role of 6-/7-propionate side chains in singlet oxygen quenching by heme framework, V: 12–17 photosensitizer conjugates, Peripheral substituents of phthalocyanines. IV: 281–284 See also Spectroscopy synthetic peptide conjugates, IV: 348–351 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25- targeted photosensitizers, IV: 274, hexadecasubstituted compounds of, IV: 276–281 III: 31–34 tetraphenylchlorin (TPC) conjugation, 1,2,8,9,(10,11),15,16(17,18),22,23(24,25)- IV: 146–147, IV: 148 octasubstituted compounds of, III: 17 meso-tetraphenylporphyrin (TPP) with 1,3,8,10,(9,11),15,17(16,18),22,24(23,25)- peptides, IV: 144–148 octasubstituted compounds of, tumor-specific localization, IV: 274, III: 17–18 IV: 276–281 1,4,8,11,15,18,22,25-octasubstituted Verteporfin–peptide conjugate, IV: 142–143 compounds of, III: 18–23 Zn-phthalocyanine–peptide targeted 1,8(11),15(18),22(25)-tetrasubstituted conjugates, IV: 279, IV: 280 compounds of, III: 7–11 See also Conjugates; Protein– 2,3,9,10,16,17,23,24-octasubstituted photosensitizer conjugates compounds of, III: 23–31 Peptidylglycine α-amidating monooxygenase 2,9(10),16(17),23(24)-tetrasubstituted (PαH), XIX: 346 compounds of, III: 10–16 Peracids, reaction of ferric P450cam with, alkenyl/alkynyl substituents and, V: 301, V: 305 III: 34–43. See also Alkenyl Per-Arnt-Sim (PAS) domains substituents of phthtalocyanines; AxPDEA1 and, XV: 137 Alkynyl substituents of EcDos and, XV: 137–139 phthtalocyanines fixL genes and, XV: 135–137 alkyl/aryl substituents and, III: 7–34 mammalian heme-PAS-containing proteins alkylthio-/arylthio-substituted, III: 173, and, XV: 139 III: 176–190 Perfusion-induced FTIR approaches (stopped- amino-substituted, III: 114–121 flow/rapid mixing), VII: 481–482 dodeca-alkyl- or aryl-substituted, III: 31 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 208 FA

208 Cumulative Index to Volumes 1–25

with electron-donating/electron-withdrawing optically active binaphthyl-linked bisph- substituents in same benzene ring, thalonitrile and its Pc derivatives, III: 190–198 XXIII: 403 historical aspects/general information of, UV-visible absorption spectra, XXIII: 352 III: 2–6 Peripherally metalated porphyrin derivatives hydroxy-/alkoxy-/aryloxy-substituted, compounds with one porphyrazine, III: 121–176. See also Hydroxy-/ III: 463–472 alkoxy-/aryloxy-substituted coordination complexes linked by metal phthalocyanines and derivatives ions, III: 451–463, III: 451–463 open-shell substituted transition-metal coordination complexes with one phthalocyanines, III: 283 porphyrin, III: 444–447 redox potential trends/stability of, dimers/oligomers linked by metal ions III: 289–293 porphyrins, III: 447–451 with substituents connected via methylene porphyrazines, III: 472–477 group, III: 45–62 early examples of, III: 432–435 trialkylsilyl-substituted, III: 42–45 metallocenes linked by metal ions, uses of, III: 198 III: 447–451 Peripheral substituents, oxidative coupling metallocenes with one porphyrin, and, II: 67 III: 435–444 Peripheral substitution of tetrapyrroles/ overview of, III: 430–432 porphyrins, XVIII: 126–127 Peripherally substituted compounds, chemical β-substitution of tetraphenylporphyrin, structures of, XVIII: 127 XVIII: 128–130 Periplasmic binding protein (PBP), and bacterial dodecaphenylporphyrin, XVIII: 130–132 acquisition of iron, VI: 340–341 oxidized persubstituted tetraphenylporphyrin, Periplasmic heme-binding proteins (PBPs), XVIII: 133–134 XV: 364–365 pH sensing by non-planar tetrapyrrole, Periplasmic nitrate reductase (Nap), as XVIII: 132–133 Mo-containing enzyme, V: 128 Peripheral substitution, XXIII: 343–352 Permeation of penetrant through polymer films absorption and fluorescence spectra, (equation), XII: 312 XXIII: 345 Peroxidase(s) (P450), XIX: 47–48 absorption and MCD spectra, XXIII: 349 catalytic cycle, XIX: 48, XIX: 76 α- and β-positions of phthalocyanine, electron transfer complexes, XIX: 87 XXIII: 351 P450cam-putidaredoxin, XIX: 88–89 B3LYP-optimized geometries, XXIII: 344 P450 reductase and P450BM3, effect of structural perturbations on XIX: 91–93 ∆HOMO and ∆LUMO, XXIII: 350 putidaredoxin-putidaredoxin reductase, phthalocyanines with optically active XIX: 89–90 aromatic substituents, oxygen activation in XXIII: 401–418 P450cam, XIX: 84–86 illustration for the hierarchical P450eryF, XIX: 86–87 formation of helical structures, XIX: 79–81 nanostructures, XXIII: 415 chloroperoxidase, XIX: 54–56 optical limiting (OL) properties of diheme peroxidases, XIX: 52–54

n-C12H25-octasubstituted CuPc, dye decolorization peroxidases (DyP), XXIII: 413 XIX: 57 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 209 FA

Cumulative Index to Volumes 1–25 209

mammalian peroxidases, XIX: 51–52 benzohydroxamic/salicylhydroxamic acids non-mammalian peroxidases, as binding sites for substrates, XIX: 48–51 VI: 400–403 P450-like enzymes, XIX: 80 calcium binding sites and, VI: 396–400 prostaglandin synthases (PGHS), classifications of, VI: 372–373 XIX: 58–60 and extended network of H-bonds, traditional monooxygenases, VI: 380–381 XIX: 78–79 Fe(III) resting state and, VI: 374–380 Peroxidase. See also Compound ES; imidazolate ligands and, VI: 384–386 Compound I; Horseradish peroxidase KatG from Mycobacterium tuberculosis, (HRP); Peroxidases (animal VI: 394–396 superfamily); Peroxidases (plant/ KatG from Synechocystis, VI: 390–394 fungal/bacterial superfamily) ligand binding and, VI: 403–410 catalytic cycle of, X: 101–102 multifrequency EPR spectroscopy and Peroxidases (animal superfamily) reactivity of catalytic intermediates, components of, VI: 430 VI: 422–429 covalent links/heme structure and, Resonance Raman (RR) characterization of VI: 430–431 catalytic intermediates, VI: 416–422 multifrequency EPR spectroscopy with structural diagrams of KatGs, VI: 386–390 stopped-flow electronic absorption vinyl-protein interaction and, VI: 381–384 spectrophotometry, VI: 438–442 X-ray structures of catalytic intermediates, Resonance Raman (RR) and electronic VI: 412–414 absorption spectra, VI: 432–436 catalysis reaction of, VI: 368 of catalytic intermediates, VI: 436–438 Compound I/Compound ES generation, X-ray structures of, VI: 431–432 V: 301–303 Peroxidase and heme thiolate enzymes corrole and, V: 35 cytochromes P450, XIX: 75–78 general information, VI: 368–370 heme enzymes, XIX: 46–47 multifrequency electron paramagnetic nitric oxide synthase, XIX: 93–94 resonance spectroscopy and, active site, XIX: 95–96 VI: 370–372

NOS mechanism, XIX: 97–99 and oxygen atom donor of H2O2, V: 303 NOS reductase, XIX: 96–97 porphycene and, V: 34–35 structure of heme domain, XIX: 94–95 rapid-scanning stopped-flow studies of Peroxidase mechanism P450cam and, V: 320–321 compound I formation, XIX: 60–63 resonance raman spectroscopy and, Poulos-Kraut mechanism, XIX: 61 VI: 370 “water mediated” mechanism, XIX: 61 Peroxidase-substrate interactions, XIX: 81–84 location of oxidizing equivalents in CYP107H1 (P450BioI), XIX: 82–83 compound I, XIX: 63–67 complex formed between P450BioI and

reaction between H2O2 and, XIX: 60 ACP, XIX: 84 structure of compound I, XIX: 67–69 generic binding site, XIX: 69–71 EXAFS study, XIX: 67 specialized substrate binding sites, plot of Fe–O distance vs. X-ray dose, XIX: 71–75 XIX: 68 structures of various, XIX: 70 Peroxidases (plant/fungal/bacterial Peroxide dissociation, in catalytic cycle of

superfamily), VI: 384–386 cytochromes P450, V: 179 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 210 FA

210 Cumulative Index to Volumes 1–25

Peroxide ligand, relative eclipsed orientation chemical modification of porphyrin rings of, XXIV: 21 and syntheses of, II: 2 Peroxo ligand, XXIV: 21 condensation reactions in synthesis of, Peroxynitrite (PN) reducing activity, and II: 86, II: 95 physicochemical properties of SOD conversion of preformed porphyrins and mimics, XI: 311–314 synthesis of, II: 57 Perylene-3,4: 9,10-bis(dicarboximide) (PDI), Diels-Alder reaction in synthesis of, XX: 68 II: 81–86 Personal protective equipment (PPE), formylporphyrins as intermediates in nanoparticles and, XII: 356 synthesis of, II: 78 Persubstituted metalloporphyrin, XVIII: 161 porphyrin-annulated enediynes and unique, Perturbation mapping (chemical shift), 1H-15N II: 59, II: 60 NMR spectra and, VI: 356–357 porphyrin-based synthesis of, II: 1, II: 2, Perylene porphyrins, Sonogashira C–C II: 55–94 coupling reactions and, III: 343–344 zinc template method and product quality Perylene tetracarboxylic diimides (PDIs), in synthesis of, II: 8 BODIPYs and, VIII: 138–140 π-skeletal effect (semisynthetic chlorophylls), Perylene-bisimide-centered porphyrin XI: 236–240 tetramer, I: 44, I: 47 π-systems (semisynthetic chlorophylls), Perylenediimide (PDI), and through-space XI: 277–283 BODIPY energy transfer cassettes, π–π stacked aggregates, β-substitution in VIII: 65–66 porphyrins and, II: 105 Pesticides, cytochrome P450 enzymes and, Phagocytosis, MPO and, VI: 430 V: 166 Phellodendron amurense var. wilsonii, PET. See Positron emission tomography (PET) XIII: 258 Petasites formosanus, XIII: 258 Phenanthrene-fused systems, and aromatic pH conjugation of BODIPY-analogs, LBL deposition and alkaline/acidic exposure, VIII: 114–116 XII: 137 Phenanthroline-strapped porphyrins, XVIII: 36 measurements, electrocatalysis/ aggregates formed on mica and HOPG, electroanalysis and, XII: 287 XVIII: 37 and need for mimicking enzymatic structure of, XVIII: 37 systems, XII: 229 structures on mica, XVIII: 37 and rapid-scanning stopped-flow studies of surface structures on mica and HOPG, P450cam, V: 318–319 XVIII: 37 sensors, XII: 177–180 Phenanthrolinoporphyrins (phenP) and peripheral substituents of preparation of, II: 48, II: 49 phthalocyanines, III: 90–92 preparation of di(adj)-, di(opp)-, and pH/temperature effects on heme-hemopexin, tri-, II: 49, II: 50 XV: 244–245 Phenanthrolinotribenzoporphyrin (phenBP), π-conjugation, fused aromatic rings in synthesis and Ruthenium complexes of, meso- and β-positions and II: 51, II: 52 unsymmetrically elongating, II: 69 Phenolic compounds and biosensors, V: 209–210 π-extended heteroporphyrins, II: 30 Phenols, photocatalytic reactions of, π-extended porphyrins VII: 343–346 application of opt-electrical materials at Phenoxy-substituted porphyrins, near IR regions and, II: 2 XVIII: 19–24 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 211 FA

Cumulative Index to Volumes 1–25 211

Phenylene-bridged amidopyrrole dimers, Phosphonate-functionalized porphyrins, amidopyrrole-based receptors and, XVIII: 30–31 VIII: 175–179 Phosphonate linkage, oxide surface Phenylenediporphyrin, synthesis of, functionalization and, X: 297–298 XXIII: 140 Phosphorescence Phenylene unit in p-benziporphyrins, and difference between distorted teeter-tottering motion of, XVI: 158 tetraaryl-substituted/planar meso- Phenylhydrazine, and inactivation of HRP, unsubstituted molecules, XIII: 9 V: 22–23 intensity measurement for optical sensing, Phenylmethylsulfonyl fluoride (PMSF) as XII: 316–321 τ protease inhibitor, XV: 252 lifetime ( p), XI: 10–11 Phenylnitroxide-substituted zinc(II) porphyrin measurement for optical sensing, and derivatives, XXIII: 148 XII: 321–324 Phenyl-substituted phthalocyanines, Q-band quenching, XII: 311 and, III: 284–285 spin-forbidden, lowest energy emissions Phenylsulfanyl derivatives, III: 176, III: 190 (Kasha’s rule) and, XI: 9 Pheophorbide a, XX: 195, XX: 232, XX: 234 Phosphoric acid derivatives, as Pheophorbide a oxygenase (PAO), XX: 233 electron-withdrawing groups of Pheophorbides phthalocyanines, III: 111–114 bacteriopheophorbide a, IV: 257–260 Phosphorylation. C–P bond formation, 1,4-diaminobutane (DAB) dendrimers with XXIII: 206–211 pheophorbide a, IV: 373–374 Phosphorus(V) N-fused telluraporphyrin, folic acid conjugates, IV: 35 synthesis of, XVI: 313 methyl pheophorbide a, IV: 33, Phosphorus, unsubstituted Pcs (UV-vis IV: 233–236 absorption data) and, IX: 113 Pd(II) complex of bacteriopheophorbide, Photobleaching Φ IV: 34, IV: 43, IV: 365 quantum yields ( P), VII: 320–321 structure, IV: 329 semiconductor nanocrystals and, structural chemistry of, XIII: 274–278 XII: 370–371 See also Chlorins (2,3-dihydroporphyrins); Photocatalysts, tin/antimony porphyrins as 2-(1-Hexyloxyethyl)-2-devinyl reductive, XI: 200

pyropheophorbide a (HPPH, Photocatalytic organic halide reduction by B12 Photochlor) derivatives, X: 346–349 Pheophytin a, XX: 232 Photocatalytic reactions of MPcs, Phide a–quinone motif, XX: 71 VII: 324–329 Phlorin, II: 128, II: 129 Photochemical A–D cyclization XXV Phodospeudomonas viridis, photosystems of, counterclockwise synthesis of A/D- XI: 7 seco-corrin and, XXV: 295–297 Phorcabilin, neobiliverdin IXγ, XXII: 25 counter clockwise isoxazole intermediate Phorbine skeleton, XXIII: 70 for electrochemical reductive A–D Phosphodiesterase (EcDosP), XV: 143 cyclization, XXV: 297 Phosphodiesterases of heme sensor output counterclockwise synthesis of A/D- domains, XV: 125 seco-corrin and its, XXV: 296 Phosphomethylphthalocyanine derivatives formation of corrin macrocycle by characteristics of, III: 62 photochemical A–D-cyclization, preparation via Arbuzov-Mikhaelis XXV: 280 reaction, III: 61–62 mechanistic course of, XXV: 281 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 212 FA

212 Cumulative Index to Volumes 1–25

of metallo seco-corrins, XXV: 280–282 E-ring-opening substituents (semisynthetic seco-corrins synthesis and, XXV: 278–288 chlorophylls), XI: 271–284 Photochemical internalization (PIC), IV: 382 formylated chlorins (semisynthetic Photochemical/photophysical properties of chlorophylls), XI: 261 Pcs/Mpcs fully synthetic chlorophylls, XI: 282–284 Φ fluorescence quantum yields ( F), VII: 275 isobacteriochlorins (semisynthetic Jablonski diagram of absorption, VII: 268 chlorophylls), XI: 282–283 Φ photodegradation quantum yields ( P), light absorption and, XI: 226 VII: 273–275 modified 5-membered E-rings (semisynthetic

singlet oxygen quantum yields (Φ∆), chlorophylls), XI: 266–267 VII: 268–273 modified 6-membered E-rings (semisynthetic Φ triplet state quantum yields ( T), chlorophylls), XI: 267–271 VII: 275–277 π-skeletal effect in organic solvents Photochemistry of chlorophylls and synthetic (natural chlorophylls), XI: 229–231 analogs π-skeletal effect (semisynthetic 13-substituents (semisynthetic chlorophylls), XI: 236–240 chlorophylls), XI: 265–266 π-systems (semisynthetic chlorophylls), 20-substituents (semisynthetic XI: 277–283 chlorophylls), XI: 274–276 peripheral substituent effect (natural 31-monosubstituted-alkyl substituents chlorophylls), XI: 231–234 (semisynthetic chlorophylls), photosynthetic antennas (natural XI: 250–253 chlorophylls), XI: 226, XI: 228–229 3-acetyl-bacteriochlorins (semisynthetic solvent effects (natural chlorophylls), chlorophylls), XI: 263–265 XI: 234–236 3-carbonyl/related substituents stereoselectively D-ring reduced chlorins (semisynthetic chlorophylls), (semisynthetic chlorophylls), XI: 246–250 XI: 280–282 3-ethenyl substituents (semisynthetic structures/nomenclature and, XI: 225–227 chlorophylls), XI: 240–245 Photoconductivity, self-assembled porphyrin 3-ethynyl substituents (semisynthetic nanostructures and, XI: 196–200 chlorophylls), XI: 245–246 Photochromic porphyrin– 3-monosubstituted-methyl substituents perinaphthothioindigo conjugate, (semisynthetic chlorophylls), XXIII: 167 XI: 250 Photocytotoxicity, XVIII: 248, XVIII: 286 Φ 3-substituted bacteriochlorins/porphyrins Photodegradation quantum yields ( P), (semisynthetic chlorophylls), MPc/Pc parameters and, VII: 273–275 XI: 255–257 Photodynamic (PD) action of tetrapyrrole ring 7-substituents (semisynthetic chlorophylls), structures XI: 255, XI: 257–259 cholesterol derivative formation, IV: 6, 8-substituents (semisynthetic chlorophylls), IV: 7 XI: 259–262 2′-deoxyguanosine derivative formation, B-ring reduced chlorins (semisynthetic IV: 6, IV: 7 chlorophylls), XI: 277–280 discovery, IV: 3 carbinols (semisynthetic chlorophylls), overview, IV: 5 XI: 253–255 reaction pathways, IV: 5–7 central metals (semisynthetic chlorophylls), reactive oxygen species (ROSs) production, XI: 276–279 IV: 3, IV: 6 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 213 FA

Cumulative Index to Volumes 1–25 213

type I (radicals or electron transfer) apoptosis after PDT, IV: 405–408 processes, IV: 6–7, IV: 37, cancer treatment and, VII: 361 IV: 386–387 combinatorial chemistry of porphyrins and, type II (singlet oxygen) processes, IV: 6–7, III: 488 IV: 37, IV: 45, IV: 387, IV: 426 comparison of BNCT and PDT, IV: 193 See also Specific types conjugates for fluorescence imaging and Photodynamic antimicrobial chemotherapy PDT, IV: 289–293 (PACT), IV: 149 conjugates for magnetic resonance (MR) Photodynamic diagnosis (PDD), IV: 382 imaging and PDT, IV: 294–297 Photodynamic inactivation (PDI) conjugates for nuclear imaging and PDT, alkylated Zn tetraazaporphyrins, IV: 72 IV: 297–302 Bacillus cereus endospores, IV: 390–391 definition, IV: 250, XV: 163 benzochlorin Cu(II) iminium salt disease treatment and, XII: 366–367 derivatives, IV: 28 dose–response curves, IV: 407 Candida albicans, IV: 392–393 effect of metalation in PDT, IV: 257–263 cationic or neutral photosensitizer effect on expanded porphyrins and, I: 508, II: 176, Gram-negative bacteria, IV: 387, IV: 263–264 IV: 389–390 Gd(III)-based conjugates for MRI and Cd texaphyrin, IV: 47 PDT, IV: 294–297 Escherichia coli, IV: 47, IV: 82–83, history, IV: 403–405 IV: 387 HPPH conjugates for MRI and PDT, fungi, IV: 392–393 IV: 294–297 HP, IV: 13 hypoxia induced by PDT, IV: 426, mechanism of PDI of fungi, IV: 387 IV: 432–433, IV: 441 sewage bacteria, IV: 389–390 induced oxidative damage, IV: 5, IV: 250 Staphylococcus, IV: 47 infectious disease treatment by sulfonated Pc (ZnPcS3), IV: 66 photosensitizers, IV: 284–286 at surface of biomaterials, IV: 390–392 in vivo with TPA, I: 18–19 urease activity, IV: 365 123I-based photosensitizers for PET and waste water bacteria, IV: 389–390 PDT, IV: 302, IV: 303–304 ZnHP, IV: 13 124I-based photosensitizers for PET and ZnPc, IV: 82–83 PDT, IV: 299–303 See also Antimicrobial PDT; Photodynamic mass transducers and, XII: 159 therapy (PDT) membrane trafficking and PDT, IV: 418–419 Photodynamic therapy (PDT), II: 2, IV: 149, metallonaphthalocyanine (MNPc), IV: 250–252, IV: 314, IV: 426–427, IV: 261–263 IX: 3, XVII: 7, XX: 3 metalloporphyrins, IV: 13–25, IV: 257–263 1,8(11),15(18),22(25)-tetraphenylthio and modification of porphyrin macrocycle, phthalocyanines and, III: 176 III: 512 adjuvant procedures targeting tumors after MPcs/Pcs and, VII: 250 PDT, IV: 426–427 nanoparticles as drug carriers, overview, alkylation and terminal functional groups, IV: 303, IV: 306, IV: 374–376 III: 169 and optical properties of Q-band, as alternative cancer treatment, IV: 3, III: 283–289 IV: 124 palladium-catalyzed C–C reactions and, antitumor agents, VII: 381–383, VII: 387 III: 368 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 214 FA

214 Cumulative Index to Volumes 1–25

and phthalocyanine sulfoacids and in fluorescent imaging and diagnosis, derivatives, III: 83, III: 88–89, IV: 288–289 III: 105–106 hematoporphyrin derivatives (HPDs) in, Photofrin, IV: 3, IV: 12–13, IV: 39, IV: 96, IV: 3, IV: 12, IV: 251 IV: 264, IV: 426 induced protein kinase B/Akt, IV: 437 photoimmunotherapy (PIT), IV: 330, matrix metalloproteinase (MMP-1) IV: 332–333 expression after PDT, IV: 436, polyacrylamide (PAA)-based nanoparticles IV: 440 for MRI and PDT, IV: 310–312 photodynamic therapy (PDT), IV: 3, polymeric nanoparticles and, XII: 401–402 IV: 12–13, IV: 96, IV: 264, IV: 426 porphyrins/semiconductor nanocrystals photosensitizing activity, IV: 3, IV: 39 and, XII: 374–375 in polyacrylamide (PAA)-based semiconductor nanocrystals and, XII: 370 nanoparticles for MRI and PDT, and small libraries for therapeutic IV: 310–312 discovery, III: 502–506 radiosensitizing agent, IV: 96 second-generation photosensitizer features, retention by tumor tissues, IV: 288 IV: 3–4, IV: 124, IV: 426 structure, IV: 13, IV: 253 silica nanoparticles and, XII: 396–399 use with COX-2 inhibitors, IV: 429, singlet-oxygen generation and, I: 18 IV: 432 1 singlet oxygen ( O2), importance, IV: 5, Photogem, IV: 38, IV: 253 IV: 250, IV: 412–414 Photoimmunoconjugate (PIC). STAT-3 as biomarker, IV: 250, See Monoclonal antibody (MAb)– IV: 272–274, IV: 314 photosensitizer conjugates use of ALA for, XV: 10 Photoimmunotherapy (PIT), IV: 332, IV: 342 See also Infectious disease treatment by Photoinduced electron transfer (PET), titania photosensitizers; Photosensitizers nanoparticles and, XII: 385 (PS); Targeting strategies for PDT; Photoinduced energy transfer process, Tumor microenvironment and PDT; XVIII: 263

Phthalocyanine sulfoacids and Photolon (chlorin e6–polyvinylpyrrolidone), derivatives IV: 37–38, IV: 387 synthesis and use of bacteriochlorins in, Photon upconverting nanoparticles (PUNP), XVII: 12 IV: 379–380 Photoexcitation Photonic explorer for bioanalysis with covalently linked conjugates and, biologically localized embedding I: 162–163 (PEBBLE), XII: 399–400, future outlook of charge transfers and, XII: 402–403 I: 206–208 Photoorientation and porphyrins in rare-gas and non-covalently linked hybrids of SnP matrices, VII: 410 platform, I: 169–170 Photooxidation, cofacial porphyrin dimers and, of optical oxygen sensors, XII: 300–302 I: 55–56, I: 58 and SWNT functionalized with PAMAM Photophysical properties of expanded dendrimers, I: 195 porphyrins SWNT separation and, I: 197 heptapyrrolic Photofrin excited state dynamics, I: 517–518 angiogenic effect, IV: 433–434 Hückel antiaromaticity, I: 529–534 COX-2 enzyme induction, IV: 429, IV: 430 Hückel aromaticity, I: 535–542 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 215 FA

Cumulative Index to Volumes 1–25 215

Möbius aromaticity, I: 542–544, porphyrin isomers (general information), I: 519–528. See also Hexapyrrolic VII: 399–403 expanded porphyrins relaxation from higher excited states, overview, I: 535, I: 515 VII: 407 spectroscopic properties/aromaticity, triplet state studies, VII: 407–409 I: 518–519 Photophysics of donor-bridge-acceptor steady state spectroscopy, I: 515–517 systems, XX: 64–78 octapyrrolic (Möbius aromaticity), Photorhabdus, hemopexin and, XV: 232–233 I: 544–546 Photosens, IV: 256, IV: 262 pentapyrrolic as photosensitizer in cancer treatment, excited state dynamics, I: 512 III: 88 N-fused pentaphyrins/metalation, Photosensitized reactions, overview, IV: 2–3 I: 514–515 Photosensitizers (PS), IV: 2–7 nonlinear optical properties, I: 513–514 absorption spectra, IV: 4 overview, I: 510–511 activatable photosensitizer conjugates, quantum mechanics, I: 513–514 IV: 281–284 steady state spectroscopy, I: 511–512 5-aminolevulinic acid (ALA)-based protonation of [38]nonaphyrin, I: 546–551 photosensitizers, IV: 7–11, IV: 12 Photophysical properties of porphyrin arrays clinical applications in fluorescence conformational heterogeneity, I: 458 imaging, IV: 288–289 and dihedral angle control in array clinical trials, IV: 251, IV: 253–256 derivatives, I: 458–472. See also β-galactoside-recognized photosensitizers, Dihedral angle control IV: 32–33, IV: 265, IV: 267–268 EET process, I: 480–485, I: 495–499 localization sites, IV: 408, IV: 409, electrical conductance (arrays), I: 449–452 IV: 410, IV: 411 excitation energy photodynamic effect, discovery, IV: 3 hopping, I: 474–475 photosensitizers for infectious diseases, migration, I: 475–476 IV: 284–286 exciton coupling, I: 472–474, I: 479–480, properties and features, IV: 3–4, IV: 250, I: 492–495 IV: 252 and intracellular behaviors of dimers, research and development, IV: 251–252, I: 18–19 IV: 264 one-dimension linear arrays, I: 443–448 second-generation photosensitizers, radiative coherent length arrays, IV: 3–4, IV: 124, IV: 426 I: 448–449 structures, IV: 253–256 SMFS, I: 452–458, I: 476–479, I: 485–491 targeted carbohydrate-based conjugates, supramolecular self-assembled porphyrin IV: 32, IV: 264–274, IV: 275 boxes, I: 491–492 targeted peptide-based conjugates, IV: 274, types of analysis (arrays), I: 441–442 IV: 276–281 Photophysics targeted photosensitizers, overview, IV: 264 absorption process during, XI: 9 third-generation photosensitizers, IV: 124, energy diagram of electronic transitions for IV: 330, IV: 371–372 diamagnetic molecule, XI: 8–9 type I (radicals or electron transfer) excited state deactivation in alkylated processes, IV: 6–7, IV: 37, porphycenes, VII: 404–407 IV: 386–387 lowest energy emissions (Kasha’s rule), type II (singlet oxygen) processes, IV: 6–7, XI: 9 IV: 37, IV: 45, IV: 387, IV: 426 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 216 FA

216 Cumulative Index to Volumes 1–25

See also Photodynamic therapy (PDT); modulation of Ct-Ct distance by choice of Targeted photosensitizers; specific appropriate spacer, XI: 35–41 types molecular devices of (background Photosensitizer–antibody conjugates, information), XI: 5–8 XVIII: 242 photophysical parameters, XI: 4 Photostability, fluorinated substituents and, reaction center structures for, XI: 50–56 XII: 310 (TPP)Rh (chemical models), XI: 99–101 Photosynthesis, XX: 2 trisporphyrin (chemical model), biomimetic approaches to, XX: 46 XI: 100–103 chlorosomes and, I: 223–225 X-ray characteristics of defined, I: 2 bismetalated biscorroles, XI: 48–50 evolution of bacteria for, I: 223 bismetalated bisporphyrins, XI: 42–44 future outlook of charge transfers and, bismetalated porphyrin-corroles, XI: 48 I: 206–208 monometalated bisporphyrins, and λ-values of polar solvents, I: 147–148 XI: 41–42 nanometer scale structures and, I: 133–134 monometalated porphyrin-corroles, porphyrins and, VII: 360–361 XI: 46–48 prokaryotic bacteria and, I: 223, I: 225–226 Photosynthetic bacterial systems radical cation/anion of charge-separated and metalation of Pacman bisporphyrins/ states and, I: 309 biscorroles/porphyrin-corroles, “Photosynthesis gene cluster,” XX: 148 XI: 32–34 Photosynthetic bacteria. See also and synthesis of Cyanobacteria; Purple photosynthetic biscorroles, XI: 21–26 bacteria bisporphyrins, XI: 20–22 antenna effect for green sulfur bacteria, porphyrin-corroles, XI: 24, XI: 26–28 XI: 161–166 trimacrocycle, XI: 28–32 cofacial bis(etioporphyrins) (chemical Photosynthetic organisms, XX: 3 models), XI: 98–99 Photosynthetic reaction center models, XX: 69 cofacial bisporphyrins held by Photosynthetic reaction centers (RCs) calix[4]arene spacer, XI: 44–46 antennae (photosynthetic) and, I: 227–228 calix[4]arene spacer (chemical models), covalently linked conjugates and, I: 148 XI: 91–97 crystal structures and, I: 2–4 flexible chains (chemical models), models, X: 184–186 XI: 57–66 use of BChls for light to biochemical rigid spacers (chemical models), energy conversion, I: 225 XI: 67–91 Photosynthetic systems, artificial. cofacial bisporphyrins in singlet-singlet See Artificial photosynthetic systems studies (chemical models), Photosystems, methods to determine operation XI: 97–103 of, XI: 5, XI: 7 cofacial bisporphyrins in triplet-triplet studies Photosystem I, reaction center structures and, (chemical models), XI: 98–103 XI: 50–53 cofacial system (chemical models), Photosystem II, reaction center structures and, XI: 56–57 XI: 50–52 DFT and transfer rates, XI: 100 Photovoltaic cells, and peripheral substituents efficiency of, XI: 57 of phthalocyanines, III: 90–92 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 217 FA

Cumulative Index to Volumes 1–25 217

Photovoltaic devices, organic (OPD), tandem solar cell performances of, solar cells and efficiency of, XVIII: 107–108 X: 150–151 dyes, XVIII: 106 and bilayer heterojunctions fabricated using electronic interactions between carotenoid two different processing techniques and, XVIII: 294

and by vapor deposition, X: 149–150 films with C60/PCBM, XVIII: 71–73 covalent linkage for performance incorporated into polymer solar cells, improvement of, X: 155–156 XVIII: 79–80 general information, X: 143–145 intrinsic dimerization propensity of, and incorporation of Pcs into, X: 149–150 XVIII: 274 introduction of exciton-blocking layers into monomers used for polymer solar cells, OPV by vapor deposition, X: 146–147 XVIII: 81 structural modification in Pcs and OPD by polymers for polymer solar cells, vapor deposition, X: 148–149 XVIII: 82 structural modification in Pcs and OPV by and related compounds used for organic vapor deposition and, X: 148–149 solar cells, XVIII: 62 tandem solar cells and OPV by vapor structures, XVIII: 106, XVIII: 247, deposition, X: 150–152 XVIII: 276, XVIII: 292 Photovoltaics/dye-sensitized solar cells, used in thin film solution-cast solar cells, self-assembled porphyrin nanostructures XVIII: 72 and, XI: 212–214 Phthalocyanine-based dyads/oligomers for Photrex [Sn(IV) etiopurpurin], IV: 27, IV: 255 organic solar cells, XVIII: 78 pH sensing by non-planar tetrapyrrole, Phthalocyanine blue/green, IX: 3

XVIII: 132–133 Phthalocyanine: C60 single solar cells, Phthalimides, and synthesis of extended XVIII: 63–68 porphyrins by template condensation. band tilting, XVIII: 65 See Condensation exaction diffusion lengths, XVIII: 64 Phthalocyaninato/porphyrinato triple-decker free charge carriers through donor and complexes acceptor layer, 64 infrared (IR) vibrational spectroscopy of, light-harvesting efficiency, XVIII: 63 XIV: 369–374 photoactive layer, solar spectral response as sandwich-type tetrapyrrole rare earth of, XVIII: 65–66 complexes, XIV: 273–275 short circuit conditions where exciton Phthalocyanine(s) dissociates, XVIII: 64

AB3-type of, preparation, XVIII: 246, solar cell configuration with donor– XVIII: 248 acceptor active layer, XVIII: 64

aggregation tendency of, XVIII: 274 vs. TiOPc: C60 cell, HOMO/LUMO energy carboxy analogs, XVIII: 271 gap, XVIII: 67 DSSCs, XVIII: 104–108 Phthalocyanine combinatorial libraries, phthalocyanine attachment through III: 516–517 axial metal-ligand interactions, Phthalocyanine complex (Pc), non-Aufbau XVIII: 107–108 orbital filling and, VI: 42 phthalocyanines with anchoring groups, Phthalocyanine derivatives, bioconjugation of, XVIII: 105–107 XVIII: 240–242 phthalocyanines without anchoring conjugates with amino acids, peptides, and groups, XVIII: 104–105 proteins b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 218 FA

218 Cumulative Index to Volumes 1–25

amino acids, XVIII: 280 Phthalocyanines XXIII peptides, XVIII: 280–284 CD intensity for lowest energy and second α proteins, XVIII: 284–286 lowest energy bands of Pc( -OMe)4 φ γ β conjugates with carbohydrates as function of (C1–O–C –C ) cyclodextrins, XVIII: 261–265 dihedral angle, XXIII: 425 monosaccharides and disaccharides, MCD, CD and electronic absorption XVIII: 242–259 spectra of VOPc, XXIII: 421 conjugates with carotenoids, simulated electronic absorption and CD XVIII: 290–294 spectra of Pc(α-OEt)4 and α conjugates with cholesterols, Pc( -OC5H11)4, XXIII: 424 XVIII: 287–290 structures and abbreviations of chiral conjugates with nucleobases, nucleosides, VOPcs/SiPcs, XXIII: 421 and oligonucleotides, Phthalocyanines XXIV nucleobases and nucleosides, bearing crown-ether groups attached XVIII: 265–268 through spacer, XXIV: 374 oligonucleotides, XVIII: 268–280 intramolecular binding of cations by, conjugates with other biomolecules, XXIV: 375

XVIII: 294–296 molecular cage formed by Ni[(O3S2-

containing isothiocyanate functionality, crown)4Pz] in the presence of

XVIII: 270 AgBF4, XXIV: 377 porphyrins and their conjugates, possessing intramolecular crown ether XVIII: 242 bridges between their different Phthalocyanine derivatives, incorporation with aromatic rings, XXIV: 376 porphyrin analogs, V: 30–31 structure of Ni tetra-(dithiacrown)-

Phthalocyanine dimerization-based molecular porphyrazinate with AgBF4, beacons, principle of, XVIII: 276 XXIV: 37 Phthalocyanine isomers, synthesis of four Phthalocyanines as sensitizers in dye- substituted, XXIII: 60 sensitized solar cells, XXIV: 390–391 Phthalocyanine-forming reactions, efficiency of phthalocyanines as sensitizers XXIII: 59–61 in DSCs, XXIV: 413–416 Phthalocyanine-oligonucleotide conjugates, electrochemical behavior, XXIV: 413 structures of, XVIII: 269 Pc ring redox activity, XXIV: 413 Phthalocyanine (Pc) ring systems, XVI: 333 photophysical and photochemical benzi- and naphthiporphyrinoid analogs of, requirements for sensitizers, XVI: 153 XXIV: 406 β -H2Pc, comparison of selected fluorescence lifetimes, XXIV: 407–410 Φ intramolecular bond lengths and fluorescence quantum yields ( F), angles for, XVI: 379 XXIV: 410–411 H Pc, relative acidities of, XVI: 354 triplet state quantum yields (Φ ) and 2 T τ MgPc, solubilities of, XVI: 353 lifetimes ( T), XXIV: 411–413 PdPc, normalized phosphorescence emission working principles of dye-sensitized solar spectra exhibited by, XVI: 369 cells (DSCs), XXIV: 391–406 selected photophysical data for similarly Phthalocyanines, crown-substituted, metalated, XVI: 367 XXIV: 275–276 Phthalocyanine sulfoacids and derivatives, as supramolecular chemistry of electron-withdrawing groups, III: 83–92 crown-phthalocyanines, XXIV: 323 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 219 FA

Cumulative Index to Volumes 1–25 219

cation-induced aggregation of alkyl/aryl substituents and, III: 7–34. crown-phthalocyanines, See also Alkyl substituents of XXIV: 330–377 phthalocyanines; Aryl substituents of concentration and solvent-induced phthalocyanines aggregation of crown- alkylated Zn tetraazaporphyrins, IV: 71–72 phthalocyaninates, XXIV: 323–330 alkylthio-/arylthio-substituted, III: 173, synthesis and properties of crown- III: 176–190 substituted phthalocyanines, and alkylation of phenolic hydrogen atoms XXIV: 276–277 with alkyl halides, III: 169 complexes of p- and d-metals, amino-substituted, III: 114–121 XXIV: 277–295 bisphthalonitriles, III: 173 complexes of rare-earth metals, crystallographic molecular structure, as XXIV: 295–322 sandwich-type tetrapyrrole rare earth Phthalocyanine-thymine conjugate, structure complexes, XIV: 291, XIV: 293–300 of, XVIII: 268 dendrimer phthalocyanine (DPc), IV: 381 Phthalocyanines, transition-metal, derivatives of phthalonitrile-4,5- XXII: 208–209 dicarboxamides, III: 110 with closed-shell ground state, dodeca-alkyl- or aryl-substituted, III: 31 XXII: 209–220 electron-donating groups compared with with open-shell ground state, electron-withdrawing groups for XXII: 220–228 preparation of, III: 170 Phthalocyanines with chiral carbons in side electronic absorption spectroscopy of, chains XXIII XIV: 329–341 alkyl chain–substituted species, epidermal growth factor conjugates, XXIII: 375–383 IV: 347 Φ small aliphatic ring–substituted species, fluorescence quantum yields ( F), XXIII: 390–400 VII: 275 thioether-substituted species, CdPc complexes, VII: 335 Φ XXIII: 383–389 fluorescence spectra/quantum yields ( F) Phthalocyanines with optically active aromatic in, VII: 281–314. See also Quantum Φ substituents XXIII yields ( F) axial substitution, XXIII: 419–420 formation of polyfluoroalkoxy- peripheral substitution, XXIII: 401–418 sulfonylphthalonitriles, III: 78–79 Phthalocyaninecarboxylic acids/derivatives functionalized with carboxylic acids and spectra, III: 262–268 derivatives, III: 95–111 Phthalocyaninephosphonic acids/derivatives functionalized with phosphoric acid spectra, III: 277 derivatives, III: 111–114

Phthalocyanines (Pcs), IV: 61–86 Φ∆, VII: 333–335 Φ τ absorption spectra, IV: 5 ( T)/( T), VII: 332–333 Φ τ aggregation behavior in, VII: 278–281, ( T)/( T) (CdPc complexes) and, VII: 321–323 VII: 335–336 alkanes/alkenes (photocatalytic reactions) general UV-vis spectra for, III: 198, and, VII: 347–348 III: 280–282 alkenyl/alkynyl substituents and, III: 34–43 general axial ligands (X1, X2) of, alkyl-/arylsulfonyl and sulfinyl-substituted, VII: 260–263 III: 92–95 Group 4 to 11 Pc complexes, VII: 330 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 220 FA

220 Cumulative Index to Volumes 1–25

Group 12 Pc complexes (ZnPc complexes), photochemistry (CdPc complexes) and, VII: 330–335 VII: 336 Group 13 Pc complexes, VII: 337–339 photochemistry of group 14/15 Pc Group 14/group 15 Pc complexes, complexes, VII: 341 Φ VII: 339–341 photodegradation quantum yields ( P), halogen-substituted, III: 62–79. See also VII: 273–275 Halogen-substituted phthalocyanines photophysics of group 14/15 Pc complexes, 1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25- VII: 339–341 hexadecasubstituted compounds of, phthalimides in syntheses of, II: 3 III: 31–34 phthalocyanine sulfoacids and derivatives, HgPc complexes (CdPc complexes) and, III: 83–92 VII: 336–337 as precursors in cyclotetramerization historical aspects/general information of, reaction, III: 70 III: 2–6 and preparation of history, IV: 61–62 3,6-bis(trifluoromethyl)phthalonitrile, hydroxy-/alkoxy-/aryloxy-substituted, III: 72, III: 76 III: 121–176. See also Hydroxy-/ 4-vinylphthalonitrile, III: 34–35 alkoxy-/aryloxy-substituted phthalonitriles with electron-donating phthalocyanines and derivatives groups, III: 120–121 metalloporphyrin structure/electron Q band/Soret bands and, IX: 6–10 configurations and, VI: 16–17 redox potential trends/stability of, and molecular structures of complexes of III: 289–293 MPcs, VII: 263–267 regular synthesis, XIII: 19–31

nitro-substituted, III: 79–83 ring (R1 to R4) substituents of, VII: 251–260 1,2,8,9,(10,11),15,16(17,18),22,23(24,25)- singlet oxygen quantum yields (Φ∆ ), octasubstituted compounds of, III: 17 VII: 268–273, VII: 318–320 1,3,8,10,(9,11),15,17(16,18),22,24(23,25)- in solar cells, X: 142–143. See also Solar octasubstituted compounds of, cells, phthalocyanines in III: 17–18 solketal-substituted phthalocyanine 1,4,8,11,15,18,22,25-octasubstituted [Si(sol)2Pc], IV: 78, IV: 382 compounds of, III: 18–23. See also solubility and derivatization of, II: 42–43, Octasubstituted compounds of II: 46 phthalocyanines structure, IV: 252 2,3,9,10,16,17,23,24-octasubstituted subphthalocyanine (subPc), IV: 59–61, compounds of, III: 23–31. See also IV: 63, IV: 66, IV: 200 Octasubstituted compounds of sulfur-containing compounds phthalocyanines (photocatalytic reactions) and, and origin of intensity of absorption, VII: 342–343 XIV: 476–477 symmetry of wavefunctions of phenols (photocatalytic reactions) and, HOMO/LUMO and, IX: 6–9 VII: 343–346 synthesis in ring-opening reaction, Φ photobleaching quantum yields ( P), IV: 59–60, IV: 63 VII: 320–321 synthetic method, as sandwich-type photocatalytic reactions of tetrapyrrole rare earth complexes, MPcs, VII: 324–329 XIV: 271–275 complexes in solution, VII: 345–346 synthetic strategy for preparation of complexes on supports, VII: 343–345 4,5-disubstituted, III: 45, III: 61 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 221 FA

Cumulative Index to Volumes 1–25 221

template condensation and, XIII: 12–15 optogenetics, XXII: 51–52 tetraazatetrabenzoporphyrins; Pcs, II: 2 photodynamic therapy, XXII: 52 tetrahydroxy-Pc, IV: 70–71 photovoltaics, XXII: 52 1,8(11),15(18),22(25)-tetrasubstituted protein folding, XXII: 52–53 compounds of, III: 7–11 biosynthesis XXII 2,9(10),16(17),23(24)-tetrasubstituted chromophores, XXII: 26–29 compounds of, III: 10–16 maturation of phycobiliproteins/ tetrasulfonated phthalocyanine (PcS ), phytochromes/cyano- 4 IV: 62 bacteriochromes, XXII: 29–39 trialkylsilyl-substituted, III: 42–45 chromophore structures and schematic Φ triplet quantum yields ( T) and lifetimes edge-on views of thermostable Pfr τ ( T), VII: 315–318 state and of late intermediate of Φ triplet state quantum yields ( T), photoconversion to Pr derived from VII: 275–277 cryo-scan X-ray crystallography, unmetalated, group 1/group 2 Pc XXII: 46 complexes, VII: 321–323 versus cyanobacteriochromes, XXII: 3 uses of, III: 198, VII: 250 disadvantage, as fluorescence labels, with electron-donating/electron-withdrawing XXII: 50 substituents in same benzene ring, light-harvesting, source (see Cryptophyte III: 190–198, III: 278–279 algae) with substituents connected via methylene native chromophore, XXII: 39–41 group, III: 45–62. See also conformation, XXII: 42–47 Methylene group mobility, XXII: 47–49 XAl(III)Pc complexes, VII: 337 protonation, XXII: 41 XGa(III)Pc and XIn(III)Pc complexes, versus phytochromes/ VII: 337–339 cyanobacteriochromes, XXII: 3 See also Boronated phthalocyanines; spectral properties of APB (PCB-ApcD) Metallophthalocyanine (MPc); mutants, XXII: 48 Naphthalocyanine (NPc); structures and IUPAC-IUB numbering of Spectroscopy; specific UV-vis protoheme and biliverdin IXα, absorption spectroscopy; XXII: 12 Tetrapyrrole rare earth complexes, structures of biliproteins, XXII: 4–13 sandwich-type animal biliproteins, XXII: 23–26 Phthalocyaninesulphonic acids spectra, sensory biliproteins, XXII: 13–23 III: 269–277 structures of PCB chromophore in APC, Phthalonitriles, XVIII: 243 PC, and phytochrome, XXII: 44 structures of, XVIII: 247 Phycobiliproteins/phytochromes/cyanobacterio- Phthalosens, and PDT, III: 88 chromes, maturation of, XXII: 29–39 Phycobiliproteins, XXII: 3–4 autocatalytic chromophore attachment, absorption maxima in visible spectrum and XXII: 30–32 extinction coefficients of common E/F-type lyases, XXII: 32–33 thioether-bound bilins including four lyase mechanisms, XXII: 36–38 cyanobacterial chromophores, methylation, XXII: 39 XXII: 40 spontaneous chromophore attachment, applications, XXII: 49–50 XXII: 38–39 bio-labeling and bio-imaging, S/U-type lyases, XXII: 33–34 XXII: 50–51 T-type lyases, XXII: 34–36 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 222 FA

222 Cumulative Index to Volumes 1–25

Phycobilisome assembly, XXII: 5 palladium-catalyzed C–B coupling and, Phycobilisomes (PBS), XXII: 4 III: 373–374 evolution of, XXII: 8–9 Pincer complexes of porphyrins, Suzuki-type Phycocyanobilin (PCB), XX: 167 C–C coupling reactions and, Phycoerythrobilin (PEB), XX: 167 III: 336–337 Phylloporphyrin, XXIII: 33 Pincer-like palladium complexes Phylloquinone, and photosynthetic RCs of active catalysts of, VIII: 443, VIII: 445–447 cyanobacterial photosystems, I: 2 cationic species of, VIII: 437–441 Phylogenetically-related intramolecular CH activation of, cyanobacteriochromes. See VIII: 441–444 cyanobacteriochromes (CBCR) XXII π–π stacking interactions Phys (phytochromes), XXII: 13–16 1:1 and 2:1 complexes of, I: 341–342 atypical, XXII: 14 axial coordination and, I: 408–411 or cyanobacteriochromes versus bis(porphyrin)-substituted pyrazine and, phycobiliproteins, XXII: 3 I: 351 plant/cyanobacterial chromophore, calixarenes and, I: 346–348 XXII: 13 donor-SWNT hybrids via, I: 401–404 Phytochlorins/related compounds, structural foldamer-based tweezers and, I: 348–349 chemistry of, XIII: 279–281 fullerene hybridization and, I: 344–345 Phytochrome, XX: 168–169 “jaw-shaped” dimers and, I: 346–347 chromophore of (see phytochromobilin non-covalent, I: 345–346 (PΦB)) supramolecular donor-acceptor interactions isoforms, XX: 186 and, I: 341 Phytochrome-interacting basic helix-loop-helix tetracationic water-soluble porphyrin and, transcription factors (PIF), XX: 181 I: 422–423 proteins, XX: 181 tetramer/dendrimer synthesis and, quadruple mutant (pifQ), XX: 181–182 I: 342–343, I: 345 Phytochromobilin (PΦB), XX: 146–147, tripodal complexes and, I: 349–350 XX: 167 Pincer–porphyrin complexes, XXIII: 120 Phytochromobilin (PΦB), XXII: 13 Pincer porphyrins, XVIII: 339, XVIII: 368 Picenoporphyrins, preparation of, II: 59–60, ligand exchange reaction and reductive II: 211–213 elimination reaction of, XVIII: 369 Pichia pastoris, and transport of ALA out of synthesis of, XVIII: 339–340 mitochondria, XV: 10 synthesis of Pd/Pt heterometallic, XVIII: 342 “Picket-fence” porphyrin, XXIII synthesis of Pt(II)- and Pt(IV)-complexes, “Picket fence” porphyrins, XXI: 11, 14 XVIII: 369 3-quinolinoyl, structurally analogous, Pincer–porphyrin system, XXIII: 118 XXI: 26 Pinhole mechanism, explaining ring formation Piezoelectricity in porphyrins, XVIII: 33 and EQCM for poly[Co(II)-porphyrin] Pisum sativum, XIII: 263 films, XII: 257–258 Pixels, XII: 193, XII: 211 mass transducers and, XII: 159–160 Plactisizers, optical sensors and, XII: 167 Pillared manganese porphyrins, XXI: 104 Planar anions, VIII: 167. See also Pillared porphyrins, XXI: 67–68 Pyrrole-based π -conjugated acyclic Pinacolborane anion receptors in synthesis of meso-borylporphyrins, Planar meso-unsubstituted molecules, II: 60 tetraanthraporphyrins and, XIII: 8–9 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 223 FA

Cumulative Index to Volumes 1–25 223

Planar vs. nonplanar porphyrins, and artificial fluorine substitution effects on spectral, photosynthetic systems, X: 186–190 photophysical, and electrochemical Plant peroxidases. See Peroxidases (plant/ properties, XVIII: 350–351 fungal/bacterial superfamily) formylation of metallocomplexes of Plant Phy, chromophore, XXII: 13 tetra-meso-(para- and meta- Plant secondary metabolites (PSM), XIX: 5 methoxyphenyl) porphyrins, Plasma membrane electron transport (PMET), XVIII: 350 hemopexin and, XV: 237–238 formylation of Pt-deuteroporphyrin, Plasma membrane targeting by XVIII: 349 photosensitizers, IV: 264, IV: 371, iridium, osmium, and rhenium porphyrins, IV: 385–386, IV: 411–412 XVIII: 374–376 Plasmodium berghei, heme-binding meso-tetrakis(4-sulfophenyl)porphyrin- cytoplasmic proteins and, XV: 30 functionalized platinum Plasmodium falciparum nanocomposites, XVIII: 361 heme-binding cytoplasmic proteins and, organometallic conjugate of TPyP, XV: 30 XVIII: 360 heme biosynthesis and, XV: 163 peripherally platinated porphyrin and heme biosynthesis of ALA, XV: 165 complexes, XVIII: 357–371 and heme uptake/detoxification in insects, phosphorescence spectra of XV: 22–24 metallocomplexes, XVIII: 354 and transport of heme precursors between photophysical characteristics of, cytosolic enzymes, XV: 12 XVIII: 354 Plasmon resonance band and metal platinum and supramolecular arrays, nanoparticles, XII: 359 XVIII: 371–374 Plastidic protein synthesis, XX: 149 porphyrin–platinum conjugates, Platinum chloride XVIII: 361 complexes of 21-benzyl-NCPNi(II) synthesis and chemical transformations of complex with, II: 324, II: 326 Pt(IV) porphyrins, XVIII: 352 complexes of N-confused tetra(4-tert- synthesis of cationic porphyrin– butylphenyl)porphyrin (NCTBP) platinum(II) conjugates, XVIII: 359 with, II: 323, II: 325, II: 326 synthesis of complex porphyrins for Platinum derivatives, porphyrin luminophores application in oxygen sensors, and, XII: 303–304, XII: 310 XVIII: 355–356 Platinum nanoparticles, XVIII: 196–197 synthesis of dimeric Pt complex, Platinum porphyrins XVIII: 370 electrocatalysts for fuel cells, XI: 216–218 synthesis of hematoporphyrin IX-derived as reductive photocatalysts, XI: 201–202 porphyrin–platinum conjugates, Platinum, unsubstituted Pcs (UV-vis XVIII: 361 absorption data) and, IX: 134 synthesis of platinum complex of inverted Platinum with 5d transition metals (Group B), porphyrin, XVIII: 370 porphyrin complexes of, XVIII: 348 Polar solvents chemical and spectral properties of aromatic nucleophilic substitution, III: 171 complexes with platinum bound reorganization energy and, I: 147–148 within macrocycle cavity, Polarity, LB/LS films and, XII: 134–135 XVIII: 348–357 Polarized spectroscopy, and fluorescence complexation of meso-tetra-arylporphyrins, anisotropy of porphycenes, XVIII: 352 VII: 417–423 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 224 FA

224 Cumulative Index to Volumes 1–25

Polarized variable angle internal attenuated Polycationic bacteriochlorins, XVII: 28 total reflection infrared spectroscopy Polychlorophthalonitriles, nucleophilic (PVAI-ATR-IR), XVIII: 6 aromatic substitution in, III: 197–198 Pólya’s theorem, XXIII: 4, 26–29 Polycrystalline porphycenes, VII: 416–417 application of, XXIII: 38–41 Polycyclic aromatic hydrocarbons (PAHs), meso-substituted porphyrin, square oxygen sensors and, XII: 303 symmetry, XXIII: 38 Poly(3,4-ethylenedioxythiophene) (PEDOT), derivatization of 8-point tetrapyrrole XVII: 264 scaffold, XXIII: 27 Poly(3-hexylthiophene) (P3HT), XVIII: shortcomings, XXIII: 40–41 61–62, XVIII: 69, XVIII: 79–80 Poly(3,4-ethylenedioxythiophene) (PEDOT), Polyethylene glycol (PEG), XV: 252, doped polypyrrole/polythiophene films XVIII: 138 and, XII: 233 PEGylated chlorins, IV: 37 Poly(3,4-ethylenedioxythiophene): PEGylated gold nanoparticles, poly(styrenesulfonate) (PEDOT: PSS), IV: 313–314, IV: 377–378 XVIII: 61–62 PEGylated metal phthalocyanines, Poly[2-methoxy-5-(3,7-dimethyloctyloxy)-1, IV: 71–72, IV: 83 4-phenylenevinylene] (MDMO–PPV), PEGylated porphyrin localization in XVIII: 61 organelles, IV: 368 Poly(aryleneethynylene)s (PAEs) co-containing PEGylated Si(IV) phthalocyanines, (2,6-positions) polymers, BODIPY- IV: 127–128 based polymers and, VIII: 86–89 poly(ethylene glycol)-5-(4-hydroxymethyl- Poly(D,L-lactide-co-glycolide) PLGA, IV: 384 phenyl)-10,15,20-tritolylporphyrin, PDT and, XII: 402 IV: 367 Poly(diallyl-dimethyl ammonium chloride) poly(ethylene glycol)–poly(L-lysine) block (PDDA), LBL deposition and, copolymers (PEG-PLL), IV: 381

XII: 136–138 Polyethylene oxide (PEO)/Li(CF3SO3) films, Poly(lactic acid), PDT and, XII: 402 XXI: 88 Poly(methacrylic acid)-5-(4-acryloyloxy- Polyfluoroalkoxysulfonylphthalonitriles, phenyl)10,15,20-tritolylporphyrin formation of, III: 78–79 (PMAPo), IV: 367 Polyglutamic acid (PGA), IV: 169, IV: 296, Poly(methyl methacrylate) (PMMA) film, and IV: 337–338 single molecule studies, I: 196, Polyglutamic PdTBPs dendrimers VII: 424–425 isoindole as a precursor in synthesis of, II: 4 Poly(N-isopropylacrylamide) (PNIPAM), syntheses of, II: 4 IV: 379, IV: 384 Polyion complex micelles (PICM), Poly(norbornenes), optical sensors and, IV: 371–372, IV: 380–382 XII: 315 Polylysine (poly-L-lysine, PLL) Poly(phenylene ethynylene), dendritic linker in antibody–photosensitizer porphyrins and, III: 350–352 conjugates, IV: 167–168, IV: 170, Polyacrylamide gel electrophoresis, and IV: 338–339 oligomeric structure of FECH, XV: 60 poly(ethylene glycol)–poly(L-lysine) block Polyalkynylporphyrins, Sonogashira C–C copolymers (PEG-PLL), IV: 381 coupling reactions and, III: 343 sugar–photosensitizer conjugates, IV: 149 Polyaniline (PANI), electropolymerization of Polymer carrier systems, IV: 366–369 Fe-porphyrin from aqueous solution, Polymer electrolyte membrane (PEM) fuel XII: 259–260 cells, XI: 215 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 225 FA

Cumulative Index to Volumes 1–25 225

Polymer nanoparticles, XVIII: 198–201 polyurethane–tetraphenylporphyrin pH-triggerable self-organized polymer nanofibers, IV: 387

brush/H2(TPPS) system, XVIII: 199 See also Linkers in conjugates Polymer Pcs, UV-vis absorption data, Polymers (BODIPY-based) IX: 585–601 BODIPY-based polymers and, VIII: 89–90 Polymer solar cells. see also organic polymer organoboron, VIII: 89–90 solar cells poly(aryleneethynylene)s (PAEs) porphyrin/phthalocyanine monomers used co-containing (2,6-positions) for, XVIII: 81 polymers, VIII: 86–89 porphyrin/phthalocyanine polymers for, Polymethyl methacrylate (PMMA), optical XVIII: 82 sensors and, XII: 185–186 porphyrins or phthalocyanines incorporated Polymorphonuclear leukocytes (PMNs), into, XVIII: 79–80 XV: 324 Polymer wrapping, tetrapyrrole-nanocarbon Polyphasic tumor targeting (PTT), hybrids and, I: 419–421 IV: 330–331 Polymerase chain reaction (epPCR), Polypyridine complexes with accessory V: 217–218 BODIPY chromophores, and Polymeric byproducts, of pyromellitic through-bond BODIPY energy transfer anhydride/imide cyclotetramerization, cassettes, VIII: 77–80 III: 95, III: 104–106 Polypyrrole, conductivity of, XVII: 254 Polymeric linkers in conjugates. See Linkers Polypyrrole (PPy)/polythiophene films, in conjugates XII: 230, XII: 239 Polymeric matrices, chemical sensors and, and manganese porphyrin as catalyst for XII: 143, XII: 145–146 oxidation, XII: 280 Polymeric micelles, IV: 366, IV: 380–382, substrate/catalyst ratios and, XII: 280–282 IV: 384 Polypyrrole/polythiophene films, XII: 232–236 Polymeric nanoparticles and porphyrins Polystyrene (PS), XII: 315 fluorescent probes, XII: 402–403 Polystyrene microsphere conjugates with

introduction, XII: 401 chlorin e6, IV: 366–367 PDT and, XII: 401–402 Polythiophene films, XII: 232–236 supported catalysts, XII: 404–405 Polythiophene stars, photovoltaic properties Polymerization, coordination, for synthesis of of, XVIII: 84 self-assembled porphyrin Polyurethane, IV: 387 nanostructures, XI: 188–190 Polyvinyl alcohol (PVA) Polymer–photosensitizer conjugates AlPcCl conjugates, IV: 64 block copolymer with tetraphenylporphyrin epidermal growth factor (EGF) conjugates, and galactoside, IV: 368–369 IV: 153–155, IV: 281

chlorin e6–polystyrene microsphere as linker in conjugates, IV: 153–155, conjugates, IV: 366–367 IV: 164–166, IV: 335–337 poly(ethylene glycol)-5-(4-hydroxymethyl- Verteporfin conjugates, IV: 142 phenyl)-10,15,20-tritolylporphyrin, Polyvinylchloride (PVC) film IV: 367 for lead determination in soil samples, polyethylene glycol–tetrakis(p-bromo- XII: 181–183 methylphenyl)porphyrin, IV: 367–368 optical sensors and, XII: 188 poly(methacrylic acid)-5-(4-acryloyloxy- Polyvinylpyrrolidone (PVP), IV: 37–38 phenyl)10,15,20-tritolylporphyrin, PORA, XX: 161, XX: 183 IV: 367 PORB, XX: 161, XX: 183 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 226 FA

226 Cumulative Index to Volumes 1–25

PORC, XX: 161 polarized spectroscopy and, VII: 417–423 Porous network, proposed model of, polycrystalline ground state tautomerism, XVIII: 10 VII: 416–417 Porphine at meso–positions, tetrabromination as skeletal isomer of porphyrin, II: 296–297 of, XXIII: 115 See also Free-base porphycenes Porphobilinogen (PBG), XIX: 146–148 Porphycenes, XXIII: 341–343 conversion from ALA to, XV: 6 facile syntheses of free base di- and heme resonance assignment and, VI: 60 tetrabenzoporphycenes, XXIII: 342 as pyrrole precursor for biosynthesis of molecular structures of porphycene

tetrapyrroles, XV: 7 (H2THPyc), dibenzoporphycene

and transport of heme precursors between (H2BHPyc) and tetrabenzoporphycene

cytosolic enzymes, XV: 11 (H2BPyc), XXIII: 342 Porphobilinogen (PBG), XXIII: 7, 9, XXV: 16 Porphycene type compounds, XVIII: 161–162 biosynthesis, XXV: 16–21 Porphyrazines, IV: 73, IV: 79–80, IV: 82–83, Porphobilinogen deaminase (PBGD) IV: 85–86, IV: 87–88 and coordination of heme biosynthesis in chelating sites, III: 463–464 cell, XV: 204 crown ether-functionalized, III: 467–468 and UROGEN formation from ALA, dimers/oligomers linked by metal ions, XV: 181–183 III: 472–477 Porphobilinogen synthase (PBGS), and metalloporphyrin structure/electron UROGEN formation from ALA, configurations and, VI: 16–17 XV: 177–180 molybdocene-/vanadocene-substituted, Porphobilinogen synthase (PBGS), XXV: 16 III: 469–470 active site of yeast PBGS with late-stage nickel porphyrazine metalated with nickel intermediate covalently attached to diphosphine groups, III: 465–466 Lys-263, XXV: 21 nickel porphyrazine tetrametalated with structures of, XXV: 16 dichloropalladium(II) groups, from P. aeruginosa with levulinic acid III: 467–468 (LA) bound, XXV: 18 obtained by template synthesis with synthesis of PBG by, XXV: 21 different dinitriles, III: 469 Porphobilinogen, XX: 221 octakis(alkylthio)tetraazaporphyrin Porphocyanines, IV: 44–45 preparation, III: 463 Porphodimethene, XVI: 10 tetrametalated nickel porphyrazine, Porphodimethenes, meso-alkylidenyl, and III: 464 porphyrins with double bonds at meso tin functionalized nickel porphyrazine, positions, XIII: 246–247 III: 465–466 Porphycene, IV: 29–30, IV: 408, IV: 409, Porphyrazine compounds, crystal and thin-film IV: 410, XVI: 25 structures of, XVIII: 215–221 electronic absorption data of, VII: 382–383 Porphyrazines with ionic-liquid gate electronic absorption spectra of, dielectrics, FETs and complementary VII: 384–390 organic inverters of, XVIII: 230 main trapping site in xenon/argon, complementary organic inverters, VII: 398–399 XVIII: 231–235 myoglobin function regulation, V: 32–33 FET parameters, including field-effect peroxidase function regulation and, mobility in linear region, V: 34–35 XVIII: 232 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 227 FA

Cumulative Index to Volumes 1–25 227

organic thin-film transistors (OTFT), synthesis with fused aromatic rings using XVIII: 230–231 “3 + 1” methodology, XVI: 8

transfer and output characteristics of H2Pc Porphyrin arrays. See also Expanded and H2TTDPz OTFT, XVIII: 232 porphyrins Porphyrazine thin-films, electrochemical α-diones condensation with diamines and doping of, XVIII: 221–222 synthesis of, II: 78 H2TTDPz films, XVIII: 226–230 cofacial porphyrin dimers, I: 49–57 LiPc thin-films, XVIII: 224–226 covalently linked, I: 41–49 MPc thin-films, XVIII: 222–224 covalent/noncovalent metalloporphyrin Porphyrazines, XXIII: 19 arrays, I: 4 Porphyria Cutanea Tarda (PCT), XIX: 298–299 dendritic, I: 34–41 C282Y mutation of hemochromatosis gene directly linked (HFE), XIX: 298 meso–meso-linked coupling reactions, differentiating familial form of PCT, I: 62–63 XIX: 304 m-phenylene-linked porphyrin wheels, F-PCT, XIX: 298 I: 70–77 laboratory diagnosis of, XIX: 301–302 porphyrin rings, I: 65, I: 68–70 treatment, XIX: 302–303 synthesis, I: 57–59, I: 61–62 low-dose chloroquine therapy, XIX: 303 three-dimensionally arranged arrays, Porphyrias. See also Heme biosynthesis I: 63–68 acute intermittent porphyria (AIP), XV: 183 electronic system expansion of, I: 83–84 congenital erythropoietic porphyria (CEP), electronic system manipulation XV: 186 (π-conjugation) and, I: 84–85 definition, XV: 162 ethynyl-/1,3-butadiynyl-bridged arrays, erythropoietic protoporphyria (EPP) and, I: 18 XV: 203 ethynyl-conjugated. See Ethynyl- PBGS and, XV: 180 conjugated porphyrin arrays porphyria cutanea tarda (PCT), XV: 188 excitation energy transfer (EET) and, I: 3 variegate porphyria (VP), XV: 199 hybrid, I: 13 Porphyrin analogs metal-bridged, I: 110–119 azaporphyrins incorporation with, V: 31–32 metalation states and, I: 29–30 chlorin incorporation with, V: 28–30 metalloporphyrins as self-assembled, chlorophyll derivative incorporation with, I: 90–101 V: 30 multiply linked, I: 77–90. See also examples, XVI: 8 Multiply linked porphyrin arrays other porphyrin analog incorporation with, nanometer scale structures and, I: 136 V: 32 oxidative coupling in synthesis of directly phthalocyanine derivative incorporation linked and fused, II: 65 with, V: 30–31 oxidizing agent for directly linked, with six-membered rings II: 66–67 benziporphyrins, XVI: 98–161 photophysical properties. See Photophysical naphthalene-containing porphyrinoid properties of porphyrin arrays systems, XVI: 161–177 red-shifting and number of porphyrins in, pyriporphyrins, XVI: 177–197 II: 67 synthesis using “3 + 1” variant of self-sorting systems from meso–meso- MacDonald condensation, XVI: 14 linked diporphyrins, I: 101–110 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 228 FA

228 Cumulative Index to Volumes 1–25

as target materials for two-photon-based Ag nanoparticles, XVIII: 197–198 PDDT, I: 5 Au nanoparticles, XVIII: 193–196 Porphyrin assembly, methods for, XVIII: 172 Pd nanoparticles, XVIII: 198 axial coordination, XVIII: 174 Pt nanoparticles, XVIII: 196–197 covalent route, XVIII: 175–177 methods for porphyrin assembly, noncovalent assembly, XVIII: 173–175 XVIII: 172 axial coordination, XVIII: 175 axial coordination, XVIII: 174 electrostatic interaction, XVIII: 174 covalent route, XVIII: 175–177 model of SWNT complex, XVIII: 173 noncovalent assembly, XVIII: 173–175 π–π interaction, XVIII: 173–174 polymer nanoparticles, XVIII: 198–201 structural formula of synthesized, porphyrin-liposome conjugates, XVIII: 204 XVIII: 173 semiconductors Porphyrin and corrole platforms for water magnetic nanoparticles, XVIII: 192–193 oxidation, XXI: 5–11 metal-oxide nanoparticles, Hangman scaffolds, XXI: 111–112 XVIII: 185–190 catalysis, XXI: 128–135 quantum dots, XVIII: 190–192 synthesis and structure, XXI: 112–127 silica nanomaterial, XVIII: 201–203 monomeric macrocycles, XXI: 11 Porphyrin-based nanocomposites, XVIII: 172 corroles, XXI: 33–39 Porphyrin-β-oligo(ethynylphenylene)- superstructured porphyrins, XXI: 12–32 [60]fullerene, synthesis of, II: 228, Pacman scaffolds, XXI: 39 II: 229 catalysis, XXI: 79–111 Porphyrin-based systems as photosynthesis synthesis and structure, XXI: 39–79 models, and through-bond BODIPY Porphyrin and metalloporphyrin species, energy transfer cassettes, VIII: 70–76 out-of-plane core distortions, XXIV: 16 Porphyrin-based tectons. See Tectons, Porphyrin-α-diones porphyrin-based preparation of, II: 87–88 Porphyrin-binding sites of FECH, XV: 74–78 quinoxaline-fused porphyrins using Porphyrin boxes. See Cyclic arrays and condensation reaction of, II: 87, porphyrin boxes II: 90 Porphyrin-cardanol hybrids, metathesis using Porphyrin-based chemical sensors. meso-arylporphyrins in synthesis of, See Chemical sensors II: 237 Porphyrin-based dyads/oligomers for organic Porphyrin π-cation radical. See Compound I solar cells, XVIII: 78 Porphyrins/chlorins to bacteriochlorins/ Porphyrin-based nanocomposites for isobacteriochlorins, conversion of, biosensing, XVIII: 171–172 XVII: 35 calcium phosphate nanoparticles, β-octaalkylbacteriopurpurin synthesis, XVIII: 203 XVII: 73–77 carbon-based nanocomposites, XVIII: 178 Diels–Alder reactions, XVII: 87–95 carbon nanodiamond, XVIII: 185 1,3-dipolar cycloaddition reactions, carbon nanohorns, XVIII: 182–183 XVII: 77–86 carbon nanotubes, XVIII: 178–182 functionalization of β,β′-diolbacteriochlorins, graphene sheets, XVIII: 183–185 XVII: 58–72 cationic amphiphilic cyclodextrins, functionalization of XVIII: 204 meso-tetraarylbacteriochlorins, metal nanoparticles, XVIII: 193 XVII: 55–58 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 229 FA

Cumulative Index to Volumes 1–25 229

oxidations of porphyrins/chlorins, and structures of chiral analytes, XVII: 45–55 2-phenoxypropionic acid/ibuprofen, reductions of porphyrins, XVII: 35–44 XVIII: 140 Porphyrin chromophores, VII: 149–150, structures of dications of TPP and VII: 154 meso-tetrabutylporphin, XVIII: 140 Porphyrin core, complete ‘carbonification’ of, Porphyrin dimers, synthesis of, XXIII: 255 II: 166 Porphyrin dimers, XVIII: 100, XVIII: 318, Porphyrin-cored dendrimers, 1,3-dipolar XVIII: 344 cycloaddition-based synthesis of, II: 281 solar cell performances of, XVIII: 102 Porphyrin–corrole, XXI: 102 structures for, XVIII: 101 dimers, XXI: 71 Porphyrin dimers, XXI: 42 dyads, XXI: 71–74, 100–103 Porphyrin–dithienothiophene copolymers, Porphyrin-corroles, synthesis of, XI: 24, XXIII: 248 XI: 26–28 Porphyrin dyads, oxygen reduction reaction Porphyrin-cyclodextrin complexes (ORR) chemistry XXI Porphyrin destruction anthracene and biphenylene pillared dyads, coupled oxidation and, VIII: 296 XXI: 92–96 dimeric complexes (metal complexes) β- and meso-tethered strapped dyads, and biliverdin, VIII: 310–312, XXI: 81–91 VIII: 318–321 xanthene and dibenzofuran pillared dyads, formation by dehydration of bilindione, XXI: 97–100 VIII: 301, VIII: 304 Porphyrin dyes, fine tuning HOMO and formation by porphyrin oxidation, LUMO energy levels of, II: 2 VIII: 296–302 Porphyrin-ferrocene dyads, face-to-face, free ligand (metal complexes) and XXIII: 155 biliverdin, VIII: 307–310 Porphyrin-[60]fullerene dyads heme catabolism and, VIII: 295–296 electronic transfer between porphyrin and iron complexes (metal complexes) and fullerene in, II: 228–231 biliverdin, VIII: 321–328 Sonogashira protocol in synthesis of and metal complexes of formylbiliverdin, β-alkynyl-linked, II: 230 VIII: 328–334 Porphyrin-fullerene dyad, XXIII: 184 miscellaneous complexes and open-chain Porphyrin-fullerene held by π−π interactions oligopyrrole systems, VIII: 335–338 1:1 and 2:1 complexes of, I: 341–342 monomeric complexes (metal complexes) bis(porphyrin)-substituted pyrazine and, and biliverdin, VIII: 312–318 I: 351 and open-chain tetrapyrroles from ring calixarenes and, I: 346–348 opening of verdohemes, as face-to-face cyclic dimer, I: 339–340 VIII: 301–307 foldamer-based tweezers and, I: 348–349 and ring skeletal structures of tetrapyrrole and fullerene hybridization, I: 344–345 ligands, VIII: 294–295 and “jaw-shaped” dimers, I: 346–347 synthesis of gable and planar, II: 41–42, non-covalent, I: 345–346 II: 45 supramolecular donor-acceptor interactions syntheses with structural modifications, in, I: 341 XIII: 157–160 tetramer/dendrimer synthesis and, See also Dimers I: 342–343, I: 345 Porphyrin dications, chiral recognition in, and tripodal complexes, I: 349–350 XVIII: 140–141 Porphyrin-fullerene, XVIII: 318 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 230 FA

230 Cumulative Index to Volumes 1–25

solar cell, XVIII: 76 porphyrin π-cation compounds, Porphyrin-fused phenanthroline Ru(II) XXIV: 106

complexes, synthesis of, II: 49–50, ring in complex [Si(TPP)(THF)2], II: 51 XXIV: 105 Porphyrin-fused systems, and aromatic rings and magnetic properties conjugation of BODIPY-analogs, comparison, XXIV: 113 VIII: 116 Porphyrin inter-ring (π–π) interactions, Porphyrin-governed coordination chemistry, XXIV: 19 crowned (metallo)porphyrins with, Porphyrin isomers, XVI: 25 XXIV: 186 cis-trans tautomerism structure and, cobalt porphyrins, XXIV: 204–208 VII: 373–380 copper porphyrins, XXIV: 221–222 electronic absorption spectra iron porphyrins, XXIV: 188–204 corrphycenes, VII: 390–392 manganese porphyrins, XXIV: 186–188 general information, VII: 380–384 nickel porphyrins, XXIV: 208 hemiporphycenes, VII: 390–392 zinc porphyrins, XXIV: 208–221 isoporphycene derivatives, Porphyrin hexamers, XVIII: 33 VII: 390–392 chemical structure of, XVIII: 34 porphycenes, VII: 384–390 edge-on oriented arrays of free base, excited state deactivation in alkylated XVIII: 34 porphycenes (photophysics), Porphyrin π–π interactions and π-radical VII: 404–407 complexes, metalloporphyrin general information (photophysics), derivatives, XXIV: 102 VII: 399–403 geometry of π–π interactions, geometric optimizations of, VII: 368 XXIV: 102–104 and influence of substituents on geometry porphyrin π-radical complexes, of internal cavity, VII: 369–373 XXIV: 104–116 low-temperature spectroscopy of, analogous Ge derivative, XXIV: 104 VII: 397–399 copper tetraarylporphyrin π-cation perimeter model for absorption elucidation, radicals, XXIV: 110 VII: 392–397

derivative [Al(TPP)(THF)2], perimeter model for magnetic circular XXIV: 105 dichroism spectra, VII: 392–397 highest filled π orbitals and lowest relative energies of, VII: 363 unoccupied π-level orbitals, relaxation from higher excited states XXIV: 107 (photophysics), VII: 407 iron(III) tetraalkylporphyrin radical skeleton-changed vs. atom-exchanged type, species, XXIV: 112 II: 296–297 lateral shift vs. mean plane spectroscopy of, VII: 380–399 separation, XXIV: 103 structure of, VII: 365–380 mixed-valence species, preparation, symmetry/planarity of, VII: 365–369 XXIV: 115 tautomerism π-cation radical and neutral in porphycenes porphyrin compounds, coherent double hydrogen tunneling structural parameters for, in isolated molecules, XXIV: 116 VII: 411–416 π-cation radical derivative, molecules in condensed phases, XXIV: 108 VII: 416–424 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 231 FA

Cumulative Index to Volumes 1–25 231

in porphyrins, VII: 409–410 electronic absorption spectra of CoPz single molecule studies, VII: 424–426 (CoTAP) and mono-substituted trimethine moiety (cis/trans) of, CoPz compounds, XXIII: 318 VII: 367–368 fused benzene rings on energies of triplet state studies (photophysics), LUMO and LUMO+1 of partially VII: 407–409 benzo-fused ZnPzs, XXIII: 318 Porphyrin ligand, modifications to structure of, HOMO–LUMO band gap, XXIII: 314 XXIII: 301–304 MO energies of frontier π-MOs of antiaromatic 16 and 20 π-electron systems, radially symmetric fused-ring- XXIII: 358–364 expanded porphyrinoids in aza-substitution, XXIII: 304–308 TD-DFT calculations, chlorins and tetraazachlorins, XXIII: 313 XXIII: 308–312 molecular structures of low-symmetry core substitution, XXIII: 326–337 benzo-fused derivatives of Pz, anomalous MCD sign sequences, XXIII: 315 XXIII: 330 π-MOs of a series of partially core-modified TBPs, XXIII: 327 benzo-fused ZnPc compounds electronic absorption and MCD spectra based on INDO/s calculations/ of NiPc/NiAPPc/NioppAP2Pc/ electrochemical data, XXIII: 316 NiadjAP2Pc, XXIII: 336 partial peripheral fused ring frontier π-MOs predicted for metal substitution, XXIII: 314 triazolephthalocyanines, radially symmetric fused-ring-expansion XXIII: 334 to form tetraacenaphthoporphyrin molecular structures of (TANP), XXIII: 314 dicarbahemiporphyrazine, HPz, HOMO and LUMO of a high symmetry and m-benziphthalocyanine, parent hydrocarbon perimeter, three-quarters-phthalocyanine, XXIII: 302 XXIII: 326 non-planar porphyrinoids, XXIII: 320–326 non-aromatic and aromatic structures of peripheral substitution, XXIII: 343–352 triazolehemiporphyrazine, porphycenes, XXIII: 341–343 XXIII: 333 ring-contracted porphyrinoids, Pc and Pz ligands, modification, XXIII: 352–357 XXIII: 331 Porphyrin ligands, nonplanar conformation, synthesis of azaphenalene XXIV: 15 phthalocyanines, XXIII: 335 Porphyrin ligands, structures of UV-visible spectra of commonly-used, XXI: 324 1,2,4-triazolephthalocyanine in Porphyrin-liposome conjugates, XVIII: 204

CHCl3, XXIII: 333 Porphyrin macrocycle. See Porphyrins corroles and corrolazines, XXIII: 338–341 Porphyrin mesylate, XXI: 115 fused ring expansion, XXIII: 312–320 Porphyrin metalation electronic absorption and MCD spectra FECH-catalyzed of a series of partially benzo-fused and direct substrate channel to enzyme ZnPz compounds in, XXIII: 315 site, XV: 87 electronic absorption and MCD spectra FECH mimetics/distortion and, of ZnPc, Zn3B1N, Zncis2B2N, XV: 81–84 Zntrans2B2N, Zn1B3N, ZnNc metal ion substrate specificity, and Zn3BoN in THF, XXIII: 317 XV: 85–87 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 232 FA

232 Cumulative Index to Volumes 1–25

porphyrin substrate specificity, Porphyrin nitrosyls and related iron species XV: 84–85 with nitrogen oxide ligands, nonenzymatic XXIV: 89–102 metal ion reactivity, XV: 81 “consensus” structure for class porphyrin distortion, XV: 80–81 [Fe(Porph)(NO)(1-MeIm)], utility/chelation rate of, XV: 78–80 XXIV: 97 Porphyrin monomers, TPA cross-section five-coordinate iron(II) nitrite, XXIV: 100 values of, I: 5 five-coordinate nitrosyl derivatives, XXIV: Porphyrin–nanocarbon composites 89–96

and cyclic porphyrin dimer Ni2–CPDPy, “consensus” five-coordinate X: 229–230 coordination groups, XXIV: 95 decay process and, X: 227 coordination group geometry for and intramolecular π–π interaction, five- and six-coordinate X: 221–222 metalloporphyrin derivatives, and laser photoexcitation/spectra of XXIV: 91–92, 94 nanohybrids, X: 222–223, crystalline modification of the [Fe(OEP)- X: 225–226 (NO)] + cation, XXIV: 93

PN–H2Q structure/photoirradiation, structure of five-coordinate X: 227–228 [Fe(TPP)(NO)], XXIV: 90 tetrathiafulvalene (TTF) and, X: 229 tilt/asymmetry found in the ordered Porphyrin nanochannel (PNC) structures, five-coordinate [Fe(Porph)(NO)] X: 227. See also Porphyrin–nanocarbon derivatives, XXIV: 98 composites low-spin five-coordinate iron(II) derivative, Porphyrin nanoparticles, applications, XXIV: 101 XII: 405–406 nitrogen oxide ligands with iron Porphyrin nanostructure, self-assembled porphyrinates, XXIV: 100–102

and CO2 reduction to CO, XI: 211–212 (nitrosyl)(pyrazole)(octaethylporphinato) coordination polymerization for synthesis iron(III) perchlorate, structure of, of, XI: 188–190 XXIV: 99 importance of, XI: 182–183 second and third row nitrosyl derivatives, ionic self-assembly for synthesis of, XXIV: 98–100 XI: 184–188 six-coordinate nitrosyl derivatives with as light-harvesting arrays for hydrogen iron(II), XXIV: 96–98 production, XI: 210–211 “half-bent” FeNO groups, XXIV: 97

and novel electrocatalysts for fuel cells, trans effect in six-coordinate (FeNO)7 XI: 214–218 complexes, XXIV: 96–98 photoconductivity of, XI: 196–200 six-coordinate nitrosyl derivatives with photovoltaics/dye-sensitized solar cells iron(III), XXIV: 98–100 and, XI: 212–214 Porphyrin nonplanarity, phenomena leading to, reductive photocatalysis/metal growth of, XXIV: 14 XI: 200–206 Porphyrin oxidation, verdoheme formation by, reprecipitation for synthesis of, XI: 190–194 VIII: 296–302 solar hydrogen production and, Porphyrin/phthalocyanine-based solar cells, XI: 205–210 XVIII: 60–61 UV-vis absorption/emission spectra of, dye-sensitized solar cells (DSSC), XI: 194–196 XVIII: 84–85 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 233 FA

Cumulative Index to Volumes 1–25 233

chlorins and bacteriochlorins, and non-covalent functionalization of XVIII: 102–104 carbon nanotubes, I: 401 corroles, XVIII: 108–109 π−π interactions/axial coordination and, phthalocyanines, XVIII: 104–108 I: 408–411 porphyrins, XVIII: 86–102 and solubilization of carbon nanotubes, engineering interfacial nanostructures, I: 400–401 XVIII: 110 and supramolecular tetrapyrrole-acceptors improving light-harvesting, XVIII: 109 with other carbon structures, new synthetic methodologies, XVIII: 109 I: 421–423 optimizing HOMO/LUMO energies Porphyrin-phthalocyanine dyads and electron distributions, palladium-catalyzed amination in synthesis XVIII: 109–110 of, II: 240–241, II: 243, II: 244 organic molecular solar cells, XVIII: 61–63 synthesis of, II: 234, II: 236 dyads, triads, and oligomers, Porphyrin-phthalocyanine europium triple XVIII: 76–79 deckers, XVIII: 23–24 evaporated thin films — molecular structures of, XVIII: 25

phthalocyanine: C60 single solar Porphyrin/phthalocyanine-fullerene cells, XVIII: 63–68 donor-acceptor hybrids self-assembled film solar cells, crown ether-alkyl ammonium dipole — ion XVIII: 73–76 bonding, I: 351–352 solution-cast porphyrin-based donor/ electrostatic ion-pairing interactions and, acceptor thin films, XVIII: 71 I: 338–339 tandem solar cells, XVIII: 68 metallotetrapyrrole-fullerene dyads and, thin porphyrin or phthalocyanine films I: 311–322

with C60 or PCBM, 71–73 metal-oxygen bonding and, I: 322–325 organic polymer solar cells porphyrin-fullerene and π−π interactions, copolymers, XVIII: 82–84 I: 339–351 main-chain porphyrin polymers, and porphyrin-fullerene conjugates via XVIII: 80–81 hydrogen bonding, I: 329–338 porphyrins or phthalocyanines reversible switching of inter/intramolecular incorporated into polymer solar PET events, I: 397–399 cells, XVIII: 79–80 rotaxanes/catenanes formation and, Porphyrin/phthalocyanine-carbon nanotube I: 352–361 donor-acceptor hybrids subphthalocyanine-fullerene complementary electrostatics/π−π donor-acceptor systems and, interactions and, I: 413–416 I: 325–329 crown ether-alkyl ammonium interactions and supramolecular architectures for and, I: 417–419 photochemical events, I: 361–397. and donor-acceptor via polymer wrapping, See also Supramolecular chemistry I: 419–421 Porphyrin-phthalocyanine oligomers, synthesis and donor-SWNT hybrids via π−π of C–C bonded, II: 225, II: 226 interactions, I: 401–404 Porphyrin–quinolone conjugates, XXIII: 176 ion-paired binding and, I: 411–413 Porphyrin ring construction XXIII and metal-ligand coordination approach of application of modern synthetic tetrapyrrole-SWNT hybrids, procedures, XXIII: 90–113 I: 404–407 sequential approach, XXIII: 92–113 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 234 FA

234 Cumulative Index to Volumes 1–25

simultaneous approach, XXIII: 90 voltage characteristics, X: 236 unsymmetrically substituted porphyrins, Porphyrin stereochemistry, XXIV: 3 XXIII: 90–92 Porphyrin tert-butylphenyl groups, construction of porphyrin ring XXIII conformational change in, XVIII: 42 novel synthesis, XXIII: 89–90 Porphyrin tetraone, XVII: 55 development of porphyrin synthesis: Porphyrin–thallium–platinum(II) complexes, Rothemund—Adler–Longo–Lindsey, XVIII: 357

XXIII: 85–89 Porphyrin/TiO2 for photoelectrochemistry, pyrrole acylations or formylations to XVIII: XVIII: give pyrrole–carbinols, XXIII: 87 Porphyrin-to-porphyrinoid framework, for from pyrrole–carbinol to porphyrin heme prosthetic group, V: 5 skeleton, XXIII: 87 Porphyrin–triarylamine conjugates, synthesis retrosynthetic analysis of porphyrin of, XXIII: 165 skeleton starting from pyrrole, Porphyrin triflates, reduced oxidation potential XXIII: 85 of aromatic rings and, II: 61, II: 63

Porphyrin ring deformation Porphyrin trimer (ZnOEP)3Ph2, XXII: 104 and formation of pure intermediate-spin Porphyrin trimers complexes (ruffled), VII: 61–67 chemical structure of, XVIII: 36 and formation of pure intermediate-spin mica surface after dropcasting chloroform complexes (saddles), VII: 67–70 solution of, XVIII: 36 ruffled deformation, VII: 39–45 on solid liquid interface, XVIII: 35 saddled deformation, VII: 45–47 Porphyrin trimers, syntheses with structural Porphyrin rings modifications, XIII: 157–160 frontier molecular orbitals of, VI: 43 Porphyrinogen analog, synthesis of, XVI: 7 orbitals of ruffled, VI: 45–46 Porphyrinogen XXIII spin delocalization and, VI: 40, VI: 42–50 acidolytic scrambling via spiro Porphyrin skeleton intermediate, XXIII: 15 pyrrole–carbinols to, XXIII: 87 synthesis via [3+1] tripyrrane– starting from pyrrole, retrosynthetic pyrrole–dicarbinol condensation, analysis of, XXIII: 85 XXIII: 107 Porphyrinato skeleton, XXIV: 14 Porphyrinogens. See also calix[n]pyrroles Porphyrin solar cells. See also Solar cells, anion binding in calix[n]pyrroles, phthalocyanines in XVIII: 144 and chromophores/electron donor/ calix[n]phyrins, XVIII: 143–144 fullerenes for chromophore calix[n]pyrroles with peripheral fused efficiency, X: 232–234 rings, XVIII: 148–149 and oligomers with polypeptidic chemical structures of, XVIII: 142, backbones, X: 235 XVIII: 147 PNC–TTF supramolecules and, expanded calix[n]pyrroles, X: 231–232 XVIII: 146–148 and porphyrin–alkanethiolate monolayer N-confused calix[n]pyrroles,

protected-gold nanoclusters/C60, XVIII: 144–145 X: 236 substituted calix[n]pyrroles, role of, X: 231 XVIII: 145–146 Porphyrin-spacer-porphyrin scaffolds, supramolecules with calix[n]pyrroles, synthesis of, II: 254, II: 257 XVIII: 150 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 235 FA

Cumulative Index to Volumes 1–25 235

Porphyrinoid ZINDO/s energy calculations and a blend of azulene, thiophene(s), and electron distributions, XIV: 491, acetylene moieties containing single, XIV: 499–504 II: 156, II: 157, III: 486 Porphyrinoids, structural modifications See also Combinatorial chemistry of effect on properties of, porphyrins XXIII: 284–285 and calculation of electronic structure for modifications to structure of porphyrin ground state geometry, ligand, XXIII: 301–304 XIV: 489–492 antiaromatic 16 and 20 π-electron and electronic transitions resulting in Q/B systems, XXIII: 358–364 bands, XIV: 507–513 aza-substitution, XXIII: 304–308 with fused aromatic rings, II: 2 chlorins and tetraazachlorins, historical aspects of, XIV: 463–469 XXIII: 308–312 modulation of hemoprotein activity with core substitution, XXIII: 326–337 artificial, V: 48–57 corroles and corrolazines, molecular starting point of, XIV: 469–471 XXIII: 338–341 MOs for ZnCP and complexes from fused ring expansion, XXIII: 312–320 Gaussian checkpoint files, non-planar porphyrinoids, XIV: 493–498 XXIII: 320–326 and need for observed properties and peripheral substitution, XXIII: 343–352 calculated parameters connection, porphycenes, XXIII: 341–343 XIV: 486–487 ring-contracted porphyrinoids, optical properties (summary), XIV: 477–480 XXIII: 352–357 optical spectroscopy spectroscopic properties and TD-DFT and origin of absorption intensity, calculations, XXIII: 285 XIV: 476–477 Gouterman’s 4-orbital Model, and origin of MCD intensity, XIV: 471–476 XXIII: 285–287 and predicted absorption spectra based on MCD spectroscopy, XXIII: 287–291 TD-DFT and ZINDO/s methods, Michl’s perimeter model, XIV: 514–515 XXIII: 291–296 and range of compounds to consider, use of TD-DFT calculations, XIV: 487–488 XXIII: 296–301 spectroscopic data interpretations, Porphyrinoids, transition metal complexes of, XIV: 482–486 XVIII: 304–305 TD-DFT energy calculations and electron lanthanide porphyrin complexes, distributions, XIV: 491 XVIII: 376–402 and testing for accuracy in predicting split porphyrin complexes of platinum with 5d Q bands due to low symmetry, transition metals, XVIII: 348 XIV: 506–507 chemical and spectral properties of TPTANP spectral properties and complexes with platinum bound calibration, XIV: 487 within the macrocycle cavity, trends between calculated parameters and XVIII: 348–357 observed properties, XIV: 515–519 iridium, osmium, and rhenium two top and two lowest unoccupied porphyrins, XVIII: 374–376 MO energies and, XIV: 491, peripherally platinated porphyrin XIV: 504–506 complexes, XVIII: 357–371 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 236 FA

236 Cumulative Index to Volumes 1–25

platinum and supramolecular arrays, with exocyclic rings using XVIII: 371–374 MacDonald’s “2 + 2” synthesis of, porphyrin complexes with 4d transition XVI: 11 metals, XVIII: 305 expanded, XVI: 25 palladium and porphyrins, with inverted pyrrole or thiophene XVIII: 321–348 rings, XVI: 294 porphyrin complexes with niobium, synthesis with three phenylene linkages, ruthenium, and rhodium, XVI: 297 XVIII: 305–320 π-electron delocalization and aromaticity, Porphyrinoids, XVI: 142 XVI: 20

Porphyrins films with C60/PCBM, XVIII: 71–73 acid–base equilibrium of porphyrins in incorporated into polymer solar cells, normal and tumor tissue, XVIII: 362 XVIII: 79–80 chlorination of, XVIII: 325 macroscopic nanowell-arrays, XVIII: 171 core modified monomers used for polymer solar cells, synthesis from dicarbinols, XVI: 19 XVIII: 81 core modified synthesis NH tautomerization in, XVI: 22 by “3 + 1” variant on MacDonald polymers for polymer solar cells, condensation, XVI: 12 XVIII: 82 DSSCs, XVIII: 86–102 porphyrin–platinum conjugates exhibiting dye attachment methods, cytostatic and photodynamic effect, XVIII: 100–101 XVIII: 362 β-linked meso-tetraaryl porphyrin stabilization by immobilizing, XVIII: 3 structures, XVIII: 98 structures of, XVIII: 176 porphyrin dimers, XVIII: 100 synthesis of Pt conjugates linked through porphyrins anchored through β-carboxy donor–acceptor and α-bonds, groups, XVIII: 97–100 XVIII: 367 porphyrins anchored through meso- synthesis of Pt tetraarylporphyrins, carboxyarylethynyl groups, XVIII: 366 XVIII: 89–94 synthesis with fused aromatic rings using porphyrins anchored through meso- “3 + 1” methodology, XVI: 13 carboxy groups, XVIII: 95–97 thin-film solution-cast organic solar cells porphyrins anchored through meso- with active layer of self-assembled, carboxyphenyl groups, XVIII: 75 XVIII: 86–89 used in thin film solution-cast solar cells, porphyrins in DSSCs, XVIII: 86 XVIII: 72 solar cell performances of β-linked Porphyrins meso-tetraaryl porphyrin β-substituents presence and osmylation, sensitizers, XVIII: 98 XVII: 48 solar cell performances of other meso- converting to chlorins, XVII: 35 linked porphyrins, XVIII: 96 as diene, XVII: 87–93 solid-state DSSCs, XVIII: 102 as dienophile, XVII: 93–95 structures with other meso linkages in, diimide reduction of, XVII: 40 XVIII: 96 β,β ′-double bonds, syn-reduction of, β-substituted porphyrins, efficiencies, XVII: 36 XVIII: 97 spectra of, XVII: 6 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 237 FA

Cumulative Index to Volumes 1–25 237

UV-vis spectra comparison, XVII: 6 meso-positions of, XXIII: 40 expanded mono- and disubstituted, XXIII: 125 synthesis and metalation with two as nucleophilic synthon in catalytic indene subunits, XVI: 292 coupling, XXIII: 132 synthesis with bridging phenylene units, palladium-catalyzed amination reactions of XVI: 299 meso-monobromo- and meso- systems dibromo porphyrins, XXIII: 191 with 18π electron delocalization Pd-catalyzed functionalization of porphyrin pathways, XVI: 21 using organozinc/organotin, pyrazole-containing, XVI: 231 XXIII: 132 Porphyrins porphyrin dimer linked by pentapeptide amination and amidation of meso- moiety, XXIII: 188 brominated porphyrins, XXIII: 192 “push–pull” structure, XXIII: 165 bilene routes to, XXIII: 16 reduction, three prominent boronate by Suzuki–Miyaura reaction, dihydroporphyrins, XXIII: 69 synthesis of, XXIII: 139 regioselective Ir-catalyzed β-borylation of boxes using templated olefin metathesis, porphyrins via C–H bond activation, XXIII: 269 XXIII: 142 bromination of porphyrins with electron rhodium-catalyzed substitution of acceptor meso-substituents, unsaturated ester functions onto, XXIII: 138 XXIII: 158 catalytic functionalization of, XXIII: 131 starting from carborane functionalized

characteristic porphyrins with Cs symmetry, pyrroles via Suzuki cross–coupling XXIII: 59 reaction, XXIII: 156 chromophore with 5-nitro-[2,2′]-bisthienyl- starting materials for reaction of potassium 5′-ethynyl acceptor moiety, organotrifluoroborates with, XXIII: 164 XXIII: 149 core “type” definition based on Fischer’s dendrimers with free base, XXIII: 177 etioporphyrin isomers types I–IV, IUPAC nomenclature for, XXIII: 91 XXIII: 32 cross–metathesis between vinylporphyrins uniqueness, XXIII: 84 and allyl sugars, XXIII: 189 Porphyrins and organometallic C–C coupling cyano derivatives formed by reaction of reactions. See also Organometallic C–C potassium organotrifluoroborates coupling reactions (porphyrins); with, XXIII: 149 Palladium-catalyzed carbon-heteroatom derived from one AP-pyrrole, XXIII: 10 C–C reactions examples with condensed formulas of acetylene derivative/N-fused porphyrin

substituents A4B4 and A4B2C2, coupling and, III: 344 XXIII: 25 acetylenic porphyrin synthesis, with four two-photon absorbing 2,1, III: 341–342 3-benzothiadiazole chromophores at alkenyl porphyrin synthesis, III: 345 meso-positions, XXIII: 158 allenyl/alkynyl formation and, isomer types obtained upon irreversible/ III: 340–341 reversible reaction, XXIII: 12 benzothiadiazole porphyrin synthesis, mercuration followed by palladation and III: 337–339 vinylation, XXIII: 117 β-perfluororalkylated, III: 340 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 238 FA

238 Cumulative Index to Volumes 1–25

butadiene porphyrins and, III: 346 features of metalloporphyrin cyanoporphyrin synthesis, III: 347–348 stereochemistry, XXIV: 12–19 dibenzofurane porphyrin synthesis, metalloporphyrin derivatives XXIV III: 337–338 lanthanide and actinide derivatives, ferrocenyl porphyrin synthesis, XXIV: 125–126 III: 341–342 main group derivatives, XXIV: 117–125 N-fused porphyrin/acetylene derivative porphyrin π–π interactions and coupling, III: 344 π-radical complexes, nitropolythiophenyl porphyrin synthesis, XXIV: 102–116 III: 338–339 stereochemistry of metal-free porphyrins perylene porphyrin synthesis, III: 343–344 XXIV polyalkynyl porphyrin synthesis, III: 343 free-bases, XXIV: 126–133 squarylporphyrin synthesis, III: 346–347 porphyrin acids and related species, thiol-derivatized europium complex XXIV: 133–137 synthesis, III: 342–343 transition metal derivatives, XXIV: 19 tin porphyrin synthesis, III: 346–347 d0 complexes, XXIV: 19–25 xanthene porphyrin synthesis, III: 337–338 d1 complexes, XXIV: 25–26 Porphyrins and substituent patterns, XXIV: d2 complexes, XXIV: 26–27 5–10 d3 complexes, XXIV: 27–28 Porphyrins as photosensitizers, IV: 11–25 d4 complexes, XXIV: 28–36 absorption spectra, IV: 4–5 d5 complexes, XXIV: 36–38 anionic porphyrins, IV: 25, IV: 26 d6 complexes, XXIV: 38–41 cation porphyrin–anthraquinone d7 complexes, XXIV: 41–44 (porphyrin–AQ) hybrids, IV: 23, d8 complexes, XXIV: 44–50 IV: 24 d9 complexes, XXIV: 50–52 cation porphyrin-modified amino acids, d10 complexes, XXIV: 52–56 IV: 20, IV: 22, IV: 23–25, IV: 26 iron derivatives, XXIV: 56–88 fluorinated porphyrins, IV: 18, IV: 31–32, porphyrin nitrosyls and related iron IV: 43 species with nitrogen oxide folic acid conjugates, IV: 16 ligands, XXIV: 89–102 structure and properties, IV: 4, IV: 11, Porphyrins, transition metal complexes of, IV: 252 XVIII: 304–305 telomerase inhibitors, IV: 19 lanthanide porphyrin complexes, See also specific types XVIII: 376–402 Porphyrins, Hangman scaffolds XXI porphyrin complexes of platinum with 5d catalysis, XXI: 128–132 transition metals, XVIII: 348

H2O2 dismutation, XXI: 128–130 chemical and spectral properties of oxygen reduction reaction (ORR) complexes with platinum bound chemistry, XXI: 130–132 within the macrocycle cavity, synthesis and structure, XXI: 112–123 XVIII: 348–357 naphthalene and anthracene backbones, iridium, osmium, and rhenium XXI: 112–116 porphyrins, XVIII: 374–376 xanthene and dibenzofuran backbones, peripherally platinated porphyrin XXI: 116–123 complexes, XVIII: 357–371 Porphyrins/metalloporphyrins, stereochemical platinum and supramolecular arrays, systematics for, XXIV: 2–12 XVIII: 371–374 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 239 FA

Cumulative Index to Volumes 1–25 239

porphyrin complexes with 4d transition and design for specific purposes. metals, XVIII: 305 See Free-base porphycenes palladium and porphyrins, Diels-Alder reaction of β-substituted XVIII: 321–348 butadienyl, II: 253, II: 255 porphyrin complexes with niobium, as dienes in cycloaddition reactions, ruthenium, and rhodium, II: 252 XVIII: 305–320 as dienophiles in Diels-Alder reaction, Porphyrins, transition-metal XXII II: 242, II: 243 with closed-shell ground state, as dipolarophiles in 1,3-dipolar XXII: 186–204 cycloaddition reactions, II: 242, Gold(III) porphyrins, XXII: 198–201 II: 259 NiOMTP, XXII: 192–198 as 1,3-dipoles in cycloaddition reactions, NiP, NiOEP, NiTPP, XXII: 186–192 II: 266 NiTPTBP, XXII: 201–204 electronic absorption data of, VII: 381 with open-shell ground state, formulas of most stable tautomeric form of, XXII: 204–208 VII: 362 Porphyrins. See also Combinatorial chemistry functionalization of meso position and of porphyrins; Peripherally metalated oligomeric structures of, II: 105 porphyrin derivatives HOMO and LUMO energy band gaps of, amino-/hydroxy-/vinyl-substituted II: 1 porphyrins and, XII: 251–263 with meso-aldoxime group, as a precursors aromaticity and aromaticity criteria of, to 1,3-dipole moiety, II: 268, II: 271 II: 108 meso- and β-free derivatives of, II: 194 axial ligand bands and M(II) porphyrins, meso- and β-positions of, II: 1, II: 104 VII: 444–450 metallocenes linked by metal ions, Barton-Zard reaction in synthesis of III: 447–451 symmetrically substituted, II: 9–10 metallocenes with one porphyrin, bearing a N-unsubstituted 1,2,3-triazole in III: 435–444 meso-position, II: 274, II: 276 microwave-assisted synthesis of Ni(II), binding of DNA to cationic, II: 217–218 Pt(II), and Pd(II) complexes of, β-substituted boronic acid and electronic II: 197 conjugation of π-system of, molecular structures of, XI: 227 II: 221–222 and need for mimicking enzymatic carbazates/azoesters with, III: 382–383 systems, XII: 229 charge recombination and, XI: 11 numbering systems for N-confused and chiral, III: 368 N-fused, II: 297, II: 298 “confusion” and “fusion” in framework of, organometallic C–C coupling reactions II: 297 and, III: 326–332. See also combinatorial chemistry of porphyrins and Organometallic C–C coupling synthesis of, III: 488–489 reactions (porphyrins) coordination cavity, II: 104 π-cation radicals, VII: 451–452 coordination complexes linked by metal π-electron conjugation, molecular planarity ions, III: 451–463 and macrocyclic, II: 108 coordination complexes with one π-skeletons of semisynthetic chlorophylls porphyrin, III: 444–447 and, XI: 236–237 cycloaddition of pentacene or tetracene to, π–π stacking and meso substitution in, II: 249–250 II: 105 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 240 FA

240 Cumulative Index to Volumes 1–25

photophysical properties and, III: 521. exocyclic double bonds and, XIII: 236–243 See also Photodynamic therapy of meso-alkylidenyl cancer (PDT) corroles and, XIII: 247–248 preferred bromoporphyrins in bromination porphodimethenes and, XIII: 246–247 of, II: 58 sapphyrins and, XIII: 243–246 product composition in nitration of, II: 71, oxophlorins, XIII: 199–220 II: 72, II: 73 with modified skeletons, XIII: 220–222 prospective applicability and modifications quinonoidal porphyrins and, XIII: 233–235 of, II: 104 thiaphlorins and, XIII: 227–228 pyrrole-based synthesis of π-extended, PorphyrinViLiGe program, XXIII: 4, II: 1, II: 2, II: 3–55 41–47, 55 Q and Soret (B) bands of, II: 2 algorithm, XXIII: 42–44 redox-induced FTIR difference spectra and, for distinguishing linear strings and VII: 466–468 counting frequency of substituted structural diversity in metal complexes of tetrapyrrole macrocycles, regular vs. N-confused, II: 303 XXIII: 43 substitution of heteroatom and binding and examples of tetrapyrrole macrocycles electronic properties of, II: 105 and their linear string synthesis of representations, XXIII: 44 aromatic rings-fused, II: 1, II: 2 linear strings including all combinations meso-amido, meso-aryloxy, and and permutations, XXIII: 43–44 meso-alkylsufanyl, II: 239–240 applications of, XXIII: 47–57 meso-triazole-substituted, II: 273, combinatorial process affording diverse II: 275 porphyrins, XXIII: 47–50 resorcinol-substituted, phenanthroline- identifying isomers, exemplified for strapped, II: 237–238 protoporphyrin, XXIII: 50–54 1,2,3-triazole-appended, II: 273, II: 274 phthalocyanines, XXIII: 54–56

tautomerism in, VII: 409–410. See also sixty isomers of A4B2C2-porphyrins, Tautomerism XXIII: 51–52 use of, VII: 360–361 virtual combinatorial library derived cyanoethyltrifluoroborate in synthesis of from four distinct pyrroles, β-substituted cyano derivatives XXIII: 47–49 of, II: 226–227 classes of reactions, XXIII: 44–47 variously substituted porphyrins from protoporphyrins, grouped categories, brominated, II: 58, II: 59 XXIII: 51 See also Iron porphyrin complexes; substituted tetrapyrrole macrocycles, four Optically active porphyrin systems; reactions to give, XXIII: 45–46 Mn porphyrins; Pacman porphyrin workflow stages, XXIII: 42 complexes/special pairs/chemical Porphyromonas gingivalis models exogenously acquired heme and, XV: 382 Porphyrins/porphyrin analogs with double FECH purification and, XV: 57 bonds at meso positions and heme uptake in gram-negative bacteria, aminoporphyrins and, XIII: 222–227 XV: 18–19 aromaticity/tautomerizations and, and metalloporphyrin inhibitors of heme XIII: 198, XIII: 201, XIII: 204 uptake, XV: 390 with directly linked meso-(p-quinone) Positron emission tomography (PET), IV: 90, substituents, XIII: 228–233 IV: 288, IV: 297–298 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 241 FA

Cumulative Index to Volumes 1–25 241

conjugates for nuclear (PET/SPECT) Precorrin-3B, XXV: 33, 38 imaging and PDT, IV: 297–302 synthesis, XXV: 34–38 18F-fluorodeoxyglucose (FDG), IV: 297, chemical model systems have IV: 299, IV: 301, IV: 314 highlighted importance of methyl 123I-based photosensitizers for PET and group at C-20, XXV: 38 PDT, IV: 302, IV: 303–304 CobG, XXV: 34–36 124I-based photosensitizers for PET and CobZ, XXV: 36–37 PDT, IV: 299–303 precorrin-3A into precorrin-3B, isotopes used, IV: 91, IV: 93–95, IV: 204, mechanism for conversion of, IV: 298–299, IV: 301 XXV: 35 positron emission tomography–computed Precorrin-4, XXV: 33, 38 tomography (PET/SPECT), IV: 288, synthesis, XXV: 37–39 IV: 297–302 chemical model systems have See also Tumor imaging highlighted importance of methyl Potential energy surfaces (PES) and NO group at C-20, XXV: 38 binding, ferric heme-nitrosyls with Precorrin-5, XXV: 33 proximal imidazole coordination, synthesis, XXV: 39 XIV: 201–203 Precorrin-6A, XXV: 33 Potentiometric biosensors, V: 254 and precorrin-6B synthesis, XXV: 39–40 Potentiometric electrochemical sensors, Precorrin-6B, XXV: 33 XII: 200–207 Precorrin-8, XXV: 33 Poulos-Kraut mechanism, mechanism for synthesis, XXV: 40 Compound 1 formation, XIX: 61, Pressure in IR spectroscopy XIX: 237 and heme doming mode assignment,

PPc/AsPc/SbPc/BiPc/BiPc2/Bi2Pc3 absorption VII: 459–460 spectra, IX: 95–99 pressure dependence of IR spectral PPheo a, XX: 72 features, VII: 458–459 PPhide a dyads, XX: 76 Pressure-sensitive paint (PSP), optical sensors PPhide a–PPhide a, XX: 56 and, XII: 170–171 photophysical properties of, XX: 57 Pre-steady state kinetic mechanism of FECH, PPhide a–zinc porphyrin dyads, XX: 64–65 XV: 89 PPhide dimers Prinomastat (AG3340), IV: 436–437 linear, XX: 61 Probes, of porphyrin-based oxygen sensors, with Qy band maxima, XX: 63 XII: 309–310 stacked, XX: 60 Probing distance/orientation effects, PPO1/PPO2, XX: 175 tetrapyrrole-nanocarbon hybrids and, PPIX. See Protoporphyrin-IX (PPIX) I: 362–363 Precorrin-1, XXV: 32 Procaspase-3, IV: 406, IV: 411, IV: 414 Precorrin-2 (PC-2), XIX: 146, XIX: 148 See also Caspase-3 Precorrin-2, XXV: 32–33, 50 Prodigiosenes (tripyrroles) synthesis, XXV: 31 interaction with metal ions, VIII: 377–378 transformation into siroheme and and preparation of open-chain oligopyrrole cobalt-factor II, XXV: 50 systems, VIII: 352–353 Precorrin-3A, XXV: 33 Prodigiosin, amidopyrrole-based receptors synthesis, XXV: 32–34 and, VIII: 188 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 242 FA

242 Cumulative Index to Volumes 1–25

Product isotop effect (PIE), X: 122 Protease activation of conjugates. See Pro-Gly, and transport of ALA out of Caspase-3 mitochondria, XV: 11 Protein A, IV: 388 Project on Emerging Nanotechnologies, Proteins, conjugates with, XVIII: 284–286 XII: 354 Protein Data Bank (PDB) Prokaryotes, I: 223, I: 225–226 and crystal structures of FECH, XV: 67–71 Proline, and H-NOX regulation of output erythropoietic protoporphyria and, XV: 103 domains, XV: 133–134 and metal ion substrate inhibition/ Proline-derived ligands, X: 38–39 selectivity, XV: 91 Prostaglandin synthases (PGHS), XIX: 58–60 Protein engineering, V: 297 N-terminal epidermal growth factor (EGF), application, biosensors and, V: 215–220 XIX: 58 Protein flexibility/plasticity, heme sensor structure and mechanism of prostaglandin proteins and, XV: 413–414 H synthase, XIX: 59 Protein kinase B, IV: 437–438 Pro-oxidative mechanism of action for cancer, Protein kinase C (PKC), XV: 224 medical effects of water-soluble Protein-film voltammetry (PFV) metalloporphyrins and, XI: 370–371 biosensors and, V: 214–215 Propargyl aldehyde, condensation reaction to configuration (idealized) of, V: 217 install acetylenic groups, I: 7 defined, V: 297 Properties/reactivity of Compound I electrochemistry of, V: 216–217 properties/reactivity, in catalytic cycle Protein–photosensitizer conjugates, of cytochromes P450, V: 180 IV: 149–157

Propionate positions, reconstituted BSA–chlorin e6 conjugates, IV: 142–143, hemoproteins and, V: 19–21 IV: 152–154, IV: 344 Propionate side chains. See also BSA–hematoporphyrin (Hp) conjugates, Heme-propionate side chains IV: 150, IV: 156, IV: 343–344 cytochrome P450 structures and, V: 183–184 BSA–metallophthalocyanine conjugates, modification of, V: 14 IV: 83–84, IV: 343–344 Propionic acid substituents flanking BSA noncovalent conjugates, IV: 62, meso-position XXIII IV: 78, IV: 125, IV: 127–128, Fischer’s protoporphyrins with, XXIII: 53 IV: 343

non-Fischer protoporphyrins with, chlorin e6–protein conjugates, IV: 151–155, XXIII: 53 IV: 280–281

Prostaglandin E2 (PGE2), IV: 429, IV: 432, concanavalin A (Con A), IV: 153–154 IV: 435 conjugation conditions, summary, Prosthecochloris aestuarii, XIII: 262, IV: 180–182 XIII: 264–265 covalent conjugates with LDL, Prosthetic groups. See also Hemoproteins IV: 151–152, IV: 156–157 (reconstituted with artificially created epidermal growth factor (EGF), hemes) IV: 153–155, IV: 280–281, molecular structures of artificially created, IV: 347–348 V: 11, V: 15, V: 20, V: 22, V: 29, hematoporphyrin (HP) conjugation with V: 31, V: 34, V: 39, V: 42, proteins, IV: 125–126, IV: 150–151, V: 44–45, V: 48, V: 51–52 IV: 152 peroxidase activities of HRP/CcP human serum albumin (HSA), IV: 58, reconstituted with mono-/dialkyl IV: 60, IV: 126–128, IV: 155, esters, V: 13 IV: 347 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 243 FA

Cumulative Index to Volumes 1–25 243

immunoglobulin G–bacteriochlorophyll temperature dependence and, VI: 31–33 conjugate (Ig–Bchl), IV: 388 Protonated

immunoglobulin G–Sn(IV) chlorin e6 dipyrrins, VIII: 182

conjugate (IgG–SnCe6), IV: 388 ferryl Fe(IV)–OH species, peroxidases isothiocyanate-porphyrin and -chlorin (plant/fungal/bacterial superfamily) derivatives, IV: 155–156 and, VI: 420–421 noncovalent conjugates with LDL, Protonated porphyrins, XVIII: 134, IV: 125–127, IV: 146, IV: 344–345 XVIII: 174 serum protein conjugates, overview, chiral recognition in porphyrin dications, IV: 343–344 XVIII: 140–141 tetrasulfonated aluminium phthalocyanine dendronized non-planar porphyrin,

(AlPcS4), IV: 156–157 XVIII: 137–138 transferrin, IV: 150–152, IV: 346 dication of dodecaphenylporphyrin, See also Conjugates; XVIII: 137 Peptide–photosensitizer conjugates porphyrin dications, XVIII: 137 Proteins chemical structures of, XVIII: 135 function/location of heme-binding, structures of, XVIII: 136 XV: 29–30 TPP and OEP dications, XVIII: 134–137 heme-binding cytoplasmic proteins, Protonated pyrazole porphyrins, selected 1H XV: 30–31 NMR shifts for, XVI: 236 heme-binding extracellular proteins, Protonation XV: 31–32 of [38]nonaphyrin, heptapyrrolic expanded protein-protein interaction networks (PINs) porphyrins, I: 546–551 of FECH, XV: 93–96 second, in catalytic cycle of cytochromes protein-protein interactions (PPIs) of P450, V: 179 FECH, XV: 94 sites in cytochrome c oxidase, and and transport of ALA out of mitochondria, respiratory chain enzyme studies, XV: 10 VII: 468–472 Proteomics studies, hemopexin and, Protoporphyrin IX (Proto IX), XIX: 146 XV: 277–280 Protoporphyrinogen IX (Protogen IX), Protochlorophyll, configurations of, XIX: 146, XIX: 314 VII: 173–174 Protoporphyrinogen IX (Protogen), Protoheme IX, as naturally-occurring b-type diphenylether herbicides and, XV: 163 heme, V: 3–4 heme biosynthesis and, XV: 163–164 13 Protohemin, complete C labeling of, Protoporphyrin (A4B2C2), XXIII: 25 VI: 59–62 “theoretical” isomers of, XXIII: 26 Protohemochrome, and chemical oxidation of Protoporphyrin IX (PPIX, PROTO), porphyrin, XIII: 204–205 XIV: 119–121 Proton chemical shifts biosynthesis, I: 200–201, IV: 7, IV: 366, contact shifts, VI: 20–23 IV: 369–371 and measurement of magnetic boronated protoporphyrin-IX, IV: 192–193, susceptibility anisotropies of IV: 194 ferriheme proteins, VI: 26–29 chlorin synthesis from dimethyl ester, pseudocontact shifts of metalloporphyrin IV: 30–31 substituents, VI: 23–26 conversion to heme, IV: 7 and residual dipolar couplings of proteins dimethyl ester, as diene in Diels-Alder (pseudocontact), VI: 29–31 reaction, II: 253, II: 254 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 244 FA

244 Cumulative Index to Volumes 1–25

erythropoietic protoporphyria, Prolamellar bodies (PLB), XX: 161, XX: 183 XV: 101–104 Propionate side-chain, methylation of, FECH mimetics/distortion and, XV: 83 XX: 11–12 ferrochelatase, basic catalysis reaction of. Protochlorophyllide, XX: 5 See Ferrochelatase (FECH) Protochlorophyllide oxidoreductase (POR), heme biosynthesis and, XV: 163–164 XX: 26 and heme synthesis intermediate transport, reaction mechanism catalyzed by LPOR, XV: 8 XX: 28 gonadotropin-releasing hormone agonist Protogen IX oxidase (PPO), XX: 155, and antagonist conjugates, XX: 223 IV: 350–351 aromatized fluorescent proto IX formation isolation from blood, IV: 11 by, XX: 155 pictorial representation of FECH and, Protonation mechanism of DPOR (proposed), XV: 90 XX: 31 photodynamic therapy (PDT) agent, Protoporphyrin IX, XX: 5, XX: 9, XX: 222 IV: 7–8 Protoporphyrinogen IX, XX: 221 PPIX–peptide conjugates, IV: 145–148, formation by two evolutionally distant IV: 150 coprogen III oxidases, XX: 154–155 structure, IV: 12, IV: 193, IV: 329 synthesis of, XX: 220–224 styrene–maleic acid copolymer micelles PS. See Photosensitizers (PS) containing ZnPP (SMA-ZnPpIX), Pseudocontact dipolar shifts IV: 382–384 effect of axial ligand plane orientation on, sugar-substituted derivatives, IV: 130, VI: 50–55 IV: 132 and measurement of magnetic and transport of CPgenIII into/PPgenIX susceptibility anisotropies of within mitochondria, XV: 14 ferriheme proteins, VI: 26–29 transport to FECH, XV: 14–15 of metalloporphyrin substituents, Protoporphyrin IX, XXIII: 5, 8, 25, 59 VI: 23–26 Protoporphyrin isomers, XXIII: 5–7 and residual dipolar couplings of proteins, Protoporphyrinogen IX, XXIII: 8 VI: 29–31

Protoporphyrinogen oxidase (PPO, PPOX) Pseudocoenzyme B12, XXV: 139 diphenylether herbicides and, XV: 163 Pseudomonas aeruginosa, XIX: 52 and FECH mechanism model, XV: 106 bacterial HOs and, XV: 376

and heme synthesis intermediate transport, C5-pathway to ALA formation and, XV: 173

XV: 8 cytochrome cd1-type and, V: 129 and transport of PPIX to FECH, XV: 14 diheme peroxdiase, structure of, XIX: 53 and UROGEN conversion to heme, extracellular signaling mechanisms and, XV: 197–200 XV: 386–387 Proximal heme ligand, XIX: 50 FECH purification and, XV: 57 Proximal thiolate ligand environment, and gram-negative bacterial heme uptake, XIX: 95 XV: 361 Preccorin-2 (Dihydrosirochlorin), XX: 150, and heme acquisition by hemophores, XX: 171 VI: 359–360 Precorrin pathway, XX: 221 heme specificity/affinity/dynamics and, Primary fluorescent chlorophyll catabolite XV: 372 (pFCC), XX: 234 and heme uptake in gram-negative bacteria, modification of, XX: 235 XV: 18 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 245 FA

Cumulative Index to Volumes 1–25 245

His-Tyr ligation of, XV: 370 PUBS (Fd-dependent reductase), XXII: 29 PBGS structures and, XV: 177 PUG1 (protoporphyrin uptake gene I), post-transcriptional heme regulation and, XX: 179–180 XV: 384–385 Purity, reconstituted protein and, V: 6–7 and role of linear tetrapyrroles in cell Purple photosynthetic bacteria signaling, XV: 391 bio-mimicry Kobuke chemical cycles and spin state transitions, XV: 373 (photonic devices for antenna effect), UROGEN conversion to heme XI: 146–161 CPDH and, XV: 196–197 cyclic chemical models (photonic devices CPO and, XV: 193 for antenna effect), XI: 140–146 UROGEN formation (PBGS) and, excited state dynamics of LH I/LH II XV: 179–180 (photonic devices for antenna effect), Pseudomonas acidovorans, and TDO XI: 136–138 identification/characterization, V: 81 LH2 protein of, XI: 229 Pseudomonas fluorescens, and heme uptake in rhodopin glucoside (photonic devices for gram-negative bacteria, XV: 18 antenna effect) and, XI: 138–140 and TDO identification/characterization, supramolecular structures of LH I/LH II V: 81 (photonic devices for antenna Pseudomonas heme uptake (Phu), periplasmic effect), XI: 132–136 heme trafficking and, XV: 365–367 Purpurinimides, as gelectin-specific Pseudomonas nautica, nitrous oxide reductase photosensitizers for PDT, II: 235

(N2OR) and, V: 130 Purpurins, IV: 25, IV: 27 Pseudomonas putida, and catalytic cycle of absorption spectra, IV: 25 cytochromes P450, V: 170 bacteriopurpurinimide, IV: 39, IV: 251, CYP450 and, X: 86–87 IV: 252, IV: 255 FECH purification and, XV: 57 methyl esters, IV: 33, IV: 92 Pseudomonas stutzeri, UROGEN conversion photodynamic (PD) properties, IV: 27 to heme (CPDH) and, XV: 196 Photrex, IV: 27, IV: 255 and active site of bacterial NOR, V: 139 purpurin-18 conjugate with synthetic and bacterial NOR, V: 132 peptide, IV: 349 MCD spectra of cNOR from, V: 133–134 purpurin-18 methyl ester, IV: 33 and oxidized/isolated form of NOR, purpurin–RGD peptide conjugate, IV: 145 V: 133–135 purpurinimide structure, IV: 252, IV: 255 Pseudotetrapyrrolic corrin ligand, XXV: 87 purpurinimide–sugar conjugates,

Pseudovitamin B12, XXV: 139 IV: 134–135, IV: 136, IV: 267, Psoralea corylifolia, IV: 3 IV: 268–269, IV: 351–352 Pt nanoparticles. see platinum nanoparticles radiolabeled purpurinimides, IV: 92 Pt NPs-Zn(TPP) nanocomposites, XVIII: 197 synthesis, IV: 25

Pt reduction and metal nanoparticles, XII: 360 Sn(IV) etiopurpurin (SnEt2), IV: 27 PtTBPP on Ag(110) surface, surface structures Push-pull phthalocyanines (symmetric), of, XVIII: 4 III: 190–198

PTCBI, and hybrid planar-mixed molecular Putative structure of cytochrome b561, heterojunctions, X: 146–147 XIX: 342–344 Pthalonitriles, hexabutoxyiodo Zn(II) Putidaredoxin-putidaredoxin reductase phthalocyanine, III: 387 (Pdr–Pdx complex), XIX: 89–91 PtPc absorption spectra, IX: 68–72 Pdr–Pdx interaction, XIX: 90 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 246 FA

246 Cumulative Index to Volumes 1–25

PyBOP ((1H-Benzotriazol-1- synthesis with exocyclic double bonds, yloxy)tripyrrolidinophosphonium XVI: 196 hexafluorophosphate), IV: 147 isomers, XVI: 177 Pyrazinoporphyrazines. See UV-vis absorption Pyritripyrranes, efficient synthesis of, data of Pc analogs with heteroatoms XVI: 191 inside aromatic skeleton Pyrochlorophyllide a (PChlide a), XX: 75 Pyrazole carbaporphyrins Pyropheophorbide a (PPhide a), XX: 75 crystal structure of Pd(II) complex of, covalently linked, XX: 78 II: 137 Pyrroetioporphyrin, XXIII: 30 synthesis of, II: 136 Pyrrole-appended O-confused oxachlorin, Pyrazole porphyrin synthesis of, XVI: 223

in CDCl3, 500-MHz proton NMR spectrum Pyrrole-appended O-confused porphyrinoid, of, XVI: 234 metalation of, XVI: 224 dication, 500 MHz proton NMR spectrum Pyrrole–carbinols, XXIII: 86 of, XVI: 236 to porphyrin skeleton, XXIII: 87 Pyrazole-containing porphyrin analogs, pyrrole acylations or formylations to give, protonation of, XVI: 234 XXIII: 87 Pyrazole-containing porphyrinoid systems, Pyrrole collocates, XXIII: 20 XVI: 231 Pyrrole, favored sites for electrophilic Pyrazole-bridged bispyrrole, VIII: 203–205 substitution in, XVI: 137 Pyrazole-fused porphyrin, II: 262, II: 264 Pyrrolidine Pyrazoline-fused chlorin, II: 262, II: 264 adducts Pyrazoloporphyrins, XVI: 8, XVI: 231–241 formation from 23-substituted metalation of, XVI: 238 azuliporphyrins, XVI: 79

UV-vis spectra in 1% Et3N-chloroform, formation with 23-heteroazuliporphyrins, XVI: 233 XVI: 90 Pyrene butyric acid (PBA), oxygen sensors with meso-tetra-arylazuliporphyrins, and, XII: 303 nucleophilic addition of, XVI: 80 Pyrene-fused porphyrin, synthesis of, Pyrrole nitroxide radicals, XVII: 315 II: 60–61, II: 63 formation of, XVII: 316 Pyridine ligands, self-assembling Pyrrole ring B, reduction of, XX: 33–35 metalloporphyrins and, I: 93, I: 96 amino acid sequence alignments of BchX Pyridine-based systems as analogs, BODIPYs proteins, XX: 33 and, VIII: 142–143 concerning COR substrate recognition, Pyrido[2,3-b]porphyrins, use of XX: 35 β-amino-meso-tetraarylporphyrin in redox catalytic cycle of DPOR, XX: 34 synthesis of, II: 76, II: 77 Pyrrole ring D, reduction of, XX: 25–33 Pyridyl-functionalized porphyrins, comparison of three-subunit enzymes, XVIII: 25–30 XX: 29 Pyridylporphyrins, SOD mimics and, light-dependent pathway, XX: 26–28 XI: 318–319 light-independent (dark-operative) Pyriphthalocyanine, XVII: 183 pathway, XX: 28–33 Pyriporphyrins, II: 128, II: 129, XVI: 8, ATP hydrolysis by ChlL2, XX: 30 XVI: 177–197 heterotetramers formation, DPOR/ β-alkylated derivatives of, II: 130 nitrogenase, XX: 32 core modified substrate recognition of DPOR, XX: 33 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 247 FA

Cumulative Index to Volumes 1–25 247

ternary DPOR enzyme holocomplex, anion-responsive aryl-bridged bispyrroles XX: 31 and, VIII: 200–203 structure of and anion-responsive supramolecular gels,

(BchL)2 homodimer, XX: 30 VIII: 219–224

(ChlN/ChlB)2 heterotetramer of DPOR, aryl-substituted, VIII: 211–219 XX: 30 dipyrrin-based receptors and, Pyrolytic graphite (PG) electrode, V: 221 VIII: 181–186 Pyrobaculum aerophilum, and bacterial NOR, dipyrrolylpyrazoles derived from V: 132–133 dipyrrolyldiketones, VIII: 203–205 Pyropheophorbides dipyrrolylquinoxalines (aryl-bridged) and, anionic and cationic derivatives for VIII: 190–200 infectious disease treatment, dipyrromethane-based receptors and, IV: 285, IV: 286 VIII: 186–189 carbohydrate conjugates, IV: 274 guanidinocarbonyl-based anion receptors dendritic [60]fullerene pyropheophorbide a and, VIII: 169–174 conjugates, IV: 374, IV: 375 and modifications around boron units, metal complexes of bacterio- VIII: 225–227 pyropheophorbide a, IV: 258–259 and solvent-assisted organized structures peripheral benzodiazepine receptor (PBR) from amphiphilic receptors, binding, IV: 35–36 VIII: 224–225 photodynamic therapy uses, IV: 34–36 and synthesis/properties of boron pyropheophorbide a–antibody fragment complexes of dipyrrolyldiketones, conjugates, IV: 171–173, IV: 343 VIII: 205–211 pyropheophorbide a (Ppa), IV: 36, IV: Pyrroles, III: 490–492, XVII: 242 159–160, IV: 171, IV: 236, IV: 237, and GFP-chromophore analogs of IV: 274 BODIPYs, VIII: 135–136 singlet oxygen quenching by anodic oxidation of, XVII: 305 pyropheophorbide–carotenoid cathodic reduction of, XVII: 260–261 conjugate, IV: 281–282, IV: 283 CV for reduction of two activated structure, IV: 35, IV: 252 pyrroles, XVII: 260 synthesis, IV: 34–35 deprotonated bipyrrole, XVII: 261 tamoxifen conjugates, IV: 354 substituted pyrroles, XVII: 261 tumor imaging, IV: 36, IV: 274 complexation energies of various anions, See also 2-(1-Hexyloxyethyl)-2-devinyl XVII: 256 pyropheophorbide a (HPPH, conductivity of polypyrrole, XVII: 254 Photochlor); Pheophorbides efficiency for polymer formation vs. Pyrrole rings, and metal-ion-binding sites of pyrrole concentration, XVII: 247 FECH, XV: 76 electrochemical oxidation of, XVII: 304 Pyrrole units and symmetry of porphyrin electropolymerization, XVII: 250–251, isomers, VII: 365 XVII: 304 Pyrrole-/thiophene-substituted in acetonitrile, XVII: 252 metalloporphyrins, XII: 239–251 formation of polypyrrole, XVII: 249 Pyrrole-based π-conjugated acyclic anion from pyrroles/acid chlorides/anhydrides, receptors VIII: 7–8 amidopyrrole-based receptors and, fused pyrrole rings, XVII: 270 VIII: 175–181 indole substrates, XVII: 304 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 248 FA

248 Cumulative Index to Volumes 1–25

influence of acidity on electrochemical mediated electrooxidation of pyrrole and dimerization of, XVII: 251 oligopyrroles, XVII: 257–260 interaction with Lewis acids, XVII: 254 π-dimerization, XVII: 320–322 mediated electrooxidation of, XVII: 260 pyrrole-containing structures monoelectronic oxidation of, bile pigments, XVII: 289–292 XVII: 331–342 dipyrrolic structures, XVII: 286–289 oxidation-dimerization of, XVII: 243 substituted oligopyrroles, XVII: 280–285 pentapyrrole, pentapyrrole radical cation substituted bipyrroles, XVII: 276–280 and pentapyrrole dication, substituted pyrroles absorption spectra corresponding to, β-substituted pyrroles, XVII: 264–265 XVII: 248 fully substituted pyrroles, XVII: 270–275 polymerized, XVII: 259 mixed-substituted pyrroles, principle of electrochemical redox catalysis XVII: 266–269 applied to electropolymerization, α-substituted pyrroles, XVII: 261–264 XVII: 258 substitution reactions protonation and electrochemical equilibria alkoxylation, hydroxylation, commonly observed with, XVII: 304–307 XVII: 250 cyanation, XVII: 307–309 schematic oxidation of, XVII: 253 fluorination, XVII: 309–310 semi-empirical (AM1) quantum chemical synthetic aspects, XVII: 292–293 calculations, XVII: 255 oligomerization, XVII: 293–294 optimized conformations of pyrrole oligomerization of bipyrroles and longer syn-dodecamers, XVII: 256 oligomers, XVII: 302–304 substituted BODIPYs and, VIII: 7–12 oligomerization of carbazoles and substitution of pyrrole ring, XVII: 293 tetrahydrocarbazoles, and synthesis of symmetrical BODIPY, XVII: 297–298 VIII: 12–15 oligomerization of indoles and yield of soluble oligomers for chemical indolizines, XVII: 298–302 oxidation of, XVII: 258 oligomerization of pyrroles, See also Pyrrole-based π-conjugated XVII: 295–297 acyclic anion receptors Pyrrole-substituted synthetic porphyrin dianion Pyrroles and oligopyrroles, electrochemistry derivatives, metalloporphyrin structure/ of, XVII: 242 electron configurations and, VI: 13, anodic oxidation of pyrrole, bipyrrole, and VI: 16 oligopyrroles, XVII: 242–248 Pyrrole trimer, formation of, XVII: 250 cathodic reduction of pyrrole, Pyrrolic precursors and synthesis of linearly XVII: 260–261 extended porphyrins, XIII: 37 cyclization, XVII: 322–330 Pyrrolidine linkage between CNT/spacer unit, density functional theory (DFT) analyses, and covalent linkage of carbon XVII: 243 nanotubes, X: 285–289 deprotonation and, XVII: 248 Pyrrolo[3,4-b]porphyrins indirect substitution, XVII: 310–314 Diels-Alder reaction of influence of reaction medium acetylenedi-carboxylates with, influence of acidity, XVII: 249–255 II: 255–256, II: 258 influence of anions, XVII: 255–257 as masked o-quinodimethane of influence of solvent, XVII: 248–249 porphyrins, II: 73–74 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 249 FA

Cumulative Index to Volumes 1–25 249

Pyrrolochlorin, II: 244 and OEP derived BChl mimics, I: 273–276 Pyrroloporphyrins, conversion of 2-nitroTPP “QD–monomeric porphyrin” nanocomposites, into, II: 73 XXII: 123 Pyrroporphyrin XV, XXIII: 33 QD-PL quenching curves, XXII: 137 Pyrroporphyrin, XXIII: 30 QD-PL quenching model, scheme, XXII: 142

complexation constants Kc for, XXII: 126 Q “QD–porphyrin” nanocomposites, XXII: Q bands, II: 2, IX: 6–10 121,137,126, 133–134 5-monosubstituted tetrabenzoporphyrins, ET efficiency in, XXII: 157 XIII: 103–104 QD-PL quenching for, XXII: 144, 146 1 5,10,15,20-tetrasubstituted singlet oxygen ( O2) generation by, tetrabenzoporphyrins, XIII: 108–111 XXII: 147–157

A1/D0 and, XIV: 473–474 individual semiconductor quantum dots aminoporphyrins and, XIII: 227 CdSe/ZnS, XXII: 149–152 chlorophyll and, XI: 226 interaction of “QD–porphyrin” and electronic transitions resulting in Q/B nanocomposites with molecular bands, XIV: 507–513 oxygen (quantitative analysis), importance, III: 283–289 XXII: 152–157 meso-di-substituted tetrabenzoporphyrins, TOPO-capped CdSe/ZnS QD XIII: 105–107 parameters and their quantum meso-unsubstituted tetrabenzoporphyrins, efficiencies of singlet oxygen XIII: 96–102 generation, XXII: 151 optical properties (summary) of “QD–porphyrin triad” nanocomposites, porphyrinoids, XIV: 478–480 XXII: 130 and origin of optical spectrum, XIV: 474 QmoABC complex, XIX: 207 π-skeletal effect in organic solvents and, Qmo and Dsr Complexes, XIX: 207–209 XI: 229–231 DsrJ cytochrome, XIX: 205, XIX: 208 π-skeletons of semisynthetic chlorophylls EPR spectra of D. desulfuricans 27774 Dsr and, XI: 239–240 complex, XIX: 210 and photophysical properties of aromatic QmoA, XIX: 205, XIX: 207 rings with increasing π electrons, QmoB, XIX: 205, XIX: 207 XIV: 485–486 QmoC, XIX: 205, XIX: 208 testing for accuracy in predicting split Q Qmo and Dsr complexes, XIX: 207–209 bands due to low symmetry, Qrc complex, XIX: 205, XIX: 212 XIV: 506–507 Qualitative molecular orbital theory, of tetrabenzoporphyrins/linear benzologs, nanometer scale structures and, XIII: 6–7 I: 135–136 trends between calculated parameters and Quantitative structure-activity relationship observed properties, XIV: 515–519 studies (QSAR), IV: 34, IV: 251, Q-band transitions IV: 294 and fully synthetic self-assembling BChl Quantum chemical studies on excited-state mimic, I: 256 deactivation mechanism,

H2P/SWNT composites and, I: 196–197 XXII: 171–173 hexapyrrolic expanded porphyrins and, time-dependent density functional theory I: 522 basic equations of, XXII: 173–178

non-covalently linked hybrids (MP/C60 exchange-correlation potential and β-systems) and, I: 184 kernel, XXII: 182–185 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 250 FA

250 Cumulative Index to Volumes 1–25

Φ excitation energies with TDDFT, photodegradation quantum yields ( P), XXII: 179–182 VII: 273–275 transition-metal phthalocyanines, porphyrazine complexes (quaternized XXII: 208–209 derivatives), VII: 313, VII: 319 with closed-shell ground state, properties of non-water soluble Pcs, VII: XXII: 209–220 293–312 with open-shell ground state, quaternized derivatives and, VII: 317–318 XXII: 220–228 singlet oxygen quantum yields (Φ∆), transition-metal porphyrins, XXII: 185–186 VII: 268–273 Φ with closed-shell ground state, triplet state quantum yields ( T), XXII: 186–204 VII: 275–277 with open-shell ground state, yield values/behavior of water soluble Pcs, XXII: 204–208 VII: 283–291 Quantum dots (QD), IV: 378–379 Quartz microbalance (QMB) optical sensors and, XII: 172 mass transducers and, XII: 157–159 photophysical characteristics of, metalloporphyrin olfaction and, XII: 208 XII: 371–373 sensitivity comparison to FET, XII: 162 semiconductor nanocrystals and, Quaterene, XVI: 8 XII: 374–377 Quaternized derivatives Quantum mechanics, expanded porphyrins aggregation behavior in water soluble Pcs, and, I: 510, I: 513–514 VII: 280–281 Quantum mechanics/molecular mechanics Φ∆ and MPc complexes, VII: 320 (QM/MM) Φ∆ and porphyrazine complexes, VII: 319 Φ aliphatic hydroxylation mechanisms and, F and Pc complexes, VII: 313 Φ X: 122–123 F and Mpc complexes, VII: 313–314 Φ τ and catalytic cycle of CYP450, X: 87–93 ( T)/( T) and, VII: 317–318 and quantum-chemical calculations of Quatyrin, XVI: 8, XVI: 270 push/pull effect of axial ligand, and related fenestrane structure, XVI: 7 X: 103–106 Quatyrin, as aromatic tetracyclopentadienic and sulfoxidation by Cpd I of CYP450, hydrocarbon, II: 173 X: 129–131 Quenching, IV: 89, IV: 281–284 Quantum size effect, XII: 352, XII: 358 dependence of excited state and distance Quantum yields (FF), VII: 320–321 between macrocycle and metal absorption/excitation/emission spectra of, surface, XII: 363 VII: 281–282 phosphorescence, XII: 311 carboxylated derivatives and, VII: 313, stationary, XII: 327–328 VII: 316–317, VII: 319 Quinazoline-fused porphyrins, II: 244 Φ fluorescence quantum yields ( F), Quinol, XIX: 216 VII: 275 Quinol, and bacterial NOR, V: 133 MPc complexes (quaternized derivatives), Quinoline-annulated porphyrin, XVIII: 160 VII: 313–314, VII: 320 structure of, XVIII: 161

MPc(SO3)mix complexes (sulfonated Quinonoidal porphyrins, and porphyrins with derivatives), VII: 292, VII: double bonds at meso positions, 315–316, VII: 318 XIII: 233–235

MPc(SO3)n complexes (sulfonated Quinoxaline-fused porphyrins, II: 244 derivatives), VII: 292, VII: 313, condensation reaction of porphyrin- VII: 316, VII: 318–319 α-diones in synthesis of, II: 87 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 251 FA

Cumulative Index to Volumes 1–25 251

Diels-Alder reaction in synthesis of, II: 81, 99Tc-labeled phthalocyanines, IV: 92 II: 83 99Tc-labeled porphyrins, IV: 92 solar cell use of, II: 93–94 tumor imaging, IV: 90–95 Quinoxalinoporphyrins, β-nitroporphyrins in 235U-labeled phthalocyanines, IV: 95 synthesis of, II: 77, II: 78 235U-labeled porphyrins, IV: 95

Qx/Qy notation, and free-base porphyrin Radiolabeling of vitamin B12 electronic absorption spectra, 57Co and radioiodide, XXV: 107–110 VII: 380–381 99mTc and 111In, XXV: 110–115 conjugates of CN-Cbl-d-propionyl with R PAMA ligand and coordinated to 99m + Rabbit IDO (rIDO), visible absorption spectra [ Tc(CO)3] moiety, XXV: 113 for, V: 82–83, V: 85, V: 87 conjugation of tridentate ligands to the Radiation injuries, medical effects of b-, c- and d-acid of, XXV: 112

water-soluble metalloporphyrins and, coordination of vitamin B12 to

XI: 375–378 [M(OH2)(L2)(CO)3], XXV: 115 99m + Radiative coherent length, arrays, I: 448–449 structure of [ Tc(CO)3] labeled Radicals, oxoiron(IV) cation radicals, CN-Cbl-b-propionyl-PAMA and VII: 130–134 SPECT/CT image, XXV: 114 Radical SAM (S-adenosyl-L-methionine) X-ray structure of

family, XX: 223 -CN-[Re(gly)(CO)3], XXV: 115

Radioimaging/as carrier for targeted drug -CN-[Re(imc)(CO)3], XXV: 115

delivery, vitamin B12 for XXV Radiopharmaceuticals, overview, IV: 90

fluorescence labeling of vitamin B12, Radiosensitizers, IV: 48, IV: 95–99 XXV: 115–118 brominated porphyrins as radiosensitizers,

functionalization of vitamin B12, IV: 98 XXV: 105–107 Gd compounds as radiosensitizers, cobalamin structure with assignment of IV: 47–48, IV: 98 side-chains attached to corrin hematoporphyrin derivatives (HPDs) as periphery, XXV: 106 radiosensitizers, IV: 96 molecular imaging, XXV: 103–105 hematoporphyrins (HP) as radiosensitizers,

radiolabeling of vitamin B12 IV: 96–98 57Co and radioiodide, XXV: 107–110 Photofrin II as radiosensitizer, IV: 96 99mTc and 111In, XXV: 110–115 Raf-1, IV: 440 Radiolabeled porphyrins and phthalocyanines, Ralstonia eutropha, spectra of qNOR from, IV: 90–95 V: 133–134 14C-labeled phthalocyanines, IV: 90–91 Ralstonia eutropha H16, and bacterial NOR, 14C-labeled porphyrins, IV: 90 V: 132 64Cu and 61Cu-labeled phthalocyanines, Raman bands. See Resonance Raman spectra IV: 94–95 Raman spectroscopy. See also Spectroscopy 18F-labeled porphyrins, IV: 94, IV: 95 cobalt hemoproteins and, V: 24–25 67Ga-labeled phthalocyanines, IV: 93–94 Raney-Ni reduction of porphyrins and 3H-labeled porphyrins, IV: 90 chlorins, XVII: 43 123I, 124I, and 125I-labeled porphyrins, Rare earth element crown-phthalocyaninates IV: 91–92 XXIV 124I and 125I-labeled phthalocyanines, IV: 92 aggregation of heteroleptic sandwich, 109Pd-labeled porphyrins, IV: 95 XXIV: 354–360 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 252 FA

252 Cumulative Index to Volumes 1–25

aggregation of homoleptic double-decker, Reactions of heme dioxygenases. See XXIV: 361–373 Structure/reaction mechanism of heme Rapid mixing and perfusion-induces FTIR dioxygenases spectroscopy, VII: 481–482 Reactions Rapid-mixing/freeze-quench methodologies, catalyzed by cytochromes P450, V: 189 Compounds I/ES and, V: 311, V: 313 hydrogen peroxide and biosensors, Rapid-scanning stopped-flow absorption V: 206–207 studies kinetic parameters for fungal NO of Cyp119 Compound I, V: 313–314, reductase, V: 144 V: 325 mechanism of fungal NOR, V: 147–149 of P450bm3 Compounds I/ES, V: 322–323 mechanism of NOR, V: 140–141 of P450cam Compound I, V: 305–307 of NO, V: 124–126 of P450cam Compounds I/ES, V: 314–322, NOR production of nitrous oxide, V: 129 V: 325 pathways for cytochrome P450, RCC reductase (RCCR), XX: 234 V: 324–325 Reactant chemset, XXIII: 22 steady-state kinetics/uncoupling in catalytic Reaction centers, color plot of Photosystem II cycle, V: 181 in Rps. viridis, XI: 6 Reactive oxygen species (ROS), IV: 412–414 Reaction mechanisms. See Ferrochelatase biosensors and, V: 208 (FECH) defined, V: 297

Reaction-induced FTIR difference hydrogen peroxide (H2O2), IV: 412–413, spectroscopy IV: 418 and accessible time domains, VII: 474–475 hydroxyl radical (•OH), IV: 6, IV: 412–414 electrochemically induced iron metabolism-related disorders and, surface-enhanced, VII: 464–466 XV: 104–106 thin layer electrochemistry, VII: nanoparticles and, XII: 366 463–464 production by fluorinated porphyrins, ligand rebinding IV: 18 in cytochrome c oxidase (light-induced) production in type I and type II triplet-state and, VII: 476–479 processes, IV: 3, IV: 6, IV: 45, light-induced and, VII: 475–476 IV: 386–387, IV: 426 motivation and, VII: 462–463 role in cell death, IV: 412–414 • − perfusion-induced approaches superoxide anion radical ( O2 ), IV: 6, (stopped-flow/rapid mixing) and, IV: 47, IV: 412–413 1 VII: 481–482 See also Singlet oxygen ( O2) redox-induced FTIR difference spectra Reactive species, chemistry effects of

bc1 complex from respiratory chain, water-soluble metalloporphyrins, VII: 472–474 XI: 297–299 porphyrins/small hemoproteins, Reactivity towards, HClO, XI: 332 VII: 466–468 Receptors for heme acquisition system, protonation sites in cytochrome c VI: 341–342 oxidase, VII: 468–472 Recombinant human IDO (rhIDO) time-resolved THz spectroscopy and, heme environment of, V: 105–107 VII: 479 mutagenesis study, V: 107–108 two-dimensional IR spectroscopy and, overall structure of IDO and, V: 103–106 VII: 479–481 visible absorption spectra for, V: 82–83 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 253 FA

Cumulative Index to Volumes 1–25 253

Recombinant human UROS, structure, phosphate, XXV: 69 XXV: 30 synthesis, XXV: 67–68 Reconstituted hemoproteins, circular Redox-dependent heme binding, heme sensor dichroism (CD) and, VII: 158 proteins and, XV: 410–411, XV: 413 Reconstitution of hemoprotein, artificial Redox electrolyte, and Pcs as sensitizers of hemes and, V: 6–7 dye-sensitized solar cells, X: 157 Red blood cells (RBCs), and recycling of Redox-induced FTIR difference spectra

heme iron in humans, XV: 28–29 bc1 complex from respiratory chain, Red chlorophyll catabolite (RCC), VII: 472–474 XX: 232–234 porphyrins/small hemoproteins, Red-Green-Switchable cyanobacteriochrome VII: 466–468 (RGS), absorption and fluorescence protonation sites in cytochrome c oxidase, spectra of, XXII: 21 VII: 468–472 Redox Redox instability autoxidation rates dependent on, ionic pyrene derivatives and SWNT, I: 202 V: 177–178 and low optical band gaps, I: 8 biosensors and, V: 208–209 metalloporphyrins Cu(II)/Ru(II)P and, and catalytic cycle of cytochromes P450, I: 160–161 V: 169–170 Redox switchable chromophore, azulene denitrification and, V: 129 π-system combined with porphyrin-like electrochemical biosensors and, V: 218–219 macrocycle as, II: 171 meso-ferrocenyl group as anion sensor for, Red-shifted absorption III: 438–439 conjugation expansion of porphyrins and, potential of manganese-substituted II: 45 hemoproteins, V: 25–26 meso-aryl and meso-arylalkynyl derivatives potentials of Fe for myoglobins, V: 10 of tetraacenaphthoporphyrins and, redox protein, V: 297 II: 47 trends/stability and substituted nonplanarity of porphyrins and, II: 48 phthalocyanines, III: 289–293 Reduced graphene oxide (RGO), XVIII: 184 and unique properties of cytochrome P450, captured on mica substrate, XVIII: 184 V: 300 functionalization of, XVIII: 185 Redox behavior, and planar vs. nonplanar Reduction

porphyrins in artificial photosynthetic in catalytic cycle of cytochromes P450, systems, X: 190–191 V: 173–174

Redox chemistry, XIV: 467 CO2 to CO in self-assembled porphyrin

cd1 NIR and, XIV: 30–32 nanostructures, XI: 211–212 manganese-oxo complexes (corrole cytochrome P450 enzymes and, V: 191 synthesis/reactivity) and, heme-hemopexin, XV: 240–244 XIV: 541–543 of NOR, V: 135, V: 137 NO binding to ferrous (deoxy) Hb/Mb, palladium-catalyzed C-C reactions and, NOD and, XIV: 38–42 III: 370 ring-based, XIV: 480–481 and physicochemical properties of SOD transition metals and, XIV: 469 mimics, XI: 311–314

Redox-chemistry of B12-derivatives, and porphyrins as catalysts, III: 486 XXV: 163–168 and second electron transfer/protonation in α-ribazole, XXV: 139 catalytic cycle, V: 178–179 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 254 FA

254 Cumulative Index to Volumes 1–25

and SOD reactivity/targets, XI: 306 and superfamily of animal peroxidase, and tin/antimony porphyrins as reductive VI: 436–438 photocatalysts, XI: 200–205 electronic absorption spectra, peroxidases of transition-metal (animal superfamily), VI: 432–436 1,3,8(11),10(9),15(18),17(16),22(25), spectra for chromium-oxo complexes, 24(23)-octanitrophthalocyanine, XIV: 564–565 III: 79, III: 82 importance of, XIV: 466–467

and water-splitting nanodevice for solar TBP8Cz and, XIV: 546–547 hydrogen production, XI: 209 spectra of tetrapyrrole rare earth complexes Reduction reactions. See Dehalogenation heteroleptic bis(phthalocyaninato) reactions complexes, XIV: 392, Reductive dechlorination of alkenes, XIV: 394–400 XXI: 399–400 homoleptic bis(phthalocyaninato) Reductive photocatalysis/metal growth, of complexes, XIV: 375–394 self-assembled porphyrin mixed (phthalocyaninato) nanostructures, XI: 200–206 (porphyrinato) double-decker Reflectance anisotropy spectroscopy (RAS) complexes, XIV: 398, and sensors, XII: 192 XIV: 401–413 Refractive indexes, conjugated porphyrin See also Spectroscopy arrays and, I: 4 for P450nor in ferrous forms, Regioisomers, and noncovalent syntheses of V: 147–148 multiporphyrin species in aqueous peroxidases and, VI: 370 solution, XIII: 158 soluble guanylate cyclase and, V: 151, Regulated intercellular proteopysis (RIP), V: 153 XV: 224 of strapped diporphyrins, I: 461–463 Relaxation from higher excited states of triply linked arrays, I: 469–472 (photophysics), porphyrin isomers, Resorcinol–substituted phenanthroline- VII: 407 strapped porphyrins, XXIII: 190 Reorganization energy (λ), I: 133, I: 147–148. Respiratory bacterial cNORs, XXII: 240 See also Charge transfer structure of binuclear center of cNOR, (porphyrin/phthalocyanines and carbon XXII: 241 nanostructures) structures of cNOR from P. aeruginosa, RePc absorption spectra, IX: 49–54 XXII: 241 RePc absorption spectra, IX: 49–54 Respiratory chain enzyme studies 2 Reprecipitation, for synthesis of and bc1 complex from respiratory chain, self-assembled porphyrin VII: 472–474 nanostructures, XI: 190–194 and protonation sites in cytochrome c Resorcinols, favored sites for electrophilic oxidase, VII: 468–472 substitution in, XVI: 137 Respiratory nitrate reductase (Nar), as Resonance, VI: 432 Mo-containing enzyme, V: 128 Resonance Energy Transfer, XII: 398 Respiratory oxygen reductases, XIX: 213 Resonance Light Scattering (RLS), heme-copper oxygen reductases, sulfonatocalixarenes and, XIII: 177–178 XIX: 214–216 Resonance Raman (RR) oxygen reductases of bd type, characterization of catalytic intermediates XIX: 213–214 frequencies of resting state/intermediate Restricted systems, aza-BODIPY dyes and, compounds of HRP, VI: 414 VIII: 126–130 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 255 FA

Cumulative Index to Volumes 1–25 255

Retinal pigment epithelial (RPE) cells and Re(VII)(NFTPP)O , synthesis and X-ray 3 heme absorption, XV: 325 structure of, II: 346, II: 347 Retinoic acid conjugation with Rhenium, unsubstituted Pcs (UV-vis photosensitizers, IV: 174–175, IV: 176 absorption data) and, IX: 134 Retro-Diels-Alder methodology Rhenium-oxo complexes, XIV: 567–568 isoindole precursors and synthesis of TBPs Rhizobia sp., fixL genes and, XV: 135–136 and TNPs using, II: 19–44 Rhodamine-phthalocyanine conjugates, purity of product and synthesis of TBPs III: 90–91 using, II: 19–20 Rhodium C–C coupling reactions, synthesis of TBPs and, II: 2, II: 19, II: 20 III: 359–360 Rev-erbα, heme sensor proteins and, Rhodium, unsubstituted Pcs (UV-vis XV: 422–423 absorption data) and, IX: 130 Rev-erbβ, heme sensor proteins and, XV: 423 Rhodium-catalyzed cyclopropanation, X: 45 Reverse saturatable absorption (RSA), and Rhodium, carbon-transfer reactions, quinonoidal structures, XIII: 234 XXI: 223–237 RGD (arginine-glycine-aspartic acid) peptides asymmetric cyclopropanation, XXI: 228 α β binding to v 3 integrin, IV: 276–278 of alkenes and EDA (ethyl dimeric porphyrin–RGD conjugation by diazoacetate), XXI: 229–230 olefin cross metathesis, IV: 148, cyclooligomerization of terminal aryl IV: 151 alkynes, XXI: 236–237 purpurin 18-NLS and PPIX–cyclic RGD cyclopropanation, XXI: 223–233 conjugates, IV: 145–146, IV: 150 stoichiometric reactions between tetraphenylchlorin conjugates, IV: 143–144 rhodium porphyrins, XXI: 231 TPP and TPC conjugates, IV: 145, IV: 148 cyclopropanation of olefins RGD peptide sequence, porphyrin dimer, and EDA catalyzed by rhodium XXIII: 187 porphyrins, XXI: 224 Re(I) tribenzotriphyrin [Re(I)TrBzTrp(CO) ], influence of porphyrin structure on, 3 preparation and crystal structure of, XXI: 227 II: 34–35, II: 41 in presence of EDA and Rh(TTP)I Re(I) {2-[2-(trimethylsilyl)ethoxymethyl]- catalyst, XXI: 225 1− NCTPP } (CO)3, synthesis of, II: 309 series of rhodium porphyrin 1− Re(I) (2-Me-NCTPP )(CO)3 cyclopropanation catalysts, synthesis of, II: 308 XXI: 227 X-ray structures of Re(I)(N-Me-NPP)1− using glycine ethyl ester hydrochloride,

(CO)3 and, II: 308, II: 309 XXI: 226 [Re(I)] (NCTPP1−)Cl(CO) , synthesis, cyclopropanation of styrene and EDA, 2 4 reactions and X-ray structure of, XXI: 228 II: 315–319 X–H insertion, XXI: 233–236

Re(I)(NCTPP)(CO)2Cl, synthesis of, II: 315 asymmetric insertion of EDA, XXI: 236 1− Re(I)(NCTPP )(CO)3, synthesis of, II: 309, C–H insertion catalyzed by II: 310 Rh(TTPPP)Me, XXI: 234 Re(I)(NFTPP)(CO) , synthesis and X-ray Rhodium(III) porphyrins, XXI: 346 3 structure of, II: 345, II: 346 Rhodium porphyrins, XXI: 325–326, 401 Re(II) tribenzotriphyrin cis-cyclopropanes as major products, [Re(II)TrBzTrp(CO) Cl], preparation XXI: 325–326 2 and crystal structure of, II: 34–35, Rhodium-substituted myoglobin, II: 41 myoglobin/hemoglobin/HRP and, V: 28 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 256 FA

256 Cumulative Index to Volumes 1–25

Rhodnius prolixus, and heme calculated frontier MOs and MO energies of uptake/detoxification in insects, XV: 23 Zn(II)TPP and B(III)subP, XXIII: 353 Rhodobacter capsulatus ∆HOMO and ∆LUMO, effect of structural and active site of bacterial NOR, V: 138–139 perturbations on, XXIII: 358 ALAS and, XV: 168–169 electronic absorption, MCD, and FECH purification and, XV: 57 fluorescence spectra, XXIII: 354 Rhodobacter rubrum, XI: 233 MCD spectra, XXIII: 353 Rhodobacter sphaeroides IL 106, and bacterial nodal patterns of four frontier π-MOs, NOR, IV: 259, V: 132 XXIII: 356 Rhodobacter sphaeroides. See also Purple UV-visible absorption and MCD spectra, photosynthetic bacteria XXIII: 357 ALAS and, XV: 166, XV: 169–170 UV-visible absorption spectra, XXIII: 355

FECH purification and, XV: 55 Ring (R1 to R4) substituents of MPcs/Pcs, metal ion substrate specificity and, XV: 86 VII: 251–260. See also Phthalocyanines and oligomeric structure of FECH, XV: 60 (Pcs) 17-substituents and, XI: 233 Ring-B/ring-D reduced chlorins, and spectra π-skeletons of semisynthetic chlorophylls of synthetic bacteriochlorins/dimeric and, XI: 238–239 systems, VII: 191–196 photosystems of, XI: 7 Ring-expanded/anthracocyanine/ Shemin pathway, XV: 166 naphthalocyanine Pc analogs, UV-vis UROGEN conversion to heme absorption data, IX: 383–396 CPDH and, XV: 194 Ring-expansion reactions CPO and, XV: 193 electrochemical 1,2-migration of functional Rhodophytes, XIII: 257 groups and, X: 326 Rhodopseudomonas acidophila, XIII: 262 as other carbon-skeleton rearrangement crystal structure of, I: 2–3 reactions, X: 333 Rhodopseudomonas sp., and spectra of Ring-opening metathesis polymerization BChl c, VII: 186–189 (ROMP), optical sensors and, XII: 315 Rhodospirillum rubrum, CooA and, XV: 144 Ristocetin, amino acid carboxylate binding by, RhPc absorption spectra, IX: 65–68 VIII: 167 Ribonucleic acid (RNA), and heme transport RLi. See Organolithium (RLi) and in helminths, XV: 24–25 organometallic transformations Ribonucleotide reductases (RNRs), XXV: 197 Robust thin-films of porphyrazines

B12-dependent, XXV: 246A crystal and thin-film structures of catalyze reduction of nucleotide porphyrazine compounds, diphosphates (NDPs) and XVIII: 215–221 ribonucleotide triphosphates (NTPs), electrochemical doping of porphyrazine XXV: 197 thin-films, XVIII: 221–222

catalyzes the reduction of ribonucleotides H2TTDPz films, XVIII: 226–230 (RNA) to deoxyribonucleotides LiPc thin-films, XVIII: 224–226 (DNA), XXV: 198 MPc thin-films, XVIII: 222–224 from Thermotoga maritime, XXV: 200 electrochemical organic electronics based Riboswitches, XXV: 227. see also on, XVIII: 214–215

B12-riboswitches and reversed FETs and complementary organic inverters riboswitches XXV: 227–230 of porphyrazines with ionic-liquid Ring-contracted porphyrinoids, XXIII: 352–357 gate dielectrics, XVIII: 230 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 257 FA

Cumulative Index to Volumes 1–25 257

complementary organic inverters, Royal Maladities, XV: 162 XVIII: 231–235 Ru(III)-NO complexes comparisons, ferric organic thin-film transistors (OTFT), heme-nitrosyls with proximal imidazole XVIII: 230–231 coordination, XIV: 203–204 Rock salt region. See Mid-infrared (MIR) Rubin-type chromophores, formation of, absorbance spectra XXII: 19 Room temperature absorption spectra Rubyrin, synthesis and absorption, II: 54–55 in acetonitrile, VII: 384–385 Ruditapes philippinarum, XIII: 258 for octaethyl derivatives, VII: 384 Ruffled porphyrin ring deformation, VII: 11, radiative/nonradiative rates for VII: 39–45 porphycenes and derivatives, and formation of pure intermediate-spin VII: 401, VII: 403 complexes, VII: 61–67 for toluene solutions, VII: 403 Ruffled porphyrins, CD spectra of, Rose Bengal, IV: 159, IV: 414, IV: 437 VII: 198–199 Rose Bengal hexanoic acid (RBHA), IV: 159 Ru(III)(porphyrin)(L)(NO) complexes, Rosenmund-Braun cyanation of DBB15C5, XIV: 177–179 XXIV: 278 Runge–Gross theorem, XXII: 174 Rosenmund-von Braun reaction RuPc absorption spectra, IX: 54–64 and derivatives of phthalonitrile- RuPc complexes, XXIV: 399 4,5-dicarboxamides, III: 110 peripherally octa-substituted, and hydroxy-/alkoxy-/aryloxy-substituted XXIV: 401–402 phthalocyanines, III: 121, peripherally tetra-substituted, III: 169–170 XXIV: 399–401 and polymeric byproducts of Ruthenium(II) crown-phthalocyaninates, phthalocyanine, III: 104–106 XXIV: 286–291 trialkylsilyl-substituted phthalocyanines Ruthenium(II) crown-porphyrinates, synthesis and, III: 45 of, XXIV: 291 Rotating Frame Overhauser and Chemical Ruthenium-based catalysts, Nobel Prize Exchange Spectroscopy (ROESY), winner Grubbs and, II: 235 VI: 33 Ruthenium, carbon-transfer reactions, 2D NMR techniques and, VI: 66 XXI: 169–203 Rotating ring-disk electrochemistry (RRDE), cyclization of diazo β-ketoester compounds XXI: 10 catalyzed by Ru(TTP)(CO), XXI: 201 Rotational strength (Rij), circular dichroism cyclooligomerization of arylalkynes, (CD) and, VII: 149 XXI: 202 Rotaxanes cyclopropanation, XXI: 169–183 non-covalently linked hybrids and, asymmetric cyclopropanation of styrene I: 178–179 using chiral diazo, XXI: 174 self-assembly via, I: 352–360 deprotonation of tosylhydrazone, solar energy and, I: 178–179 XXI: 172 upon photoexcitation in non-covalently of diazoacetophenone with styrene linked hybrids, I: 182–183 derivatives, XXI: 177 Rothemund reaction, potential porphyrin-like high temperature cyclopropanation, products from, XVI: 5 XXI: 171 Rothemund-type synthesis, N-confused and of olefins with EDA, XXI: 177 larger macrocycles as byproducts in, optically active ruthenium porphyrin II: 111 complexes, XXI: 175 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 258 FA

258 Cumulative Index to Volumes 1–25

Ru porphyrin catalysts, XXI: 170 Ruthenium, nitrogen-group transfers, of styrenes with DAMP catalyzed by XXI: 266–292 ruthenium porphyrin complexes, amidation/amination, XXI: 276–292 XXI: 173 of aldehyde CH bonds with PhI=NTs, using carbene fragments, XXI: 172 XXI: 282–283 using exotic diazo reagents, XXI: 173 aromatic heterocycles using PhI=NTs, cyclopropanation, of styrene derivates, XXI: 281–282 XXI: 169–170 asymmetric amidation of benzylic and mono-substituted diazoesters XXI CH bonds, XXI: 284 catalyzed by Ru(P*)(CO)(EtOH), benzylic C–H bonds using aryl azides, XXI: 176 XXI: 288 with various diazo compounds, XXI: 178 catalytic amidation/amination protocols, X–H insertion, XXI: 183–187 XXI: 278 carbene insertion into S–H bonds, C–H amidations using PhI=NTs, XXI: 187 XXI: 279–280 insertion of EDA into N–H bonds, XXI: 186 hydrocarbons using, XXI: 289–290 in situ generation of diazo reagent and intramolecular amidation of sulfamate intramolecular C–H insertion, esters, XXI: 285–286 XXI: 184–185 ruthenium imido intermediates and, ylide-forming reactions, XXI: 187–200 XXI: 292 aziridination of imines with EDA, ruthenium porphyrin-mediated XXI: 199 intramolecular, XXI: 283 catalyst and substrate shape on tandem stoichiometric amidations of intramolecular ylide formation, hydrocarbons, XXI: 277 XXI: 194–197 aziridination, XXI: 266–276 dipolarophiles, XXI: 193 alkenes and aryl azides, XXI: 275 olefination of aldehydes in presence of of alkenes and PhI=NTs, XXI: 273 EDA, XXI: 188 catalytic asymmetric aziridination of ruthenium-catalyzed asymmetric aryl alkenes, XXI: 267 1,3-dipolar addition reactions, development of catalytic aziridination XXI: 198 processes, XXI: 267 ruthenium porphyrin-mediated 1,3- hetereogenous aziridination catalysts, dipolar additions, XXI: 191 XXI: 271 2,3-sigmatropic rearrangements of allyl of α-methylstyrene, XXI: 270 sulfides, amines, and halides, ruthenium porphyrin-catalyzed XXI: 190 aziridination, XXI: 274 tandem intramolecular ylide formation stoichiometric nitrene transfer, XXI: 266 and 1,3-dipolar cyclization of unsaturated sulfonamides with

catalyzed, XXI: 192–193 PhI(OAc)2, XXI: 268–269 Ruthenium-catalyzed C–C coupling reactions, of various alkenes, XXI: 272 III: 352–354 Ruthenium porphyrin complexes, XVIII: 306, Ruthenium complexes. See Oxygen sensors, XVIII: 308, XVIII: 313–314 porphyrins/related compounds as optical as catalysts in oxidation reactions, Ruthenium Halterman porphyrin, XXI: 335 XVIII: 306 Ruthenium myoglobin, formation of supramolecular structure by, myoglobin/hemoglobin/HRP and, V: 28 XVIII: 319 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 259 FA

Cumulative Index to Volumes 1–25 259

generating supramolecular structures, 20-Substituents (semisynthetic chlorophylls), XVIII: 318 XI: 274–276 hydrogenation in, XVIII: 309 21-Selenaporphyrins, cis- and meso-alkylation of, XVIII: 321 trans-N-confused, II: 135 and meso-substituted porphyrin synthesis, 23-Selenacarbaporphyrin XVIII: 320 metalation of, XVI: 52 reactivity of, XVIII: 315 protonation of, XVI: 52 saturated hydrocarbons, oxidizing, S- and A-trimers, synthesis of XVIII: 315 [Zn(II)(NCP2−)] resulting in, II: 332, 3 synthesis of asymmetrical triad composed II: 333, II: 334 of two modified macrocycles, Saccharomyces cerevisiae, XI: 308 XVIII: 312 and [2Fe-2S]+ cluster as cofactor of FECH, synthesis of supramolecular structure using XV: 61–67 Glaser–Hay coupling, XVIII: 311 and crystal structures of FECH, XV: 67–70 synthesized polycationic and polyanionic FECH activity and, XV: 54 water-soluble, XVIII: 309 and FECH interaction with iron-binding Ruthenium porphyrin complexes, XXI: 182 proteins, XV: 98 Ruthenium porphyrins, XXI: 333–339 FECH purification and, XV: 55–56

crystal structure of [Ru(II)(D4- FECH reaction mechanism summary and,

TmAP)(CPh2)], XXI: 334 XV: 92 Ruthenium, unsubstituted Pcs (UV-vis heme biosynthetic pathway and, XV: 5 absorption data) and, IX: 127–130 and heme uptake in yeast, XV: 21 and metal-ion-binding sites of FECH, S XV: 72–74 23-Substituted azuliporphyrins metal ion substrate specificity and, XV: 86 formation of pyrrolidine adducts from, and oligomeric structure of FECH, XV: 61 XVI: 79 and protein-protein interactions (PPIs) of oxidative ring contractions for, XVI: 77 FECH, XV: 94 2/4-Substituents in heme framework, and tethering OM to ER, XV: 33–34 reconstituted hemoproteins and, UROGEN conversion to heme (CPO) and, V: 7–12 XV: 193 3-Substituted bacteriochlorins/porphyrins “Sacs of BChl,” XX: 129 (semisynthetic chlorophylls), Saddled porphyrin ring deformation, VII: 11, XI: 255–257 VII: 45–47 5,15-Substituted oxoporphyrinogen, and formation of pure intermediate-spin XVIII: 156 complexes, VII: 67–70 non-planar oxoporphyrinogen, nickel(II) S-Adenosylmethionine (SAM), XXV: 234–235 complex, XVIII: 156 Safranin, XII: 302 5-Substituted tetrabenzoporphyrins, Salmonella typhymurium

preparation of, II: 24, II: 30 C5-pathway to ALA formation and, 7-Substituents (semisynthetic chlorophylls), XV: 173 XI: 255, XI: 257–259 and diguanylate cyclase-containing globin 8-Substituents (semisynthetic chlorophylls), coupled sensors, XV: 142 XI: 259–262 SAM-dependent uroporphyrinogen III 13-Substituents (semisynthetic chlorophylls), methyltransferase (SUMT) proteins, XI: 265–266 XIX: 120 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 260 FA

260 Cumulative Index to Volumes 1–25

Samarium, unsubstituted Pcs (UV-vis SB202190, IV: 430, IV: 431 absorption data) and, IX: 135 SB203580, IV: 430, IV: 431 Sandwich complexes Sb(V)(NCTPP 3 −)Br , synthesis of, 2 preparation of organometallic, III: 441, II: 336–337 . III: 443 Sb(V)(NCTPP3 −)Br HBr, synthesis of, 2 thiol-derivatized europium triple-decker, II: 336–337 III: 342–343 SbPc absorption spectra, IX: 95–99 Sandwich complexes, substituted tetrapyrrole Scanning electron microscopy (SEM) architectures, XXIII: 61–67 calixarenes and, XIII: 188 double-decker sandwich complex four-leaf clover self-assembly of porphyrin composed of two porphyrin ligands nanostructures, XI: 198–199 and three mercury ions, XXIII: 62 images of binary structure with equal heteroleptic lanthanide triple-decker zinc/cobalt porphyrins, XI: 212 sandwich compounds, XXIII: 65 platinum nanostructures for fuel cells, lanthanide triple-decker sandwich XI: 217 complexes, XXIII: 64–67 reprecipitation for self-assembly of mercury double-decker sandwich porphyrin nanostructures, complexes, XXIII: 61–64 XI: 190–193 type-c triple deckers, XXIII: 66 vesicle aggregates of hemoprotein

formed from cis-A2BC-porphyrin, assemblies, V: 53 XXIII: 65 Scanning transmission electron microscopy Sandwich tetrapyrrole rare earth complexes. (STEM) images, and metal porphyrins See Tetrapyrrole rare earth complexes, as reductive photocatalysts, XI: 206 sandwich-type Scanning tunneling microscopy (STM) Sandwich-type Pcs, UV-vis absorption data, porphyrin-based films and, XII: 257 IX: 489–537 self-assembled monolayers and, XII: 150 SAPK/JNK inhibitor SP600125, IV: 430 ∆SCF method, XXII: 172 Sapphyrins, IV: 49–50, IV: 54, IV: 95, Schistosoma mansoni XVI: 25 and heme transport in helminths, analog, synthesis with two inverted pyrrole XV: 24–25 rings, XVI: 290 and heme uptake/detoxification in insects, cycloaddition reactions of, II: 252, II: 253 XV: 22–23 as expanded porphyrins, II: 39 Schizosaccharomyces pombe, and [2Fe-2S]+ meso-alkylidenyl, and porphyrins with cluster as cofactor of FECH, XV: 63, double bonds at meso positions, XV: 66 XIII: 243–246 S-confused thiacarbaporphyrin Sapphyrin synthesis, expanded, XVI: 302 crystal structure of chlorocadmium(II), Sarpedoblin, XXII: 25 II: 128 Saturated calomel electrode (SCE) metal-carbon bond and Ni(II), Pd(II), electropolymerization and, XII: 247 Zn(II), and Cd(II) complexes of, nickel porphyrins in alkaline solution and, II: 127 XII: 265 metal(II) complexes of, II: 127 Saturation transfer synthesis of, II: 117–118

difference spectroscopy for experiments, ScPc/ScPc2/YPc2/Y2Pc3 absorption spectra, VI: 8 IX: 24–28

NMR experiments, VI: 62–63 ScPc2 absorption spectra, IX: 24–28 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 261 FA

Cumulative Index to Volumes 1–25 261

Scrambling processes, isomerization interaction of “QD–porphyrin” processes, XXIII: 16–17 nanocomposites with molecular Seco-corrins synthesis, XXV: 278–280 oxygen (quantitative analysis), and photochemical A–D cyclization, XXII: 152–157 XXV: 278–288 singlet oxygen generation by individual formation of corrin structure, XXV: 283 semiconductor quantum dots synthesis of A/D-seco-corrins with CdSe/ZnS, XXII: 149–152 different central metal ions, Self-assembled monolayer (SAM), XXI: 27 XXV: 279 Self-assembled monolayers (SAM), XVIII: 38 Second electron transfer/protonation, in cytochrome c oxidase active site and, catalytic cycle of cytochromes P450, X: 266–268 V: 178–179 defined, V: 298 Second-generation biosensors, V: 211–213 deposition and oxygen-to-silica covalent defined, V: 297 bonds, XII: 141 Second-generation photosensitizers, IV: 3–4, functionalization of metal surfaces by, IV: 124, IV: 426 XII: 148–151 See also Photosensitizers (PS) as molecular self-assembly, V: 223–226 Secretory plant peroxidases (class III), as and Si–O bonding of macrocycle, classification, VI: 372 X: 272–273 Selectivity, and Mn porphyrins in and surface functionalization of gold, plasma/tissues, XI: 350–351 X: 249–250, X: 253–256 Selenabenziporphyrin methanol solvate, Self-assembly of multiporphyrin arrays, ORTEP III drawing, XVI: 145 XXII: 69 Selenationsulfanylation (C–S/C–Se coupling), Self-assembled porphyrin arrays β-sulfanylation/selenation (C–S/C–Se dimers/oligomers of BChls, I: 238–245 coupling), III: 415–417 metalloporphyrins, I: 90–101 Self-assembled film solar cells, XVIII: 73–76 metallotetrapyrrole-fullerene dyads and, Self-assembled inorganic–organic I: 322–325 nanocomposites containing porphyrin-fullerene conjugates via semiconductor CdSe/ZnS quantum dots H-bonding, I: 329–338 and porphyrins XXII self-sorting systems from meso-meso- exciton relaxation processes in linked diporphyrins, I: 101–110 “semiconductor CdSe/ZnS quantum via interlocked rotaxanes/catenanes dot–porphyrin” nanocomposites, formation, I: 352–362 XXII: 131–146 Self-assembled porphyrin nanostructures. See electron tunneling in nanocomposites in Nanostructures, self-assembled conditions of quantum porphyrin confinement, XXII: 138–146 Self-assembled porphyrins, ordered surface pathways and efficiency of ET structures of, XVIII: 2–3 processes in nanocomposites, coadsorbates, XVIII: 39

XXII: 131–137 C60-porphyrin structures, formation, structure, and properties, XVIII: 42–45 XXII: 119–131 mixed phthalocyanine-porphyrin 1 singlet oxygen ( O2) generation by structures, XVIII: 39–42 “QD–porphyrin” nanocomposites, NO gas coadsorption, XVIII: 45–46 XXII: 147–157 functionalized porphyrins, XVIII: 8 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 262 FA

262 Cumulative Index to Volumes 1–25

carboxyphenyl-substituted porphyrins, strapped porphyrins, XVIII: 187 XVIII: 16–19 Semiconductor nanocrystals and porphyrins covalently-bound porphyrins, introduction, XII: 370–371 XVIII: 31–33 PDT and, XII: 374–375 cyanophenyl-substituted porphyrins, quantum dots (QDs) and, XII: 371–373 XVIII: 8–15 as sensors, XII: 375–378 imidazole-functionalized porphyrins, Semiconductor nanocrystals, XXII: 71 XVIII: 36–38 Semisynthetic BChl mimics multi-porphyrin arrays, XVIII: 33–35 CD, I: 289–290 phenoxy-substituted porphyrins, algal Chl a derivation and, I: 290–291 XVIII: 19–24 covalently linked dyads/triads and, I: 293, phosphonate-functionalized porphyrins, I: 295–298 XVIII: 30–31 and esterification of 17-propionic acid pyridyl-functionalized porphyrins, residue, I: 286–290, I: 292 XVIII: 25–30 and functional dyads of energy thiol-functionalized porphyrins, traps/anchor units, I: 284, I: 286 XVIII: 38–39 hydroxy compounds and, I: 280–282 non-functionalized porphyrins, XVIII: 3–8 hydroxy inversion/formyl group synthesis Self-assembled porphyrins on solid substrates, and, I: 281–282, I: 284 chemical sensors and, XII: 138–141 and isomers self-assembling in Self-assembled triads via metal-ligand cyclohexane, I: 284, I: 286 coordination, tetrapyrrole-nanocarbon and study of H-bonding, I: 280, I: 289 hybrids, I: 363–368 and use of methoxy-substituted Self-modeling curve resolution (SMCR), compounds, I: 292–293 hexapyrrolic expanded porphyrins and, Semi-synthesis of bacteriochlorins from I: 522 natural sources, XVII: 33–35 Self-sorting systems from meso-meso-linked Semisynthetic chlorophylls diporphyrins 13-substituents, XI: 265–266 Ag(I)-promoted coupling reaction and, 20-substituents, XI: 274–276 I: 104–107 31-monosubstituted-alkyl substituents, chiral porphyrin boxes and, I: 104, I: 107 XI: 250–253 and displacement of nitrogen atom 3-acetylbacteriochlorins, XI: 263–265 positions, I: 106, I: 108, I: 110 3-carbonyl/related substituents, XI: impact of structural diversity in, I: 101, 246–250 I: 104 3-ethenyl substituents, XI: 240–245 racemic 4-pyridine-appended 3-ethynyl substituents, XI: 245–246 meso-meso-linked Zn(II) 3-monosubstituted-methyl substituents, diporphyrins and, I: 104–105 XI: 250 Semiconductors, XVIII: 185 3-substituted bacteriochlorins/porphyrins, magnetic nanoparticles, XVIII: 192–193 XI: 255–257 metal-oxide nanoparticles, XVIII: 185–190 7-substituents, XI: 255, XI: 257–259 electrostatic interaction, XVIII: 189 8-substituents, XI: 259–262 photoelectrochemical process, B-ring reduced chlorins, XI: 277–280 XVIII: 188 carbinols, XI: 253–255 quantum dots, XVIII: 190–192 central metals, XI: 276–279 functionalization of CdSe QDs, E-ring-opening substituents, XI: 271–284 XVIII: 191 formylated chlorins, XI: 261 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 263 FA

Cumulative Index to Volumes 1–25 263

isobacteriochlorins, XI: 282–283 Sepharose 6B gel filtration chromatography, modified 5-membered E-rings, XI: 266–267 and oligomeric structure of FECH, modified 6-membered E-rings, XI: 267–271 XV: 60 π-skeletal effect, XI: 236–240 Sepsis and hemopexin, XV: 324–325 π-systems, XI: 277–283 Sepsis, medical effects of water-soluble stereoselectively D-ring reduced chlorins, metalloporphyrins and, XI: 379 XI: 280–282 Sequential grafting Sensing interface, V: 298 for anchoring porphyrin/phthalocyanine on Sensitizer enhancement ratios (SER), gold, X: 251–252 IV: 96–97, IV: 98 conductors/semiconductors for hybrid Sensitizers, photophysical and photochemical electronics and, X: 276–278 requirements for, XXIV: 406 Sequential immobilization of macrocycle fluorescence lifetimes, XXIV: 407–410 click coupling, X: 265–267 fluorescence decay curve for MPc coordination bond coupling, X: 264–265 complex, XXIV: 408 Serratia marcescens Strickler-Berg derived equation, extracellular signaling mechanisms and, XXIV: 408 XV: 386–387 TRES trace for monomeric and HasA-HasR complex of, XV: 363–364 aggregated MPc complex, heme-loaded HasA and, VI: 342–350, XXIV: 410 VIII: 187 Φ fluorescence quantum yields ( F), heme specificity/affinity/dynamics and, XXIV: 410–411 XV: 370–371 Φ triplet state quantum yields ( T) and and heme uptake in gram-negative bacteria, τ lifetimes ( T), XXIV: 411–413 XV: 18 decay curve from laser flash photolysis His-Tyr ligation of, XV: 370 equipment, XXIV: 411 and protein-protein interactions (PPIs) of transient differential spectrum for MPc, heme, XV: 375 XXIV: 412 Serum albumin triplet quantum yield determinations, heme-based gas sensor proteins and, XV: 406 XXIV: 412 heme sensor proteins and, XV: 429 triplet state absorptions, XXIV: 412 sGC, XV: 441 Sensors. See Chemical sensors; Oxygen Sharpless system, X: 31 sensors, porphyrins/related compounds Shemin pathway, XIX: 145, XX: 151 as optical Shemin pathway to ALA formation Sensor Containing Heme Instead of 5-aminolevulinic acid synthase (ALAS) Cobalamin (SCHIC), XV: 152–153 and, XV: 166–170 Sensor molecules, amidopyrrole-based general discussion/history of, XV: 165–166 receptors and, VIII: 179 Shewanella oneidensis (So), and H-NOX Sensor proteins. See Heme sensor proteins; regulation of output domains, Heme-based gas sensor proteins XV: 132–133, XV: 135 Sensory biliproteins, XXII: 13–23 “Shibata shift,” XX: 161 cyanobacteriochromes, XXII: 17–23 Shigella dysenteriae phycobiliproteins versus, XXII: 3 and gram-negative bacterial heme uptake, spectral coverage of phytochromes and, XV: 361–362 XXII: 17 heme specificity/affinity/dynamics and, phytochromes, XXII: 13–16 XV: 370–371 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 264 FA

264 Cumulative Index to Volumes 1–25

and heme uptake in gram-negative bacteria, Silica nanoparticles and porphyrins XV: 18 fluorescent probes and, XII: 399–400 post-transcriptional heme regulation and, introduction, XII: 393–396 XV: 384 PDT agents and, XII: 396–399 and protein-protein interactions (PPIs) of photodevices and, XII: 400–401 heme, XV: 375 Silicon (Si) Shigella heme uptake (Shu) naphthalocyanine dyes, and dye-sensitized heme specificity/affinity/dynamics and, solar cells, X: 162 XV: 371–372 silicon phthalocyanine (SiPc) derivatives, periplasmic heme trafficking and, IV: 77–80, IV: 83–84 XV: 365–367 silicon phthalocyanine–sugar conjugates, Shockley-Queisser limit for solar energy IV: 138, IV: 140 conversion, XVIII: 63 Si(IV) phthalocyanine bioconjugates with Shopping basket bis-porphyrins, XXI: 43 bovine serum albumin, IV: 127–128 ShuS, heme sensor proteins and, XV: 424–425 Si(IV) phthalocyanine [Si(IV)Pc] Si–C bonding of macrocycle derivatives, IV: 78, IV: 79, and conductors/semiconductors for hybrid IV: 127–128 electronics, X: 274–276 solar cells, I: 227 surface functionalization of silicon for unsubstituted Pcs (UV-vis absorption data) electronics and, X: 274–276 and, IX: 104–113 Sickle-cell disease, medical effects of See also Surface functionalization of water-soluble metalloporphyrins and, silicon for electronics XI: 374 Silicon hemiporphyrazines, XVII: 142 Side chains. See Heme-propionate side chains Silicon(IV) phthalocyanine treatment, Side-on interaction, coordination mode, XVIII: 246, XVIII: 249 geometry or structures revealing, with two axial permethylated II: 127, II: 131, II: 143, II: 144, β-cyclodextrin moieties, XVIII: 261 II: 146, II: 150, II: 165 Silicone rubber and oxygen optodes, Sideroblastic anemias, XV: 104–106 XII: 313–314 Siderophores, and bacterial acquisition of iron, Silicon-on-insulator metal oxide VI: 341 semiconductor (FET) (SOI-MOSFET), Signal transducer and activator of transcription LBL deposition and, XII: 134 3 (STAT-3), IV: 250, IV: 272–274, Silver (Ag) nanoparticles, XVIII: 197–198 IV: 314 Silver(III) benzocarbaporphyrin, ORTEP III Signaling by NO drawing, XVI: 46 and bacterial NO-binding hemoprotein Silver(III) and gold(III) structures, V: 154–155 tetra-aryloxybenziporphyrins, synthesis soluble guanylate cyclase and, V: 150–154 of, XVI: 130 Signals of hemopexins, XV: 224 Silver(III) oxynaphthiporphyrins, formation of, Silanization, oxide surface functionalization XVI: 170 and, X: 295–297 Silver(III) tropiporphyrin, ORTEP III drawing,

Silica (SiO2), hybrid porphyrin-mesoporous XVI: 97 materials and, XII: 146–148 Silver complexes Silica nanomaterial, XVIII: 201–203 Ag(III) corrole synthesis and, photodynamic model of mesoporous silica XIV: 592–593 NPs, XVIII: 202 demetalation strategies for, XIV: 592–594 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 265 FA

Cumulative Index to Volumes 1–25 265

Ag(III) benzocarbaporphyrin, crystal ionic pyrene derivatives and, I: 201–202 structure of, II: 159 metal-ligand coordination approach of

Ag(III) complex of cis-N2CP, II: 349 tetrapyrrole-SWNT hybrids, Ag(III) complex of NCTPP, II: 326–327, I: 404–407 II: 328 and negatively charged pyrene derivatives Silver, unsubstituted Pcs (UV-vis absorption (π−π), I: 204 data) and, IX: 130 noncovalent hybridization of carbon Single component systems of tectons nanotubes/porphyrins and, I: 201 double-zigzag geometry of 1D networks placing pyridyl isoxazolino functionalities (coordination bonds), XIII: 310–311 along sidewalls of, I: 190 general information (coordination bonds), porphyrin–nanocarbon composites and, XIII: 307–308 X: 221–224 H-bonded networks for, XIII: 360–370 pyropheophorbide and, I: 205 ladder geometry of 1D networks RuP functionalization and, I: 190–191 (coordination bonds), XIII: 311–312 solubilization/dispersion via protoporphyrin zigzag geometry of 1D networks IX, I: 200–201 (coordination bonds), XIII: 308–310 supramolecular interactions with, I: 90 + Single molecule fluorescence spectroscopy SWNT/PVBTAn composites and, I: 197

(SMFS) tetraphenylporphyrin [H2(TPP)] for cyclic arrays/porphyrin boxes, immobilized on, XVIII: 178 I: 476–479 using surface to integrate for arrays, I: 452–458 porphyrins/phthalocyanines as Single molecule magnets (SMMs), tetrapyrrole chromophores, I: 186–190 rare earth pyrroles and, XIV: 441–448 ZnNc and, I: 204–205 Single photon emission computed tomography Single-chain fragments (ScFv), IV: 158, (SPECT), IV: 90, IV: 92, IV: 204, IV: 160, IV: 170–171, IV: 172, IV: 288, IV: 297 IV: 342–343 Single-walled carbon nanotubes (SWNTs), Single-crystal X-ray structures, XIII: 266–271 V: 246–249, XVIII: 173, Single-step adsorption for anchoring XVIII: 177–178 porphyrin/phthalocyanine on gold, ammonium ion-crown ether interaction X: 251 and, I: 205–206 Singlet energy transfer applying Suzuki coupling reactions, chlorophyll dimer preparation and, I: 11 I: 191–192 and photophysical properties/intracellular chemical sensors and, XII: 143–144 behaviors of dimers, I: 18–19 1 CNT and, I: 135 Singlet oxygen ( O2). See Nanoparticles with dendritic porphyrins and, I: 198–199 porphyrins/related systems donor-SWNT hybrids via π−π interactions, (applications) I: 401–404 cytotoxicity, IV: 5, IV: 6, IV: 281 functionalized with PAMAM dendrimers, importance in photodynamic therapy I: 194–195 (PDT), IV: 5, IV: 250, IV: 412–414 and grafting to form SWNT-PVP/ZnP lifetime, IV: 6 nonohybrids, I: 193–194 quenching by

H2P interactions with, I: 199–200 photosensitizer conjugates, IV: 281–284

H2P/SWNT composites and, I: 196–197 pyropheophorbide–carotenoid interaction with ZnP-polymer, I: 197–198 conjugate, IV: 281–282, IV: 283 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 266 FA

266 Cumulative Index to Volumes 1–25

targeting of mitochondria, IV: 306 formation of siroheme by sirohydrochlorin from type II photodynamic processes, FeCh, XX: 171–172 IV: 6–7, IV: 37, IV: 45, IV: 387, putative dehydrogenase involved in IV: 426 formation of sirohydrochlorin, type II (singlet oxygen) processes, IV: 45 XX: 171 See also Reactive oxygen species (ROS) synthesis from urogen III, XIX: 149

Singlet oxygen quantum yields (Φ∆) tetrapyrrole biosynthetic pathway in basic photophysical parameters of, archaea, XX: 172–173 VII: 402 Siroheme, biosynthesis of, XIX: 114–116 carboxylated derivatives and, VII: 319 biosynthetic pathway in E. coli, XIX: 115 MPc complexes (quaternized derivatives), Met1p and Met8p, XIX: 119 VII: 320 in plants, XIX: 120 MPc/Pc parameters and, VII: 268–273 SirA, SirB and SirC, XIX: 115,

MPc(SO3)mix complexes (sulfonated XIX: 119–120, XIX: 149 derivatives), VII: 318 siroheme synthase CysG, XIX: 116–119

MPc(SO3)n complexes (sulfonated SUMT proteins, XIX: 120 derivatives), VII: 318–319 Siroheme, XXV: 50

porphyrazine complexes (quaternized Siroheme/Cofactor F430/Heme d1, biosynthesis derivatives), VII: 319 of, XIX: 112–114 Singlet-singlet absorption Siroheme synthase CysG, XIX: 116–119, energy migration from chlorophyll b to a, XIX: 149 XI: 228 active site cleft of, XIX: 118 transient absorption spectroscopy and, methyltransferase, XIX: 118 XI: 14 mutation in, XIX: 116 two-photon absorption as, XI: 9–10 structure from Salmonella enterica, Singly N-confused hexaphyrins, synthesis and XIX: 116–117 metalation of, XVI: 296 structures of, XIX: 119 Singular value decomposition, and Sirohydrochlorin (Factor II), XXV: 50 rapid-scanning stopped-flow of Sirohydrochlorin (S-2), XX: 150, XX: 171 P450cam Compound I, V: 306 Sirohydrochlorin (SHC), XIX: 146 Si–O bonding of macrocycle Sirohydrochlorin ferrochelatase (SirB), and conductors/semiconductors for hybrid XX: 171 electronics, X: 272–274 Six-coordinate complexes surface functionalization of silicon for carbon monoxide of M(II) porphyrins electronics and, X: 272–274 (axial ligand bands), VII: 446–448 SiPc/GePc/SnPc/SnPc /PbPc absorption cyanide of M(II) porphyrins (axial ligand 2 spectra, IX: 86–95 bands), VII: 448 Siroheme (SH), XVII: 11, XIX: 113, dioxygen of M(II) porphyrins (axial ligand XIX: 146, XIX: 148, XX: 146–147, bands), VII: 444–445 XX: 170 and formation of pure intermediate-spin branch, XIX: 148–151, XX: 170–171 complexes (ruffled), VII: 66–67 and D. vulgaris and D. desulfuricans, and formation of pure intermediate-spin XIX: 153 complexes (saddled), VII: 67, discovery, XIX: 114 VII: 69–70 formation of precorrin-2 by urogen III imidazoles of M(II) porphyrins (axial methyltransferase, XX: 171 ligand bands), VII: 444 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 267 FA

Cumulative Index to Volumes 1–25 267

nitric oxide of M(II) porphyrins (axial of corroles, XVIII: 108 ligand bands), VII: 448–450 of β-linked porphyrins in DSSCs, Six-coordinate metalloporphyrins, XXIV: 17 XVIII: 100

Sixteen-heme cytochrome c3, XIX: 189–196 of meso-carboxyarylethynylporphyrins, BLAST search, XIX: 192 XVIII: 93 3D structures of, XIX: 191–192 of meso-carboxyphenylethynyl porphyrins, sequence alignment results for D. vulgaris XVIII: 91 Hildenborough, XIX: 194 of meso-carboxyphenylporphyrins, Small aliphatic ring–substituted species, XVIII: 87, XVIII: 89 phthalocyanines with chiral carbons in of meso-linked porphyrins, XVIII: 96 side chains, XXIII: 390–400 of phthalocyanines, XVIII: 107–108 structures of camphor-fused Solar cells, phthalocyanines in. See also pyrazinonitriles and Porphyrin solar cells pyrazinoporphyrazines, XXIII: 391 basic concepts of DSSCs, X: 157, X: 159 Small angle neutron scattering (SANS), for bilayer heterojunctions fabricated using large non-crystalline supramolecular two different processing techniques assemblies, I: 244–245 and OPV by vapor deposition, Small angle X-ray scattering (SAXS), for large X: 149–150 non-crystalline supramolecular coadsorbents and, X: 167–169 assemblies, I: 244–245 cosensitization strategy and, X: 169–173 Small immunoprotein (SIP), IV: 158, IV: 160, emergent importance of, X: 142–143 IV: 171 hybrid planar-mixed molecular Sn(IV) hemiporphyrazine compounds, heterojunctions and OPV by vapor production of, XVII: 132 deposition, X: 146–147 SN, optical properties (summary) of incorporation of Pcs into organic porphyrinoids, XIV: 477–480 photovoltaic devices by solution SN-38 (7-ethyl-10-hydroxy camptothecin) in processing, X: 153–157 chlorin-based micelles, IV: 373 interfacial electron transfer dynamics and, SN50, IV: 430 X: 166–167 S-nitrosylation of cysteine, NOD and, introduction of exciton-blocking layers into XIV: 42–43 OPV by vapor deposition, Snowflake-shaped dendritic porphyrins, X: 146–147 III: 349–351 organic photovoltaic (OPV) devices and, SnPc absorption spectra, IX: 86–95 X: 143–145 SnPc absorption spectra, IX: 86–95 Pc incorporation into OPV by solution 2 sodAsodB E. coli mutants, XI: 307–308 processing, X: 153–157 Sodium azide, and inactivation of HRP, perylenbisimide derivative structure, X: 153 V: 22–23 phthalocyaninato triple decker structure, Sodium dodecyl sulfate (SDS), and oligomeric X: 153 structure of FECH, XV: 60 self-assembled porphyrin nanostructures Sodium, unsubstituted Pcs (UV-vis absorption and, XI: 212–214 data) and, IX: 103 structural modification in Pcs and OPV by Solar cell performances vapor deposition, X: 148–149 of bacteriochlorins, XVIII: 103 structural optimization of Pcs, X: 159–166 of β-linked meso-tetraarylporphyrin tandem solar cells and OPV by vapor sensitizers, XVIII: 98 deposition, X: 150–152 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 268 FA

268 Cumulative Index to Volumes 1–25

Solar cells, porphyrin- and SOLEIL (France), VII: 441 phthalocyanine-based, XVIII: 60–61 Sol-gel and ruthenium porphyrin complex, dye-sensitized solar cells (DSSC), X: 13–14 XVIII: 84–85 Sol-gel process and spectrophotometric tests, chlorins and bacteriochlorins, XII: 316 XVIII: 102–104 Sol-gel technology corroles, XVIII: 108–109 biosensors and, V: 232–235 phthalocyanines, XVIII: 104–108 defined, V: 298 porphyrins, XVIII: 86–102 Solid phase porphyrin library synthesis, engineering interfacial nanostructures, III: 513–515 XVIII: 110 Solid phase synthesis of organic libraries, improving light-harvesting, XVIII: 109 III: 487–488, III: 513–515 new synthetic methodologies, XVIII: 109 Solid state deposition of porphyrins optimizing HOMO/LUMO energies and and deposition electron distributions, XVIII: 109–110 of self-assembled porphyrins on solid organic molecular solar cells, substrates, XII: 138–141 XVIII: 61–63 on ITO/related surfaces, XII: 141–143 dyads, triads, and oligomers, on SWCNTs, XII: 143–144 XVIII: 76–79 and electropolymerization of porphyrins on evaporated thin films — phthalo- carbon electrodes, XII: 138

cyanine: C60 single solar cells, and functionalization of metal surfaces by XVIII: 63–68 SAM, XII: 148–151 self-assembled film solar cells, hybrid porphyrin-mesoporous materials XVIII: 73–76 and, XII: 146–148 solution-cast porphyrin-based donor/ Langmuir-Blodgett (LB)/Langmuir- acceptor thin films, XVIII: 71 Schaefer (LS) films and, tandem solar cells, XVIII: 68 XII: 127–136. See also Langmuir- thin porphyrin or phthalocyanine films Blodgett (LB)/Langmuir-Schaefer

with C60 or PCBM, XVIII: 71–73 (LS) films organic polymer solar cells layer-by-layer (LBL) deposition and, copolymers, XVIII: 82–84 XII: 136–138 main-chain porphyrin polymers, polymeric matrices and, XII: 143, XVIII: 80–81 XII: 145–146 porphyrins or phthalocyanines Solid state properties, hybrid phthalocyanine- incorporated into polymer solar tetrabenzoporphyrin macrocycles cells, XVIII: 79–80 electrical measurements, XVI: 392–397 Solar energy mesophase properties, XVI: 383–389 combinatorial inorganic mixtures and, thin film formulations, XVI: 390–392 III: 487 X-ray structure analyses, XVI: 375–383 future outlook of charge transfers and, Solid-state molecular assemblies I: 206–208, I: 206–208 of acyclic anion receptors, VIII: 212–215. importance of BChl mimics for, I: 227 See also Pyrrole-based π-conjugated porphyrinoids and, III: 486 acyclic anion receptors rotaxanes/catenanes and, I: 178–179 of charge-by-charge assemblies of Solar hydrogen production, self-assembled receptor-anion complexes, porphyrin nanostructures and, VIII: 219–220 XI: 205–210 Solid-state DSSCs, porphyrins, XVIII: 102 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 269 FA

Cumulative Index to Volumes 1–25 269

Solubilities Solvent effects of natural chlorophylls, and impact of tert-butyl substituents into XI: 234–236 peripheral positions, III: 71–72 Solvent for electronic absorption maxima and Ni(II) metalation effect on molecule 5-monosubstituted tetrabenzoporphyrins, manipulation, I: 30 XIII: 103–104 transition-metal tetrabromophthalocyanines 5,10,15,20-tetrasubstituted and, III: 70 tetrabenzoporphyrins, XIII: 108–111 and trifluoromethyl groups in substituted meso-di-substituted tetrabenzoporphyrins, phthalocyanines, III: 72 XIII: 105–107 Soluble cytochromes, structure comparison meso-unsubstituted tetrabenzoporphyrins, with membrane-bound cytochrome, XIII: 96–102 V: 184–185 Solvent-assisted organized structures from Soluble guanylate cyclase (sGC), H-NOX amphiphilic receptors, pyrrole-based domains and, XV: 128–130 π-conjugated acyclic anion receptors and five-coordinate NO adduct of ferrous and, VIII: 224–225 sGC, XIV: 58–61 Solvents NO dependent mechanism of, XIV: 62–66 alkyl-/alkenyl-/alkynyl-substituted NO sensing overview and, XIV: 54 phthalocyanines spectra and, NO signaling and, V: 149–154 III: 199–216 overview, XIV: 54–55 alkylthio-/phenylthio-/phenylsulphonyl- protein structure of, XIV: 55–57 substituted phthalocyanines spectra S-nitrosocysteine activation of, XIV: 66 and, III: 255–260 spectroscopic characterization of ferrous amino-substituted phthalocyanines spectra sGC, XIV: 57–58 and, III: 231–234 two-step activation process of, XIV: 61–62 aryl-substituted phthalocyanines spectra Solute carrier family (SCF), and transport of and, III: 217–219 ALA out of mitochondria, XV: 10 for BChl mimics, I: 256–257 Solution-cast porphyrin-based donor/acceptor effects on electronic ground states of thin films, XVIII: 71 low-spin Fe(III) porphyrin Solution-cast solar cells, porphyrins and complexes, VII: 47–53 phthalocyanines used in thin film, fluoro-containing substituents of phthalo- XVIII: 72 cyanines spectra and, III: 225–226 Solution phase combinatorial porphyrin halogen-substituted phthalocyanines libraries spectra and, III: 220–224 cultured cells and, III: 524 hydroxy-/alkoxy-/aryloxy-substituted large libraries of, III: 506–508 phthalocyanines spectra and, method using cultured cell lines, III: 524 III: 235–254 mixed reactant approaches to, III: 489–509 impact on metalloporphyrin structures of, and modification of porphyrin macrocycle, VI: 18 III: 509–513 nitro-substituted phthalocyanines spectra overview of, III: 487–488 and, III: 227–230 Solution processing, and Pc incorporation into palladium-catalyzed C–C reactions and, OPV, X: 153–157 III: 370 Solvatochromic responses, phthalocyanine dialkynylene-bridged Zn(II) carboxylic acids/derivatives spectra and, bisporphyrin rotamers and, I: 25 III: 262–268 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 270 FA

270 Cumulative Index to Volumes 1–25

phosphonic acids/derivatives spectra building blocks bearing acetylene and, III: 277 substituent with bromosubstituted sulphonic acids spectra and, porphyrins, dimeric porphyrins by, III: 269–277 XXIII: 240–241 phthalocyanines with electron- copper–free palladium-catalyzed cross- donating/electron-withdrawing couplings between terminal alkynes substituents in same benzene ring and arylic iodides, XXIII: 246 spectra and, III: 278–279 copper-free Sonogashira reactions, reorganization energy and, I: 147–148 XXIII: 242 sulphamoyl-substituted phthalocyanines coupling of nickel and copper spectra and, III: 269–277 β-heptaethyl-β-bromoporphyrin trimethylsilyl-substituted phthalocyanines complexes with terminal alkynes, spectra and, III: 261 XXIII: 160 SONO, XV: 442 coupling of nickel β-bromo-meso- Sonogashira C–C coupling reactions, tetraphenylporphyrins with terminal III: 341–344, III: 348–351 alkynes, XXIII: 160 for chlorophyll-type pigments, I: 22 formation of porphyrinic enyne under coupling β-substituted porphyrins and, Sonogashira conditions, XXIII: 166 II: 227–228 N-fused carbazole–zinc porphyrin-free- and cyclic multi-porphyrin arrays (square base porphyrin triad, XXIII: 247 tetramers), I: 27–28 oligothiophene linkers connected to as efficient synthetic tool for complex meso-positions of porphyrins by systems, II: 227 C–C, C=C and C=C bonds, ethynyl groups coupled with XXIII: 250–251 trimethylsilylacetylene, I: 19–20 palladium-catalyzed coupling reaction formation of C–C and C-heteroatom between cationic porphyrins and through, II: 194 alkynes in aqueous medium, Glaser homocoupling side reaction and XXIII: 162 conditions for Cu-free, II: 230 palladium-catalyzed cross-coupling for pentamer with dithiaporphyrin core, reaction, XXIII: 248 I: 49, I: 54 reaction of iododeuteroporphyrin IX porphyrin oligomers with diarylethynyl dimethyl esters with alkynes, linkers and, I: 13 XXIII: 161 synthesis of β-alkynyl-linked porphyrin- reaction of 5-(p-iodophenyl)-10,15,20- [60]fullerene dyads using, II: 230 triphenylporphyrinatozinc with synthesis of β-alkynylporphyrins using, phenylacetylene and 3-butynol, II: 228 XXIII: 161 synthesis of carboxylated porphyrins using, synthesis of monomeric building blocks, II: 232 XXIII: 239 synthesis of cofacial bis[porphyrinato]- synthesis of square-shaped π-conjugated Zn(II) compounds using, II: 232, porphyrin tetramer, XXIII: 244 II: 233 trimeric porphyrins by, XXIII: 242–243 for trimers, I: 41, I: 43–44 Soret (B) bands, IV: 4, IV: 5, IX: 6–10 Sonogashira reaction, XXIII: 159–166, 5-monosubstituted tetrabenzoporphyrins, 235–252 XIII: 103–104 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 271 FA

Cumulative Index to Volumes 1–25 271

5,10,15,20-tetrasubstituted and curvature in Curie plot over tetrabenzoporphyrins, XIII: 108–111 temperature range of measurement, aminoporphyrins and, XIII: 227 VI: 75–80 bacteriochlorins and, XI: 241 empirical methods, VI: 80–82 calixarenes and, XIII: 180–181 g-tensor anisotropy and, VI: 83 chlorophyll and, XI: 226 resolution/assignment of, VI: 69–75 and electronic transitions resulting in Q/B Spectroanalytical/medicinal applications,

bands, XIV: 507–513 vitamin B12 derivatives for, meso-di-substituted tetrabenzoporphyrins, XXV: 84–85 XIII: 105–107 coordination chemistry of corrinoids, meso-unsubstituted tetrabenzoporphyrins, XXV: 85–86 XIII: 96–102 spectroscopic properties of corrinoids, π-skeletal effect in organic solvents and, XXV: 89–92 XI: 229–231 structure, constitution and nomenclature of tetrabenzoporphyrins/linear benzologs, of corrinoids, XXV: 86–88 XIII: 7 optical/colorimetric detection with See also B bands corrin-based chemosensors Soret absorption comparison with detection of cyanide freeze-quench EPR experiments and using porphyrins, XXV: 100–102 Compounds I/ES, V: 309 cyanide, XXV: 92–100 and rapid-scanning stopped-flow of sulfite, XXV: 102

P450cam Compound I, V: 306 vitamin B12 as carrier for targeted drug and unique properties of cytochrome P450, delivery XXV V: 300–301 metallic cytotoxins, XXV: 120–123 Soret band shift, octaethylporphyrin vs. organic cytotoxins, XXV: 118–120

tetraacenaphthoporphyrin and, II: 45, vitamin B12 for radioimaging and as carrier II: 47 for targeted drug delivery

Soret rotational strength, circular dichroism fluorescence labeling of vitamin B12, (CD) and, VII: 154–157, VII: 159 XXV: 115–118

Soret-band transitions functionalization of vitamin B12, XXV: and fully synthetic self-assembling BChl 105–107 mimic, I: 246–247, I: 249 molecular imaging, XXV: 103–105 H P/SWNT composites and, I: 196–197 radiolabeling of vitamin B : 57Co and 2 12 non-covalently linked hybrids (MP/C60 radioiodide, XXV: 107–110 β 99m -systems) and, I: 184 radiolabeling of vitamin B12: Tc and and porphyrin-fullerene held by π−π 111In, XXV: 110–115 interactions, I: 340 Spectroscopic data interpretations. See also SOUL/p22/HBP, heme sensor proteins and, Absorption XV: 428 and calculation of electronic structure for Space-resolved techniques of IR spectroscopy ground state geometry, XIV: 489–492

IR microscopy/imaging and, VII: 460–461 cd1 NIR and, XIV: 27–28 synchrotron light and, VII: 461 and electronic transitions resulting in Q/B Specialized Chls, XX: 3 bands, XIV: 507–513 Spectra. See Fluorescence spectra MOs for ZnCP and complexes from Spectra of porphyrins (Gouterman), XIV: 463 Gaussian checkpoint files, Spectral analysis XIV: 493–498 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 272 FA

272 Cumulative Index to Volumes 1–25

and need for observed properties and Spectroscopy. See also Infrared calculated parameters connection, spectroscopy/microscopy; Optically XIV: 486–487 active porphyrin systems and photophysical properties of aromatic and alkenyl/alkynyl substituents of rings with increasing π electrons, phthalocyanines, III: 35 XIV: 485–486 alkyl-/alkenyl-/alkynyl-substituted and predicted absorption spectra based on phthalocyanines, III: 199–216 TD-DFT and ZINDO/s methods, alkylthio-/phenylthio-/phenylsulphonyl- XIV: 514–515 substituted phthalocyanines, prototropic tautomer detection, III: 255–260 XIV: 483–485 and allosteric interaction of TDO, V: 90–92 and range of compounds to consider, amino-substituted phthalocyanines, XIV: 487–488 III: 231–234

TBP8Cz aryl-substituted phthalocyanines, and RR, XIV: 546–547 III: 217–219 complexes and XANES, XIV: 547 of Caldariomyces fumago chloroperoxidase and testing for accuracy in predicting split with peracetic acid (PA), V: 304 Q bands due to low symmetry, 13C NMR spectroscopy to determine XIV: 506–507 electronic structures, VII: 15–20 trends between calculated parameters and of cNOR/qNOR/qCuANOR, V: 133–135 observed properties, XIV: 515–519 cobalt hemoproteins and, V: 24–25 UV-vis-IR absorption spectra of porphyrins combinatorial chemistry of porphyrins and, and meso-meso-linked porphyrin III: 487 arrays, XIV: 483 to determine electronic structures (iron ZINDO/s energy calculations and electron porphyrin complexes), VII: 20–22 distributions, XIV: 499–504 effect of removal of symmetry on, III: 280, Spectroscopic properties and TD-DFT III: 282 calculations, porphyrinoids XXIII electrochemical impedance spectroscopy use of TD-DFT calculations (EIS), V: 255–256 HOMO–LUMO energy gap, XXIII: 297 EPR MCD spectra calculated, XXIII: 300 and NO properties, V: 124 molecular structures of Zn(II) study of rhTDO, V: 92, V: 94 complexes, XXIII: 299 study of rlDO/rhlDO, V: 92–93 optical spectroscopy of tetraphenylte- fluoro-containing substituents of traacenaphtho-porphyrins phthalocyanines, III: 225–226 (TPTANP), XXIII: 298 and general UV-vis spectra for Shelnutt’s approach, XXIII: 298 phthalocyanines, III: 198, Spectroscopic properties and TD-DFT III: 280–282 calculations, porphyrinoids, halogen-substituted phthalocyanines, XXIII: 285 III: 220–224 Gouterman’s 4-orbital Model, and hemin insertion into heme pocket, V: 6 XXIII: 285–287 history, V: 81 MCD spectroscopy, XXIII: 287–291 1H NMR spectroscopy to determine Michl’s perimeter model, XXIII: 291–296 electronic structures, VII: 12–15 use of TD-DFT calculations, hydroxy-/alkoxy-/aryloxy-substituted XXIII: 296–301 phthalocyanines, III: 235–254 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 273 FA

Cumulative Index to Volumes 1–25 273

and importance of optical propterties of trimethylsilyl-substituted phthalocyanines, Q-band, III: 283–289 III: 261 MCD for Yb/myoglobin heme pocket, V: 28 unique properties of cytochrome P450, and mechanism of fungal NOR, V: 147–148 V: 300–301 metallocene-appended porphyrins and, Spin crossover in Fe(III) porphyrins + + III: 441, III: 443–444 [Fe(MAzP)L2] and [Fe(OEP)L2] , and mixed reactant approaches to solution VII: 82–87 phase combinatorial porphyrin [Fe(OETPP)L ] + spin crossovers between 2 libraries, III: 489–490 S = 2 and S = 1/2, VII: 76–80 + + nitro-substituted phthalocyanines, [Fe(OMTPP)L2] and Fe(TBTXPL)L2 III: 227–230 and, VII: 80–82 orbital interactions to determine electronic general considerations, VII: 75–76 structures, VII: 7–11 in monoimidazole complexes, of P450cam reaction with meta- [Fe(OETPP)L] +, VII: 101–108 chloroperoxybenzoic acid, V: 307 [Fe(TMP)L] + and [Fe(TMTMP)L] +, phthalocyanine VII: 96–101 carboxylic acids/derivatives, general information, VII: 95–96 III: 262–268 between S = 3/2 and S = 5/2 and historical aspects, III: 198–199 monoaqua complexes, VII: 94–95 phosphonic acids/derivatives, III: 277 saddled porphyrins, VII: 91–94 sulphonic acids, III: 269–277 structural consequences of, VII: 87–91 and phthalocyanines with electron- Spin delocalization donating/electron-withdrawing axial ligand plane orientation and, substituents in same benzene ring, VI: 50–55 III: 278–279 mechanisms through chemical bonds, of porphyrins with enaminoketones, VI: 55–57 III: 456–457 metal ion and, VI: 39–41 of rabbit IDO, V: 82–83, V: 85, V: 87 porphyrin ring and, VI: 40, VI: 42–50 τ rapid-scanning stopped-flow studies of Spin relaxation times (T1e or s), nuclear, Cyp119 Compound I and, V: 313–314 VI: 34 of recombinant human IDO, V: 82–83, Spin state transitions of heme uptake, V: 87 XV: 373–375 resonance Raman spectra of Spin states. See also Bonding, metal ion/spin rhlDO, V: 94–97 state effects rhTDO, V: 97–103 axial ligand plane orientation and of rhodamine-phthalocyanine conjugates, delocalization, VI: 50–55 III: 91–92 delocalization and mechanisms through of rhTDP human, V: 87–90 chemical bonds, VI: 55–57 soluble guanylate cyclase and, V: 151–152 of iron porphyrins, VII: 5–6 sulphamoyl-substituted phthalocyanines, metal ion and delocalization, VI: 39–41 III: 269–277 porphyrin ring and delocalization, VI: 40, temperature and, VII: 5 VI: 42–50

of tetra-tert-butylphthalocyanine, spin-lattice relaxation times (T1), nuclear, III: 281–283 VI: 34–37 τ trends in. See Phthalocyanines spin relaxation times (T1e or s), nuclear, of trimethylsilylphthalonitrile, III: 42 VI: 34 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 274 FA

274 Cumulative Index to Volumes 1–25

spin–spin relaxation times (T2), nuclear, cell wall during bacterial heme uptake, VI: 38–39 XV: 359 Spinal cord injury, medical effects of lipoprotein network in heme uptake, water-soluble metalloporphyrins and, XV: 369 XI: 359–360 and heme uptake in gram-positive bacteria, Spin-coating technique, and Pc incorporation XV: 20 into OPV, X: 153 and metalloporphyrin inhibitors of heme

Spin-lattice relaxation times (T1), nuclear, uptake, XV: 389 VI: 34–37 Staphylococcus epidermidis, IV: 391

Spin–spin relaxation times (T2), nuclear, STAT-3 (signal transducer and activator of VI: 38–39 transcription 3), IV: 250, IV: 272–274, Spirillum itersonii, FECH activity and, XV: 54 IV: 314 Spiro intermediate, acidolytic scrambling of Static Light Scattering (SLS), porphyrinogen via, XXIII: 15 sulfonatocalixarenes and, XIII: 177–178 Spiro intermediates in porphyrinogen Stationary quenching, XII: 327–328 rearrangements, XXIII: 14–15 Staurosporine-induced neurotoxicity, medical Spiro-lactam inhibitor of UROS, XXV: 28 effects of water-soluble Spiro-MeOTAD, XVIII: 102 metalloporphyrins and, XI: 363–364 Spiro-pyrrolenine, XXV: 28 Stay-green related protein (SGR), XX: 231 Spirulina maxima, Spirulina pacifica, IV: 33 Steady state spectroscopy Spirulina sp., XI: 237 hexapyrrolic expanded porphyrins, Split-Soret cytochrome c (SSC) I: 515–517 3D structure of, 164 pentapyrrolic expanded porphyrins, in microorganisms capable of metabolizing I: 511–512 sulfate and other sulfur compounds, Steady-state kinetic mechanism of FECH, 166 XV: 87–90 spectra of, 163 Steady-state kinetics/uncoupling, in catalytic Square-planar palladium(II) complexes, cycle of cytochromes P450, V: 181–182 XVII: 41–42 Stealth particles of PDT agents, XII: 399 Square planar M(II) porphyrins/analogs, Stereochemical systematics for porphyrins and metal-sensitive bands, VII: 443 metalloporphyrins, XXIV: 2–12 Square wave voltammetry (SWV), and features of metalloporphyrin pyrene-substituted stereochemistry, XXIV: 12–19 dipyrrolylquinoxalines, VIII: 196–198 metalloporphyrin derivatives XXIV Squarylporphyrins, Stille C–C coupling lanthanide and actinide derivatives, reactions and, III: 346–347 XXIV: 125–126 S–S excitation and optical sensing, main group derivatives, XXIV: 117–125 XII: 329–330 porphyrin π–π interactions and π-radi- S-state (Kok) cycle, XXI: 9 cal complexes, XXIV: 102–116 Stacking. See π–π interactions stereochemistry of metal-free porphyrins Stannyl porphyrins, synthesis of, II: 215 XXIV Staphylococcus aureus, IV: 47, IV: 285–286, free-bases, XXIV: 126–133 IV: 388–389 porphyrin acids and related species, extracellular signaling mechanisms and, XXIV: 133–137 XV: 388 transition metal derivatives, XXIV: 19 and gram-positive d0 complexes, XXIV: 19–25 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 275 FA

Cumulative Index to Volumes 1–25 275

d1 complexes, XXIV: 25–26 Stille coupling XXIII d2 complexes, XXIV: 26–27 of meso-bromoporphyrin with trans-bis- d3 complexes, XXIV: 27–28 (tributylstannyl)ethene, XXIII: 234 d4 complexes, XXIV: 28–36 nickel porphyrin dimer with p-phenyl d5 complexes, XXIV: 36–38 linker prepared via, XXIII: 232 d6 complexes, XXIV: 38–41 porphyrin dimer with m-phenyl linker d7 complexes, XXIV: 41–44 prepared via, XXIII: 233 d8 complexes, XXIV: 44–50 porphyrin dimer with p-terphenyl linker d9 complexes, XXIV: 50–52 prepared via, XXIII: 233 d10 complexes, XXIV: 52–56 Stoichiometry. See also Reactions iron derivatives, XXIV: 56–88 and hemin insertion into heme pocket, V: 6 porphyrin nitrosyls and related iron species palladium-catalyzed C–C reactions and, with nitrogen oxide ligands, III: 372 XXIV: 89–102 steady-state kinetics/uncoupling in catalytic Stereoisomerism, XXIII: 5 cycle, V: 181–182 Stereoisomers, XXIII: 62–63 Strapped porphyrin and its atropisomer, Stereoselectively D-ring reduced chlorins XXIV: 257 (semisynthetic chlorophylls), Strapped porphyrin dimers, dihedral angle XI: 280–282 control and, I: 459–463 Stereoselectivity of FECH, and metal- Strapped porphyrins and forming catenanes ion-binding sites of FECH, XV: 75–76 with a bis-bipyridinium cyclophane, Stern-Volmer XXIV: 256

quenching constant (kSV), XI: 12 Strapped porphyrins, XXIII: 90, 97 relationship for oxygen sensors, Strati-bis-porphyrin, XXI: 41 XII: 164–165 synthesis, XXI: 42 Stern–Volmer approach/function, XXII: 140 Stratum corneum lipids liposomes (SCLL), Steroids, linkage and, I: 146 IV: 364–365 Stevens’ corrin synthesis concept, XXV: 294 Streptomyces nodosus, and heme biosynthesis Stevens’ isoxazole approach leading to corrins, of ALA, XV: 165 XXV: 293–297 Streptococcus pyogenes clockwise and counterclockwise strategies, and gram-positive cell wall during bacterial XXV: 294–295 heme uptake, XV: 359–360 counterclockwise synthesis of A/D- and gram-positive lipoprotein network in seco-corrin and its photochemical heme uptake, XV: 369 A–D cyclization, XXV: 295–297 and heme uptake in gram-positive bacteria, Stille coupling of dibromobacteriochlorin, XV: 20 XVII: 26–27 Streptomyces reticuli, extracellular signaling Stille coupling reaction mechanisms and, XV: 388 formation of C–C and C-heteroatom Stress-activated protein kinase/c-Jun through, II: 194 N-terminal kinase (SAPK/JNK), IV: 430 in functionalization of meso- Stroke, medical effects of water-soluble tetraarylporphyrins, II: 209 metalloporphyrins and, XI: 358–360 meso-bromoporphyrins with Stromal cell-derived receptor 2 (SDR2), bis(tributylstannyl)ethene, I: 19 XIX: 360 perylene-bisimide-centered porphyrin Stromules, and exchanging materials between tetramer and, I: 44, I: 47 plant organelles, XV: 36 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 276 FA

276 Cumulative Index to Volumes 1–25

Strongyloides, and heme transport in overall structure of IDO and rhlDO, helminths, XV: 24 V: 103–106 Structural modifications effect on properties of and proposed mechanism of dioxygenase porphyrinoids, XXIII: 284–285 reaction, V: 114–118 modifications to structure of porphyrin and structures of related enzymes (bacterial ligand, XXIII: 301–304 TDO), V: 108–109 antiaromatic 16 and 20 π-electron and structures of TDO from X. campestris, systems, XXIII: 358–364 V: 109–112 aza-substitution, XXIII: 304–308 Structure-activity relationship studies (SAR), chlorins and tetraazachlorins, IV: 251, IV: 294 XXIII: 308–312 Structure-function relationship of reconstituted core substitution, XXIII: 326–337 hemoproteins corroles and corrolazines, cobalt hemoproteins and, V: 24–25 XXIII: 338–341 fluorinated peripheral substituents and, fused ring expansion, XXIII: 312–320 V: 19 non-planar porphyrinoids, heme disorder and, V: 17–19 XXIII: 320–326 manganese hemoproteins and, V: 25–26 peripheral substitution, XXIII: 343–352 mixed-metal hybrid hemoproteins and, porphycenes, XXIII: 341–343 V: 27 ring-contracted porphyrinoids, non-propionate substituted hemes and, XXIII: 352–357 V: 21–22 spectroscopic properties and TD-DFT other metal hemoproteins and, V: 27–28 calculations, XXIII: 285 and other peripheral substituents, V: 22–23 Gouterman’s 4-orbital Model, and propionate positions, V: 19–21 XXIII: 285–287 and replacement of heme with other metal MCD spectroscopy, XXIII: 287–291 (general information), V: 24 Michl’s perimeter model, and role of 2-/4-substituents in heme XXIII: 291–296 framework, V: 7–12 use of TD-DFT calculations, and role of 6-/7-propionate side chains in XXIII: 296–301 heme framework, V: 12–17 Structural modification in Pcs and OPV by zinc hemoproteins and, V: 26–27 vapor deposition, X: 148–149 Structure-function relationships, combinatorial Structural optimization of Pcs, dye-sensitized chemistry of porphyrins and, solar cells and, X: 159–166 III: 487–488 Structure of FECH. See Ferrochelatase Structures (FECH) porphyrins/chlorins/bacteriochlorins, Structure, of porphyrin isomers, VII: 365–380. XI: 227 See also Porphyrin isomers protoporphyrin, XI: 225–226 Structure/reaction mechanism of heme Styrene maleic acid copolymer (SMA), dioxygenases IV: 382–384 bacterial TDO compared with IDO Styrene, rhodium-catalyzed cyclopropanation structure, V: 112–114 of, II: 320; See also Epoxidation and heme environment/binding mode of Styrene–maleic acid copolymer micelles L-Trp in xcTDP, V: 111–113 containing ZnPP (SMA-ZnPpIX), heme environment of rhlDO, V: 105–107 IV: 382–384 mutagenesis study and rhlDO, V: 107–108 Styrylporphyrins, synthesis of, XXIII: 167 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 277 FA

Cumulative Index to Volumes 1–25 277

Sub-/super-Pcs, UV-vis absorption data, octamethyl-1,1′-bipyrrole, XVII: 276–280 IX: 397–414 Substituted calix[n]pyrroles, XVIII: 145–146 numbering system used in absorption Substituted hybrids synthesis employing database for, IX: 100–101 carboxylic acids, XVI: 345 Subarachnoid hemorrhage, medical effects of Substituted oligopyrroles, XVII: 280–285 water-soluble metalloporphyrins and, N-methylated oligomers, XVII: 280 XI: 360 N-substituted oligopyrroles, XVII: 277 Subcellular targeting. See Cell organelle oligopyrroles, XVII: 283 targeting Substituted porphyrins, generative algorithm Subnaphthalocyanine for enumeration of, XXIII: 41 SubNcCl, and Pc incorporation into OPV, applications of PorphyrinViLiGe, X: 154 XXIII: 47–57 subPc, IV: 59–61, IV: 63, IV: 66, IV: 200 PorphyrinViLiGe program, XXIII: 41–47 Subnaphthalocyanines (subNcs), XXIII: Substituted pyrroles 426–427 alkyl chain of 3-alkylthiopyrroles, diastereomers and enantiomers of XVII: 265 1,2-subNcs, XXIII: 427 conductive polypyrrole films, 3,4- electronic absorption, MCD and CD dimethoxypyrroles forming highly, spectra, XXIII: 427 XVII: 265 Subphthalocyanines (SubPc), XXIII: 425 3,4-difluoropyrrole, XVII: 266 with C3 symmetry obtained from 5-tert- dimerization of carbazole radical cation, butyl-3-nitrophthalonitrile and XVII: 270 electronic absorption and CD spectra fully substituted pyrroles, XVII: 270–275 of two enantiomers of C3 symmetry, dimerization/electrodimerization of XXIII: 426 9-phenylcarbazole radical cation, α-Substituted phthalocyanines, XXIII: 19, XVII: 272 55 electrooxidation of tetrahydrocar- β-Substituted cofacial porphyrins, XXI: 68 bazoles, XVII: 273 β-Substituted phthalocyanines, XXIII: 19, mixed-substituted pyrroles, XVII: 266–269 55 polymerization of indoles, XVII: ββ-Substituted porphyrazines, XXIII: 19, 266–267 55 “trimer” of indole, XVII: 267 β-Substituted porphyrins, XXIII: 19 1,2,5-substituted pyrroles, anodic symmetry point groups of, XXIII: 24 methoxylation of, 307 Subphthalocyanine-fullerene, donor-acceptor α-substituted pyrroles, XVII: 261–264 system of, I: 322–325 charge distribution, XVII: 263 Subphthalocyanines, tribenzosubporphyrins 2,5-di-tert-butylpyrrole, reversible CV and corresponding, II: 3–4 wave, XVII: 262 Subporphyrin, XVI: 25, XVI: 305 β-substituted pyrroles, XVII: 264–265 Subpyriporphyrin, II: 128, II: 129, XVI: 305 Substituted tetraarylporphyrins in DSSCs, shortest N-HN hydrogen bond and, II: 128 XVIII: 86 Substituted bipyrroles, XVII: 276–280 Substituted tetrapyrrole architectures, isomers electrooxidation of, XVII: 278 and libraries of other, XXIII: 57 α-methylated bipyrroles, XVII: 276–277 atropisomers, XXIII: 67–68 N,N-dimethyl-3,3′-biindole, XVII: 279 chlorophylls, XXIII: 70–72 N-substituted bipyrroles, XVII: 277 core-modified macrocycles, XXIII: 57–58 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 278 FA

278 Cumulative Index to Volumes 1–25

dihydroporphyrins, XXIII: 68–70 retrospective on isomer enumeration in isotopically substituted macrocycles, classical period, XXIII: 17 XXIII: 58–59 uroporphyrinogen isomers, XXIII: 7–11 phthalocyanine-forming reactions, mathematical enumeration of β-substituted XXIII: 59–61 tetrapyrrole isomers sandwich complexes, XXIII: 61–67 applications with Fischer’s restrictions, Substituted tetrapyrrole isomers XXIII XXIII: 29–34 distinctions among, XXIII: 20–23 distinctions among substituted coincidental mass degeneracy, tetrapyrrole isomers, XXIII: 22–23 XXIII: 20–23 distinct collocate sets with homo- and lifting Fischer restriction, XXIII: 34–35 hetero-substituted pyrroles, methods to assess number of XXIII: 22 substituted tetrapyrrole isomers, distinct locations of non-identical XXIII: 25–26 homo-substituted pyrroles, molecular shape, XXIII: 17–19 XXIII: 21 Pólya’s theorem, XXIII: 26–29 distinct orientations of identical symmetry point groups of substituted hetero-substituted pyrroles, tetrapyrrole macrocycles, XXIII: 21 XXIII: 23–25 methods to assess number of, mathematical enumeration of meso- XXIII: 25–26 substituted porphyrin isomers, Substituted tetrapyrrole macrocycles XXIII XXIII: 35 symmetry point groups of, XXIII: 23–25 application of Pólya’s theorem, Substituted tetrapyrrole macrocycles, XXIII: 38–41 enumeration of isomers of, XXIII: 3–5 binomial treatment, XXIII: 36–38 generative algorithm for enumeration of Substitution reactions, preparation of substituted porphyrins, XXIII: 41 phthalocyanines with substituents applications of PorphyrinViLiGe, connected to core via, III: 45, III: 61 XXIII: 47–57 Substrate binding sites, and heme-propionate PorphyrinViLiGe program, XXIII: 41–47 side chains, V: 44–48 isomers and libraries of other substituted Substrate inhibition/selectivity, of FECH, tetrapyrrole architectures, XXIII: 57 XV: 89, XV: 91 atropisomers, XXIII: 67–68 Substrate specificity chlorophylls, XXIII: 70–72 and direct substrate channel to enzyme site, core-modified macrocycles, XV: 87 XXIII: 57–58 of metal ions, XV: 85–87 dihydroporphyrins, XXIII: 68–70 of porphyrins, XV: 84–85 isotopically substituted macrocycles, Substrates XXIII: 58–59 biological, X: 87 phthalocyanine-forming reactions, and C=C epoxidation by Compound I of XXIII: 59–61 CYP450, X: 127–129 sandwich complexes, XXIII: 61–67 DFT-calculated reaction enthalpies/BDE isomers in classical period of tetrapyrrole values of, X: 123–124 chemistry Succinimidyl diazoacetate and isomerization processes, XXIII: 11–17 cyclopropanation, X: 60–61 protoporphyrin isomers, XXIII: 5–7 Succinyl-CoA, XXV: 6 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 279 FA

Cumulative Index to Volumes 1–25 279

Sugar-based nitrones, XVII: 82–85 Sulfate-reducing bacteria (SRB), XIX: 141 bacteriochlorin isomers, XVII: 85 Bfr orthologs in, XIX: 154 glycoconjugated isoxazolidine-fused chlorins/ classification of, XIX: 142 bacteriochlorins, XVII: 83–84 enzymes involved in sulfate respiration, Sugar–photosensitizer conjugates, IV: 128–140 multiple hydrogenases, XIX: 143 benzochlorin–carbohydrate conjugates, history of, XIX: 142 IV: 131–134, IV: 135, IV: 136 membrane-bound electron transfer benzotriazole (BOP) coupling method, complexes of, XIX: 205 IV: 133–134, IV: 136 nomenclature of membrane complexes in, chlorin–carbohydrate conjugates, XIX: 206 IV: 32–33, IV: 129, IV: 267–269, physiological activity of, XIX: 143 IV: 352 presence, XIX: 144 conjugation conditions, summary, reduction of sulfate to sulfide, XIX: 144 IV: 177–179 reduction steps involved in sulfate galectin binding, IV: 32, IV: 265–270, reduction by, XIX: 143 IV: 351 research on, XIX: 144

HPPH–carbohydrate conjugates, Sulfhydryl boron hydride (Na2B12H11SH or IV: 270–272, IV: 273–274 BSH), IV: 192 2,3,7,8,12,13,17,18-octaethylporphyrin Sulfinyl-substituted phthalocyanines, as (OEP), IV: 131, IV: 134, IV: 225, electron-withdrawing groups of IV: 227 phthalocyanines, III: 92–95 ortho and para isomers, effect on Sulfite, XXV: 102 conjugates, IV: 129, IV: 131 detection with diaqua-cobester to pentafluorophenylporphyrins, IV: 135–138, sulfite-cobester, XXV: 103 IV: 139 Sulfoacid esters, as phthalocyanine sulfoacids porphyrin–carbohydrate conjugates, and derivatives, III: 83–92 formation, IV: 129 Sulfo-m-maleimidobenzoyl-N- protoporphyrin-IX (PPIX) sugar-substituted hydroxysuccinimide ester (SMBS), derivatives, IV: 130, IV: 132 IV: 165–166 purpurinimide–sugar conjugates, Sulfonated derivatives IV: 134–135, IV: 136, IV: 267, and aggregation behavior in water soluble IV: 268–269, IV: 351–352 Pcs, VII: 279–280 Φ pyropheophorbide a–sugar conjugates, ∆ and MPc(SO3)mix, VII: 318 Φ IV: 274 ∆ and MPc(SO3)n, VII: 318–319 Φ silicon phthalocyanine–sugar conjugates, F and Mpc(SO3)mix, VII: 292 Φ IV: 138, IV: 140 F and Mpc(SO3)n, VII: 292, VII: 313 Φ τ targeted photosensitizers, IV: 32, ( T)/( T) and MPc(SO3)mix, VII: 315–316 Φ τ IV: 264–274, IV: 275 ( T)/( T) and MPc(SO3)n, VII: 316 triglycosylated 5,10,15,20- Sulfonated Halterman metalloporphyrins (Fe, tetraphenylporphyrins, IV: 130–131, Ru), XXI: 383 IV: 133 Sulfonated meso-tetraphenylporphyrins See also Conjugates (TPPS), IV: 14–15, IV: 345 Sulfamides, as phthalocyanine sulfoacids and Sulfonatocalixarenes, XIII: 173–178 derivatives, III: 83–92 Sulfones, as phthalocyanine sulfoacids and Sulfanylation/selenation (C–S/C–Se coupling), derivatives, III: 83–92 β-sulfanylation/selenation (C–S/C–Se Sulfonylation. C–S Bond Formation, coupling), III: 415–417 XXIII: 200–206 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 280 FA

280 Cumulative Index to Volumes 1–25

Sulfolenopyrroles/sulfolenoporphyrins, proteobacterial non-perchlorate annelation of aromatic rings by, respiring bacteria (NPRB), XIII: 79–85 XIX: 249 Sulfolobus solfataricus, rapid-scanning structures for Clds, XIX: 249 stopped-flow studies of Cyp119 heme binding domains and active sites — Compound I and, V: 313 D- and E-families, XIX: 254 Sulfoxidation active sites of crystallographically of chiral basket handle porphyrins, characterized, XIX: 254 X: 77–78 alignment of taxonomically diverse DyP of chiral picket fence porphyrins, C–H proteins, XIX: 260 bond functionalization and, X: 74 alignments of diverse E-family proteins, by Cpd I of CYP450, X: 129–131 XIX: 258 Sulfoxidation, XXI: 382–384 Asp–Arg pair/His–Arg pair, XIX: 255 albumin-conjugated corrole metal Cld, DyP, and EfeB family heme complexes, XXI: 385 environments, XIX: 255 Sulfur-containing compounds, photocatalytic distal Asp, XIX: 256 reactions of, VII: 342–343 heme orientation, XIX: 256–258 Sulphamoyl-substituted phthalocyanines hemes of D. aromatica Cld and DyP, spectra, III: 269–277 XIX: 257 SUMT proteins, XIX: 120, XIX: 147–148 proximal and distal pockets, Superfamily members, biochemistry of XIX: 254–256 C-family: dioxygen-generating chlorite sequence and structure in E-family, dismutases, XIX: 260–271 XIX: 259 D-family: dye decoloring peroxidases, sequence conservation, XIX: 258 XIX: 271–275 sequence and structural relationships, E-family: tat-transport and involvement in XIX: 243–258 Fe metabolism, XIX: 275–277 taxonomic origins and gene organization, Superfamily members, sequences, structures, XIX: 238–243 and genetics of C and D subfamilies of DyPs, XIX: 243 domain and tertiary structures, C-family proteins, XIX: 240–241 XIX: 243–245 D- and E-family proteins, chlorite dismutase from Dechloromonas XIX: 241–243 aromatica, XIX: 243 phylogenetic tree illustrating oligomerization states and monomer relationships between interfaces of CDE proteins, taxonomically diverse Cld, DyP, XIX: 244 and EfeB-family proteins, heme binding domains and active sites — XIX: 238–239 C-family, XIX: 245–253 structures for CDE proteins, XIX: 242 • − active site of nitrite-bound D. aromatica Superoxide anion radical ( O2 ), IV: 6, IV: 47, Cld, XIX: 246 IV: 412–413 active site views of crystallographically Superoxide dismutase mimics, XXI: 400 characterized apo-C family Superoxide dismutases (SODs) mimics proteins, XIX: 251 and anion radical as by-product, XI: 304 phylogenetically diverse C-family β-substituted isomeric Mn(III) N- proteins, XIX: 250 alkylpyridylporphyrins, XI: 319–321 proteobacterial C-family proteins, Mn(III) N,N ′-dialkylimidazolylporphyrins, alignment, XIX: 246–249 XI: 321 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 281 FA

Cumulative Index to Volumes 1–25 281

Mn(III) N,N ′-dialkylpyrami- Supramolecular chemistry dazolylporphyrins, XI: 321 antenna-reaction center mimicry, ortho cationic Fe(III) N-substituted I: 391–397 pyridylporphyrins, XI: 318–319 chirality for BChls and, I: 232, I: 234 ortho cationic Mn(III) and chlorophyll aggregates, I: 100, I: 103 N-alkylpyridylporphyrins, and chlorosomal bacteriochlorophylls, XI: 310–317 I: 228–231 ortho cationic oxygen-derivatized cofacial porphyrin dimers/fullerene and, porphyrins, XI: 317–318 I: 389–391 and E. coli model, XI: 305 ethynyl-/1,3-butadiynyl-bridged multi- para/meta Mn(III) porphyrin arrays and, I: 18 N-alkylpyridylporphyrins, metallotetrapyrrole-fullerene dyads and, XI: 321–323 I: 313–316 physicochemical properties of, non-covalently linked hybrids and, XI: 311–314 I: 168–169, I: 171, I: 185–186 and protein engineering application, V: 218 probing distance/orientation effects, and reactions with reactive species (general I: 362–363 overview), XI: 328–329 of pyrrole-based π-conjugated acyclic reactivity/targets of, XI: 306–307 anion receptors. See Pyrrole-based sodAsodB E. coli screening for mimics of, π-conjugated acyclic anion receptors XI: 307–308 SAXS/SANS for, I: 244–245 and sources of superoxide in E. coli, self-assembled triads via metal-ligand XI: 305–306 coordination, I: 363–368 and thermodynamic effects of (Mn self-assembling metalloporphyrins and, porphyrin-based), XI: 308–309 I: 91–93, I: 97, I: 100 Superoxide, electropolymerized porphyrin self-sorting systems from meso-meso- films as electrochemical sensors for, linked diporphyrins and, I: 104 XII: 284–286 triads for charge stabilization, I: 377–384 Supersonic jet studies, and coherent double two-point bound porphyrin-fullerene hydrogen tunneling in isolated conjugates molecules, VII: 411–416 cation-crown ether and, I: 385–389 Superphthalocyanines, XVII: 179 H-bonding and, I: 369–377 Superstructured porphyrin, metalation of, π−π interaction and, I: 368–369 XXII: 263 Supramolecular chemistry of Superstructured porphyrins, XXI: 12–32 crown-phthalocyanines, XXIV: 323

H2O2 dismutation chemistry, XXI: 32 cation-induced aggregation, oxygen reduction reaction (ORR) XXIV: 330–377 chemistry, XXI: 23–32 AFM images of supramolecular synthesis and structure, XXI: 12–23 assemblies, formed by

water-soluble derivatives, XXI: 20–21 Lu[(15C5)4Pc]2 in presence of Supramolecular assemblies KSCN on silica surfaces, bis(arylimino)isoindolines in dendrimers, XXIV: 366 VIII: 478–482 aggregation of heteroleptic sandwich tetrapyrroles in, VIII: 483–485 rare earth element tripyrrin-/bai-based coordination polymers crown-phthalocyaninates, and, VIII: 470–478 XXIV: 354–360 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 282 FA

282 Cumulative Index to Volumes 1–25

aggregation of homoleptic eclipsed (2+2) tetramer, XXIV: 357 double-decker rare earth element energy balance of intra- vs. inter- crown-phthalocyaninates, XXIV: molecular binding, XXIV: 373 361–373 exciton band energy diagram for aggregation of low-symmetry crown- molecular dimers, XXIV: 331

substituted phthalocyanines, extraction of MOPic by Lu[(15C5)4Pc]2, XXIV: 350–354 XXIV: 362

alkali metal cations by Ln[(15C5)4Pc]2, heterodimer, formed by H2[(18C6)4Pc]

intra-molecular binding of, and Co[(H3NCH2)4Pc], XXIV: 371 XXIV: 344 anchor heteroleptic double-decker heterodimers containing complex, XXIV: 365 crown-substituted Pc units, cation-crown phthalocyanine XXIV: 353 complexes, anion intercalation in host-guest interactions between mono- stacks of, XXIV: 337 crown-substituted phthalocyanine

complexes of Co[(15C5)4Pc] with host and photoactive potassium NaSCN and KSCN, UV-vis and salts, XXIV: 354 IR spectra of, XXIV: 338 influence of anion on cation-induced cooperative and non-cooperative aggregation of crown- mechanisms of cation-induced phthalocyanines, XXIV: 337–343

aggregation of Lu[(15C5)4Pc], isomeric complex, (Pc)Ln-[(15C5)4Pc]- XXIV: 367 Ln(Pc), XXIV: 361 of crown-phthalocyanine, XXIV: 332 KSCN interacting with ruthenium 24-crown-8-substituted phthalocyanine complex, XXIV: 340

and dialkylammonium cation, low-symmetry C60-CRPc conjugate with XXIV: 345 alkali metals acetates, XXIV: 352 15-crown-5-substituted tribenzote- low-symmetry copper(II)crown-

traazachlorin-C60, supramolecular phthalocyaninates, spectrophoto- assemblies formed by, XXIV: metric titration of, XXIV: 351 353 low symmetry phthalocyanines, 15-crown-5-substituted tribenzote- XXIV: 351

traazachlorin-C60 conjugate, lutetium bisphthalocyaninates, spectrophotometric titration of, spectrophotometric titration of, XXIV: 353 XXIV: 368

Cu[(15C5)4Pc] in ESR spectra of, mixed LB film, composed of XXIV: 334 crown-phthalocyanine host,

dimerization of H2[(15C5)4Pc] and its XXIV: 355 Zn complex, XXIV: 336 molecular components in dyad, built of 4-pyridyl-containing methanol-induced dimer of

C60-derivative and Zn tetra-(tert- [(15C5)4Pc]Lu(Pc), XXIV: 358

butyl)phthalocyaninate upon monomer [(15C)4Pc]Lu(Pc) in

photoexcitation, reversible CHCl3, X-Band ESR spectra of, breakup of, XXIV: 347 XXIV: 356 eclipsed dimer, formed by monomers and supramolecular dimers,

M[(15C5)4Pc] in the presence of electronic absorption data for, potassium cations, XXIV: 334 XXIV: 358 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 283 FA

Cumulative Index to Volumes 1–25 283

nonlinear quenching of Zn[(B24C8)- supramolecular assembly, examples,

(OctO)6Pc], XXIV: 344 XXIV: 373–377 photosynthetic reaction center, supramolecular assembly, formed by

biomimetic model of, XXIV: 347 [(15C5)4Pc]Ru(CO)(MeOH) in “pivot-joint” dimers, XXIV: 360 presence of NaSCN and KSCN, “pivot-joint” supramolecular assembly, XXIV: 341 proposed structure of, XXIV: 359 supramolecular dyad and tetrad formed

proposed brickwall-like structure of by ditopic C60-containing ligand supramolecular assembly, and Zn(II) crown- XXIV: 339 phthalocyaninates, XXIV: 348 reversible supramolecular assembly symmetrical crown-substituted

formed by Zn2[(24C8)-(BuO)12Pc2] phthalocyanines, XXIV: 331–337 and methanofullerene, bearing Tb(III) complex, XXIV: 369

dialkylammonium group, Tm[(15C5)4Pc]2 with KBPh4, XXIV: 346 spectrophotometric titration of, rod-like structure of supramolecular XXIV: 370 aggregates formed by transition dipoles separation, XXIV: 332

Lu[(15C5)4Pc]2, XXIV: 364 West-Pearce plots, XXIV: 335 solvent-dependent interaction of West-Pearce analysis of spectrophoto-

[(15C5)4Pc]Al(OH) with NaOH metric titration data obtained for

and NaF, XXIV: 342 [(15C5)4Pc]Eu(Pc), mechanism spectrophotometric titration data, of dimerization was studied by, XXIV: 352 XXIV: 359 spectrophotometric titration of cation-induced aggregation on monomeric

[(15C5)4Pc]La(An4Por), and dimeric M[(15C5)4Pc], UV-vis XXIV: 360 and MCD spectra of, XXIV: 332 spectrophotometric titration of concentration and solvent-induced

[(15C5)4Pc]La(Pc) in CHCl3, aggregation, XXIV: 323–330

XXIV: 356 AFM image of [(15C5)4Pc]-

spectrophotometric titration of Ru(DABCO)2, XXIV: 328

Ln[(15C5)4Pc]2 in chloroform with electron microscopy images of chiral KBr in acetonitrile, XXIV: 372 assemblies, formed by spectrophotometric titration of phthalocyanine derivatives,

Lu[(15C5)4Pc]2 in chloroform XXIV: 327 with KOPic in methanol, gel of tetrakis-(4′,5′-didecoxy-benzo- XXIV: 363 18-crown-6)-phthalocyanine, spectrophotometric titration of XXIV: 325

Lu[(15C5)4Pc]2 with various self-assembly of crown-phthalocyanines alkali metal picrates, XXIV: 363 into nano- and micro-structures Stern–Volmer plots, XXIV: 336 in solution, XXIV: 324–330 structures of assemblies, formed by spectrophotometric titration of

Zn[(18C6)4Pc] and ammonium Co[(15C5)4Pc], XXIV: 324

derivatives of C60, XXIV: 349 TEM images of gelated state of supramolecular assemblies of crown- tetra-thia-fulvalene-substituted phthalocyanines and ammonium CRPc showing, XXIV: 326 cations, XXIV: 343–350 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 284 FA

284 Cumulative Index to Volumes 1–25

TEM (platinum shadowing) of gels TPP derivatives and, X: 253–256 from tetra-18-crown-6-phthalo- overview, X: 249–253 cyanine, bearing peripheral chiral sequential immobilization of macrocycle chains, XXIV: 326 click coupling, X: 265–267 tetrachloroethane solution of coordination bond coupling,

[(15C5)4Pc]Ru(EIN), XXIV: 329 X: 264–265 Supramolecular chlorophyll assemblies for Surface functionalization of silicon for artificial photosynthesis, XX: 46–48 electronics energy and electron transfer in covalent overview, X: 267–272 light-harvesting arrays, XX: 82–89 sequential grafting and, X: 276–278 energy transfer in heterogeneous and Si–C bonding of macrocycle, chlorophyll dyads, XX: 78–81 X: 274–276 photophysics of donor-bridge- acceptor and Si–O bonding of macrocycle, systems, XX: 64–78 X: 272–274 photophysics of special pair/chlorophyll Surface/macrocycle linker modulation, direct dimer mimics, XX: 48–63 immobilization of macrocycle (complex self-assembled circular light-harvesting porphyrin system immobilization) and, mimics, XX: 89–92 X: 256–259 self-assembled rod-like chlorosome Surface/macrocycle multi-linkage mimics, XX: 93–94 tripodal anchoring groups and, X: 259–260 role of 3-position in self-assembly, two or four S-containing meso substituents XX: 98–100 and, X: 259 role of 13-position in self-assembly, Surface-enhanced resonance Raman scattering XX: 94–95 (SSERS), XII: 364–365 role of 17-position in self-assembly, metal-porphyrin interaction in, XX: 95–98 XII: 364–365 Supramolecular complex, XVIII: 155–156, Surfactants, IV: 82, IV: 306–307, IV: 364 XVIII: 196 Survivin expression following PDT, Supramolecules with calix[n]pyrroles, IV: 438–439 XVIII: 150 Suzuki cross–coupling reaction, Supramolecular donor-acceptor hybrid, XXIII: 134–159 electropolymerized zinc porphyrin with allyl–substituted porphyrins via fullerene, XII: 274–278 bromoporphyrins and allylboronic Supramolecular gels (solvent-assisted), acid pinacol ester, XXIII: 151 pyrrole-based π-conjugated acyclic 1,3- and 1,4-phenylene-bridged anion receptors and, VIII: 219–224 subporphyrin-porphyrin dyad, triad Surface acoustic wave (SAW), mass and tetrad, XXIII: 153 transducers and, XII: 159–160 to β-arylporphyrins, XXIII: 135 Surface functionalization of gold for biphenyl-linked porphyrin dyad, electronics XXIII: 231 direct immobilization of macrocycle β-meso-linked porphyrin dimer using complex porphyrin system Adler–Longo condensation of immobilization and, X: 260–263 porphyrin–arylaldehyde prepared by, modulation of surface/macrocycle linker XXIII: 229 and, X: 256–259 with boronic acids, reaction of multi-linkage of surface/macrocycle octa-β-bromo-tetra-meso- and, X: 259–260 mesitylporphyrin, XXIII: 135 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 285 FA

Cumulative Index to Volumes 1–25 285

for construction of porphyrin trimer starting materials for reaction of potassium modelling photosynthetic organotrifluoroborates with donor-acceptor systems, XXIII: 227 porphyrins, XXIII: 149 conversion of allylporphyrins into unsymmetrically substituted meso- α,β-unsaturated formylporphyrins, phenylporphyrins, XXIII: 146–147 XXIII: 151 Suzuki cross-coupling, XXI: 118 cyano derivatives formed by reaction of Suzuki–Miyaura reaction between potassium organotrifluoroborates β-bromoarylporphyrins and with porphyrins, XXIII: 149 4-hydroxy-3, 5-dimethylphenylboronic dodecaarylporphyrins using, XXIII: 139 acid pinacol ester, XXIII: B formation of dimeric metalloporphyrin by, Suzuki-Miyaura coupling reactions XXIII: 137 metal-bridged porphyrin arrays and, intramolecular cyclization product, I: 117–118 XXIII: 155 for trimers, I: 41, I: 43–44 meso-meso-linked bisporphyrin from Suzuki–Miyaura cross-coupling reaction, 5-iodo-10,15,20-tris(4-methylphenyl) non-aromatic porphyrinoid synthesis porphyrinatonickel(II), XXIII: 150 with pyridine subunits using, XVI: 197 meso-terphenyl- and quaterphenyl-linked Suzuki reaction approach towards target triad porphyrin dyads, XXIII: 232 systems, XXIII: 226 N,N ′–dimethylaniline-bearing 5,15-bis-(9- Suzuki reaction, III: 336–341, III: 379 anthracenyl)porphyrins, XXIII: 154 formation of C–C and C-heteroatom palladium catalyzed pyridyl and through, II: 194 pyridimium substituted porphyrin, formation of oligophenylene-diporphyrins XXIII: 152 and, II: 225 of porphyrin dimethyl esters with boronic in functionalization of meso- ester and boronic acids, tetraarylporphyrins, II: 209 XXIII: 136–137 21-functionalized NFPs and, II: 341, porphyrins starting from carborane II: 342 functionalized pyrroles via, in synthesis of XXIII: 156 β-carboranylated porphyrins, II: 220 p-phenylene linked porphyrin dimer, mixed antipodal β-octasubstituted XXIII: 230 porphyrins using, II: 216–217 p-phenylene linked porphyrin trimer, mono-, di- and tri-benzoporphyrins, XXIII: 230 II: 219–220 reaction of potassium Suzuki/Stille coupling, XXIII: 218–235 organotrifluoroborates with β,β linked bisporphyrins, XXIII: 219 5-bromo-10,15,20-tris-(4- β-meso-linked porphyrin dimer using methylphenyl)porphyrin, XXIII: 149 Suzuki cross-coupling of porphyrin reaction with oct-1-en-3-one, α,β- boronate and β-bromoporphyrin, unsaturated ketone, affording two XXIII: 228 saturated products, XXIII: 159 C–C connected phthalocyanine-porphyrin results of reaction of potassium (Pc–Por) heterodyads and Pc-Por-Pc organotrifluoroborates with heterotriads, XXIII: 220–221 5-bromo-10,15,20-tris-(4- cofacial bisporphyrins linked by xanthene methylphenyl) porphyrin, and dibenzofuran bridges, XXIII: 150 XXIII: 225 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 286 FA

286 Cumulative Index to Volumes 1–25

combination of Stille and Wittig–Horner complexes of rare-earth metals, for preparation of polyenesubstituted XXIV: 295–322 bis-porphyrin incorporating heteroleptic sandwich phthalocyaninato- bipyridine moiety, XXIII: 234 crown-phthalocyaninates, 2,6-pyridylene–bridged β-to-β porphyrin XXIV: 308–318 nanorings through cross-coupling, heteroleptic sandwich porphyrinato- XXIII: 224 crown-phthalocyaninates, “Swallowtail” bacteriochlorins, XVII: 21, 23 XXIV: 319–322 Swiss Light Source, VII: 441 homoleptic complexes, XXIV: 296–307 Symmetry Synthesis of linearly extended porphyrins. effect of removal on phthalocyanine See Linearly extended porphyrins spectra, III: 280, III: 282 Synthesis of substituted phthalocyanines. low-symmetry phthalocyanines and See Phthalocyanines Q-band, III: 285–286 Synthesis/properties of boron complexes of symmetric push-pull phthalocyanines, dipyrrolyldiketones, pyrrole-based III: 190–198 π-conjugated acyclic anion receptors Symmetry-adapted cluster-configuration and, VIII: 205–211 interaction method (SAC-CI), and Synthetic analogs of chlorophyll. porphycene excited states, VII: 397 See Photochemistry of chlorophylls and Symphysodon aequifasciata, hemopexin and, synthetic analogs XV: 232–233 Synthetic applications for organometallic C–C Syn/anti ligation, I: 234–235 coupling reactions (porphyrins), Synchrotron radiation, VII: 441, III: 334–335 VII: 459–460 Synthetic chlorophylls, XI: 282–284. See also Synechococcus elongatus, XIII: 263–264 Semisynthetic chlorophylls Synechocystis sp., and bacterial NOR, V: 132 Synthetic dimeric porphyrins without optically Synechocystis, KatGs from, VI: 390–394, active substituents, VII: 208–219 VI: 427 Synthetic heme systems Syntheses of multiporphyrin species in CD spectra/absorption aqueous solution. See Noncovalent for peptide-sandwiched mesoheme, syntheses of multiporphyrin species in VII: 168 aqueous solution for water-soluble porphyrin at different Synthesis and properties of crown-substituted pHs, VII: 165–167 phthalocyanines, XXIV: 276–277 with cobalt/iron, VII: 168–171 complexes of p- and d-metals, effects of NaCl on absorption/CD spectra XXIV: 277–295 of, VII: 167–168 crown-substituted precursors: and induced Soret CD from exciton phthalonitriles and metal-free coupling with heme–heme ligands, XXIV: 277–282 interaction, VII: 171–173 design of compounds with ionic Synthetic hemins, effect of axial ligand plane channels, XXIV: 291–295 orientation on, VI: 50–55 ruthenium(II) crown-phthalocyaninates, Synthetic hydroporphyrins, structural XXIV: 286–291 chemistry “template” vs. “direct” synthesis of bacteriochlorins, XIII: 287–288 crown-phthalocyaninates, benzochlorins, XIII: 288–289 XXIV: 282–286 chlorins, XIII: 284–286 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 287 FA

Cumulative Index to Volumes 1–25 287

isobacteriochlorins, XIII: 287–288 mononuclear models, XXII: 262–265 metallopheophorbides, XIII: 272–274 non-heme iron models, XXII: 265 Synthetic manganese(III) porphyrins, non-heme iron-only models, XXII: 251 XXI: 393 NOR hemi-models and subsequent inter- Synthetic metalloporphyrin, XXI: 148 molecular reaction, XXII: 252 Synthetic methodologies, solar cells, superstructured porphyrin, metalation XVIII: 109 of, XXII: 263 Synthetic models syntheses of Glu-21-mimic containing biomimetic studies, first NO binding, models, XXII: 261 XXII: 280–283 syntheses of imidazole tail and heme-iron/non-heme iron (with no tail), imidazole pickets, XXII: 256 XXII: 283 syntheses of two glutamic

tailed heme-iron/non-heme iron FeHFeB mimic–containing imidazoles (non-heme), XXII: 282–283 synthons, XXII: 260 biomimetic studies, second NO binding, synthesis of non-heme model,

NO reduction and N2O formation, XXII: 265 XXII: 286–290 Systems modulating CO response, XV: 445 heme-iron/non-heme iron (with no tail), Synthetic naphthalene units linked with XXII: 288–289 bis-porphyrins, VII: 205–208 intermolecular reaction between non- Synthetic oligomeric porphyrin systems, heme iron nitrosyl 15-NO and VII: 219–230 heme-iron nitrosyl, XXII: 290 Synthetic porphyrin dimer/oligomer systems tailed heme-iron/non-heme iron, synthetic dimeric porphyrins without XXII: 286–288 optically active substituents, tailed heme-iron/non-heme iron, fully VII: 208–219 reduced model, XXII: 287–288 synthetic naphthalene units linked with tailed heme-iron/non-heme iron, mixed bis-porphyrins, VII: 205–208 valence model, XXII: 288 synthetic oligomeric porphyrin systems, nitric oxide reductase, XXII: 247–265 VII: 219–230 deuterated models, XXII: 252 Synthetic routes for synthesis and substitution dinuclear FeFe models, Collman in porphyrins, survey, XXIII: 84–85 and coworkers’ models, construction of porphyrin ring XXII: 255–262 application of modern synthetic dinuclear FeFe models, Karlin procedures, XXIII: 90–113 and coworkers’ models, development of porphyrin synthesis: XXII: 249–254 Rothemund–Adler–Longo– heme iron models, XXII: 262–264 Lindsey, XXIII: 85–89 Karlin’s model metalated at porphyrin novel synthesis, XXIII: 89–90 site, XXII: 264 modification of porphyrin core metalation of superstructured porphyrin catalytic C–heteroatom bond formation, with zinc, followed by XXIII: 189–211 subsequent demetalation and classical modifications of peripheral remetalation, XXII: 266 functional groups, XXIII: 212–217 mononuclear “Fe-only” systems, classical reactions, XXIII: 114–123 XXII: 248 nucleophilic addition reactions with mononuclear heme-Fe-only models, organometallic compounds, XXII: 250 XXIII: 123–130 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 288 FA

288 Cumulative Index to Volumes 1–25

oligoporphyrins, XXIII: 218–269 5,10,15,20-Tetrakis(-pyridinio-p-tolyl)-2- transition metal catalyzed reactions, aza-21-carbaporphyrin, IV: 55–56 XXIII: 130–189 5,10,15,20-Tetrakis(trifluoromethyl)porphyrin, II: 215 T 5,10,15,20-[Tetra-(N-methyl-3-pyridyl)]- [3+1] Tripyrrane–pyrrole–dicarbinol conde, 26,28-diselenosapphyrin chloride, XXIII: 106 IV: 54–55 99m Tc labeled vitamin B12, XXV: 111–112 5,10,15,20-Tetrasubstituted TBPs, electronic 99Tc-labeled phthalocyanines, IV: 92 absorption maxima of, XIII: 108–111 99Tc-labeled porphyrins, IV: 92 22-Thiaazuliporphyrin, crystal structure of, 1,2,3-Triazolo[4,5-b]porphyrins, synthesis of, II: 152, II: 154 II: 74–75 23-Thia-carbaporphyrins, synthesis and 1,4,14,17-Tetrahydroxyhemiporphyrazine protonation of, XVI: 52 macrocycle, structure of, XVII: 126 24-Thia-p-benziporphyrin, synthesis of, 1,4,7-Triazacyclononane (TACN) binding site, XVI: 159 XXI: 12 TACN (triazacyclononane) ligand, 2,3,12,13-Tetrabromotetraphenylporphyrin XXI: 13–14 reaction of metallic zinc with Zn(II) Takifugu rubripes, hemopexin and, XV: 234 complex of, II: 210 Talaromyces, and fungal NO reductase, V: 143 reaction with phenylboronic acid followed Tandem solar cells, XVIII: 68 by bromination of nickel complex, irradiation at AM1.5G, XVIII: 70 II: 216–217 Tandem solar cells and OPV by vapor 2,4,5-Triaryl-substituted pyrroles, deposition, X: 150–152 XVII: 268–269 Tantalum, unsubstituted Pcs (UV-vis 2,4,6-Triethylphenylcarbahexaphyrin, absorption data) and, IX: 134 II: 179–180 Talaporfin®, IV: 254 2,5-Thienylene-bridged linear porphyrin TaPc absorption spectra, IX: 42–45 trimer, XXIII: 236 TAPs and mono-/di-/triaza porphyrin analogs, 2,5-Thienylene-bridged triangular porphyrin UV-vis absorption data, IX: 315–382 trimer, XXIII: 235 composition of TAP and, IX: 3 4,5,6,7-Tetrafluoroisoindole, fluorinated TBPs numbering system used in absorption and, II: 7 database for, IX: 100–101 5,10,15-Trimesitylporphyrin, XXI: 61 Targeted photosensitizers, IV: 264 5,10,15,20-Tetrakis-(p-sulfonatophenyl)- activatable photosensitizer conjugates, 25,27,29-trithiasapphyrin, IV: 54, IV: 281–284 IV: 55 carbohydrate-based conjugates, IV: 32, 5,10,15,20-Tetraaryl-21-telluraporphyrin, P(V) IV: 264–274, IV: 275 N-fused phlorin from, II: 150–151 HIV-1 transactivator protein (HIV-1 Tat) in 5,10,15,20-Tetraarylsapphyrin, heteroanalogs targeted conjugates, IV: 278, IV: 279 and, II: 177, II: 178 peptide-based conjugates, IV: 274, 5,10,15,20-Tetraarylazuliporphyrin, synthesis IV: 276–281 of, II: 152, II: 154 peptide–photosensitizer conjugates, IV: 274 5,10,15,20-tetrakis (3-bromomethylphenyl)- photosensitizer localization sites, IV: 409, porphyrin, XXI: 41 IV: 410, IV: 411 5,10,15,20-Tetrakis-(2-chloro-3- Zn-Pc–peptide targeted conjugates, sulfonatophenyl)porphyrin, IV: 14 IV: 279, IV: 280 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 289 FA

Cumulative Index to Volumes 1–25 289

See also Photosensitizers (PS) TDDFT method of TAP calculations, IX: 10 Targeting strategies for PDT, IV: 328–329 T-derivative spectroscopy, VII: 456–458 macrophages as PDT targets, IV: 73, TDMHPP, XVIII: 22 IV: 153, IV: 343 arrays at near-monolayer coverage, modular carrier systems, IV: 36, XVIII: 23 IV: 330–331, IV: 341, IV: 374 cyclic trimer and non-cyclized trimer, See also Antimicrobial PDT; Cell organelle XVIII: 23 targeting; Cellular targeting; monolayer structure highlighting hydrogen Photodynamic therapy (PDT) bonds, XVIII: 23 Tat-transport and involvement in Fe self-assembled arrays of, XVIII: 23 metabolism (E-family), XIX: 275–277 TDO. See Tryptophan 2,3-dioxygenase (TDO) Bacillus subtilis E-family protein (YwbN), TDtBHPP, XVIII: 19 XIX: 275 molecular model of, XVIII: 21 YfeX and YcdB, XIX: 277 monolayer of, XVIII: 21 Tautomerism monolayer of oxidized derivative of, cis/trans and relative changes of XVIII: 21 fluorescence quantum yield with Tectons, porphyrin-based temperature, VII: 404–406 coordination bonded cis/trans forms, VII: 373–380 double component systems made of two cis/trans structure, VII: 397 complementary tectons, cis-trans tautomerism structure, XIII: 316–354. See also Double VII: 373–380 component systems of tectons coherent double hydrogen tunneling in single component systems made of isolated molecules, VII: 411–416 self-complementary tecton, and molecules in condensed phases XIII: 307–317 (polycrystalline porphycene), triple component systems made of three VII: 416–424 complementary tectons, in porphyrins, VII: 409–410 XIII: 353–360 and relative energies of porphyrin isomers, and crystals as networks, XIII: 304 VII: 363 derivatives, XIII: 301–303 single molecule studies and, VII: 424–426 H-bonded triplet state studies and, VII: 409 double component systems made of two Tautomerization in carbaporphyrins, XVI: 29 complementary tectons, Taxol, IV: 437 XIII: 369, XIII: 371–380 TBA salts of anions, for fluorescent octane gel single component systems made of transformation, VIII: 221–222 self-complementary tecton, TBP8Cz β-octakis(4-tert-butylphenyl)- XIII: 360–370 corrolazinate, manganese-oxo triple component systems made of three complexes (corrole synthesis/reactivity) complementary tectons, and, XIV: 544–547 XIII: 379, XIII: 381–384 TBPs, 5-monosubstituted, electronic molecular tectonics and, XIII: 305 absorption maxima of, XIII: 103–104 porphyrin-based tectons and, TcPc absorption spectra, IX: 49–54 XIII: 305–306 Tethered cofacial porphyrin dimers, XXI: 40 Telomerase, IV: 18, IV: 51 TCNQ complexes, and binding affinities of Telomerase inhibitors, IV: 19 dipyrromethanes, VIII: 184 Telomestatin, IV: 50, IV: 51 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 290 FA

290 Cumulative Index to Volumes 1–25

Temoporfin [tetra(meta-hydroxyphenyl)- Tert-butyl-substituted hybrids, synthesis using chlorin], IV: 160 malonic acid and tert-butyl substituted Temperature phthalamide and iminoisoindoline and capacitance-resistance variation for derivatives, XVI: 339 chemical sensors, XII: 152–153 Tert-butyl hydroperoxide, and azuliporphyrin, contact/pseudocontact shifts and, benzocarbaporphyrins formation VI: 31–33 mechanism from, XVI: 77 and curvature in Curie plot over Tetraacenaphthoporphyrin, Soret band of, temperature range of measurement, II: 45, II: 47 VI: 75–80 Tetraamino-substituted compounds, effect on enantioselectivity of chiral picket electropolymerization and, XII: 257 fence porphyrins, X: 22, X: 24 Tetraanthraporphyrins multifrequency EPR spectroscopy and and difference between distorted reactivity of catalytic intermediates, tetraaryl-substituted/planar meso- VI: 422–429 unsubstituted molecules, XIII: 8–9 and need for mimicking enzymatic tetrabenzoporphyrin and, XIII: 6 systems, XII: 229 Tetraaryl NCPs, synthesis of, II: 298–299 phosphorescence at room, XII: 303 Tetraaryl NFPs, use of NCPs in synthesis of, of PMSP membrane for optical sensors, II: 339–341 XII: 314 Tetraarylbacteriochlorinato Zn(II) complex, and synthesis of extended porphyrins by XVII: 38 template condensation, XIII: 14 Tetra-arylbenziporphyrins, potential thermal stability of TBPs, XIII: 15 intermediates in synthesis of, XVI: 103 and UV spectral changes of acyclic anion Tetra-arylcalix[4]azulenes, oxidation to give receptors, VIII: 222 tetra-azuliporphyrin tetracations, Temperature and rapid-scanning stopped-flow XVI: 273 studies of P450cam, V: 315–317 Tetraaryldimethoxychlorin, dihydroxylation of, Temperature dependence studies XVII: 53 hemiporphycene/corrphycene/isoporphycene Tetra-aryl-N-confused pyriporphyrin, derivatives and, VII: 390–392 protonation of, XVI: 189 T-derivative spectroscopy and, Tetra-aryl-NCPs, synthesis and protonation of, VII: 456–458 XVI: 198 Temperature effects on heme-hemopexin Tetra-aryl systems, aza-BODIPY dyes and, Template condensation, XIII: 12–15 VIII: 119–126 cross-condensations, XIII: 31–34 Tetra-arylazuliporphyrins

dibenzopropentdyopents in, XIII: 34–37 in CDCl3, selected proton NMR resonances early methods, XIII: 16–19 for, XVI: 73 regular “phthalocyanine-mimetic” protonation of, XVI: 73 synthesis, XIII: 19–31 in TFA-CDCl , proton NMR resonances 3 Template synthesis for, XVI: 74 TBPs, Pcs and, II: 3–8 in 1% TFA-chloroform, UV-vis absorptions TBPs, TNPs, and limitations of zinc, II: 8 for selected, XVI: 74 Templated macrocyclizations, and Tetraaryl-substituted molecules, distorted, coordination interactions. See also tetraanthraporphyrins and, XIII: 8–9 coordination chemistry of open-chain Tetraaryltetraazuliporphyrin, tautomeric oligopyrroles equilibrium for, II: 176 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 291 FA

Cumulative Index to Volumes 1–25 291

Tetraaryltetrabenzoporphyrins (Ar4TBPs), MTBMAP hybrid structures, synthesis, II: 4 XVI: 336 general method of synthesis of, II: 24, (np-n-hexyl) -H TBMAP-H , birefringence 8 2 2 II: 30 textures of, XVI: 389 isoindole precursors in synthesis of, PdTBMAP, normalized phosphorescence II: 10–11 emission spectra exhibited by, synthesis of highly functionalized, XVI: 369

II: 11–12 PtTBMAP-(Ph)3, comparison of Tetraazabacteriochlorins, XVII: 31–32 phosphorescence emission signal Tetraazachlorin derivatives, UV-vis absorption from, XVI: 371 data, IX: 480–486 selected photophysical data for Pt and Pd Tetraazachlorins, II: 251 metalated derivatives of Tetraazaisobacteriochlorins, XVII: 31–32 meso-phenyl substituted, XVI: 370 Tetraazaporphyrins. See Phthalocyanines (Pcs) view of molecule of (np-hexyl) - 8 Tetraaza oxybenziporphyrin, formation of MgTBMAP’[THF]2, XVI: 382 analog under electrochemical Tetrabenzoporphyrin (TBP) ring systems, conditions, XVI: 157 XVI: 333

Tetraazuliporphyrin tetracation, DFT H2TBP, comparison of selected optimized structure of, II: 176 intramolecular bond lengths and Tetrabromination of porphine at angles for, XVI: 379

meso–positions, XXIII: 115 (np-n-hexyl)8-H2TBP, birefringence Tetra- α/β-carboxyphthalocyanines, structures textures of, XVI: 389 of, XVIII: 287 PdTBP, normalized phosphorescence Tetra-crown-phthalocyanines, XXIV: 277 emission spectra exhibited by, Tetra-β-galactosylated analog of Pc, XVI: 369

XVIII: 254 PdTBP-(Ph)4, comparison of Tetra-β-galactosylated non-anomeric analog of phosphorescence emission signal Pc, XVIII: 255 from, XVI: 371

Tetrabenzocarbaporphyrin, synthesis of, PtTBP-(Ph)4, comparison of XVI: 37 phosphorescence emission signal Tetrabenzomonoazaporphyrin (TBMAP), from, XVI: 371 XVI: 334 relative acidities of, XVI: 354

H2TBMAP selected photophysical data for Pt and comparison of selected intramolecular Pd metalated derivatives of bond lengths and angles for, meso-phenyl substituted, XVI: 370 XVI: 379 Tetrabenzoporphyrins (TBPs). See also molecular arrangement in crystal lattice Extended porphyrins (cyclic π-systems) of, XVI: 378 α -substituted isoindoles in synthesis of relative acidities of, XVI: 354 Pcs and, II: 6 MgTBMAP BCOD-fused pyrroles in synthesis of, Fluorescence spectra in pyridine, II: 21–24 XVI: 366 Diels-Alder reaction on sulfolenopyrrole in solubilities of, XVI: 353 synthesis of, II: 84–85 molecular packing in single layer of electronic absorption maxima

(np-hexyl)8-MgTBMAP [THF]2, 5-monosubstituted tetrabenzoporphyrins, XVI: 383 XIII: 103–104 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 292 FA

292 Cumulative Index to Volumes 1–25

5,10,15,20-tetrasubstituted meso-aryl TBTAP, synthesis of using aryl tetrabenzoporphyrins, acetonitrile precursors, XVI: 348 XIII: 108–111 meso-phenyl TBTAP, synthesis of, meso-di-substituted XVI: 343 tetrabenzoporphyrins, meso-substituted TBTAPs, synthesis and XIII: 105–107 their isolation as magnesium meso-unsubstituted derivatives, XVI: 342

tetrabenzoporphyrins, metalated (tert-Bu)4- TBTAPs, stability XIII: 96–102 constants for protonations of, inequivalence of benzene ring sets in, XVI: 355 XIII: 4–5 MgTBTAP 2H-isoindole in synthesis of, II: 5–6 fluorescence spectra in pyridine, isoindole equivalents and oxidative method XVI: 366 of synthesis of, II: 8–19 solubilities of, XVI: 353

with linear acene-like arrangement of molecular packing of (np-hexyl)8-

benzene rings, XIII: 5–6 H2TBTAP, XVI: 381 molecular geometry of, XIII: 7–8 non-peripherally octaalkyl substituted phthalimides in synthesis of, II: 3 TBTAPs, transition temperatures for, properties of, XIII: 9 XVI: 389 tetraanthraporphyrins and, XIII: 6 non-peripherally substituted octaalkyl Tetrabenzoquinone-porphyrin conjugate, a TBTAPs, unexpected synthesis of, mononuclear “black” porphyrin, 349

II: 255, II: 257 (np-n-hexyl)8–CuTBTAP/(np-n-

Tetrabenzotriazacorrole (TBC), IV: 80, IV: 81 decyl)8–CuTBTAP, visible region Tetrabenzotriazaporphyrin (TBTAP), absorption spectra of spin-coated XVI: 334 films of, XVI: 393 copper-TBTAP (CuTBTAP) (np-n-hexyl) –H TBTAP–H , birefringence 8 2 2 four-probe single-crystal conductivity textures of, XVI: 389 measurements of, XVI: 395 PdTBTAP, normalized phosphorescence normalized conductivity, XVI: 395 emission spectra exhibited by, synthesis employing mixed cyclizations, XVI: 369 XVI: 337 peripherally substituted octaalkyl TBTAPs, [CuTBTAP] [ReO ] synthesis of, XVI: 352 3 4 2 molecular arrangements within crystal selected photophysical data for similarly lattice of, XVI: 380 metalated, XVI: 367

view down stack of, XVI: 380 structure of (neo-PeO)4-H2TBTAP-n-C17H35 derivatives, structures of, XVI: 373 and schematic representation of meso-unsubstituted np-octahexyl- packing structure, XVI: 386

H2TBTAP, isolation of, XVI: 350 synthesis of meso-aryl TBTAPs using aryl

H2TBTAP, relative acidities of, XVI: 354 acetonitrile precursors, XVI: 348 Linstead’s first synthesis by action of (tert-Bu) -H TBTAP, structures and 4 2 organometallic nucleophiles on electronic absorption spectra of, phthalonitrile, XVI: 338 XVI: 356 MCD spectra and UV-vis spectra of, temperature dependence of normalized XVI: 364 conductivity of crystals of

meso-alkyl TBTAP, synthesis of, XVI: 342 [NiTBTAP]3[ReO4]2, XVI: 396 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 293 FA

Cumulative Index to Volumes 1–25 293

use of nitrophthalimidine as alternative SSM results for, XIX: 177

precursor in mixed cyclizations to structure of type I cytochrome c3 from give substituted, XVI: 339 D. vulgaris Miyazaki F, XIX: 171

view of molecule of (np-hexyl)4- TpI-c3 vs. TpII-c3 cytochrome c3, XIX: 180

MgTBTAP, XVI: 384 variations in cytochrome c3 fold, XIX: 179 Tetrabutylammonium fluoride (TBAF), Tetrahydrodipyrrins, XVII: 14, XVII: 16, VIII: 175–176 XVII: 45 Tetracarbamic acid derivatives formation, Tetrahydroxydicarbahemiporphyrazine, spectra III: 118–119 of free base, XVII: 170 Tetracarbaporphyrin dications, II: 173 Tetraethoxysilane (TEOS), XII: 394 Tetracarbaporphyrinoids, II: 172, XVI: 270 Tetraethyl orthosilicate (TEOS), and sol-gel partially conjugated, synthesis of with two process, V: 233 azulene and two indene subunits, Tetra-galactosylated zinc(II) phthalocyanine, XVI: 274 XVIII: 254 Tetracarbatetraazuliporphyrin tetracation Tetra-glycinated analog, XVIII: 280 crystal structures of, II: 174, II: 175 Tetramesitylporphyrin (TMP), XXI: 325 synthesis of, II: 174, II: 175 Tetramethylene-1,4-biscobalamin, XXV: 147 Tetradehydrocorrins Tetrahydroisoindole (THI) derivatives, and to bacteriochlorins, conversion of, synthesis of linearly extended XVII: 30–31 porphyrins, XIII: 50–60 oxidation state, XVII: 31 Tetrahydroporphyrin tetratosylate (THPTS),

Tetraheme cytochrome c3, XIX: 143, IV: 42 XIX: 167–168 Tetrahydroxyphenyl-substituted compounds, changes in redox and acid-base properties electropolymerization and, XII: 257 of, XIX: 172 Tetraphenylporphyrins with mixed classification, XIX: 168 (see also Type I substituents, XXIII: 157

cytochrome c3 (TpI-c3)) Tetrapyrrole chemistry, isomers in classical 3D structures of period of XXIII of D. vulgaris Hildenborough and isomerization processes, XXIII: 11–17 D. vulgaris Miyazaki F, protoporphyrin isomers, XXIII: 5–7 comparison, XIX: 179 retrospective on isomer enumeration in

TpII-c3, XIX: 178 classical period, XXIII: 17 functional studies uroporphyrinogen isomers, XXIII: 7–11 kinetic studies, XIX: 172 Tetrapyrrole macrocycles, 3. see also physiological studies, XIX: 173–174 Substituted tetrapyrrole macrocycles, site-directed mutagenesis studies, enumeration of isomers of XIX: 172–173 derivatization of eight sites, XXIII: 56 structural studies, XIX: 174–183 shown for porphyrazine, XXIII: 56 thermodynamic studies, XIX: 170–172 and linear string representations, XXIII: 44 order of heme reduction potentials from Tetrapyrrole nomenclature, XXIII: 9 SRB, XIX: 171 Tetrapyrrole scaffold, XXIII: 19 published structures of tetraheme Tetrapyrroles, transition-metal XXII

cytochromes c3 from SRB, XIX: 175 deactivation mechanism, characterized as redox-Bohr effect, XIX: 168, “nonemitters,” XXII: 171 XIX: 170–171, XIX: 181 photodynamics of nonemitter, XXII: 172 spectroscopic studies, XIX: 168–170 photophysics of, XXII: 171 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 294 FA

294 Cumulative Index to Volumes 1–25

Tetrahydroxyphthalocyanine, reaction of, serum protein conjugates, IV: 346–347 XVIII: 265 structure, IV: 40, IV: 329, IV: 334 Tetrakis(4-carboxyphenyl) porphyrin (TCCP), Temoporfin, IV: 160 IV: 96, IV: 97 See also Chlorins (2,3-dihydroporphyrins) Tetrakis-(4-carboxyphenyl)porphyrin Tetramethoxysilane (TMOS), and sol-gel cobalt(II). see CoTCPP process, V: 233 Tetrakis-(meso-3,5-di-tert-butylphenyl)- Tetramethyl-m-benziporphodimethene, porphyrin, XVIII: 4, XVIII: 8–9 synthesis and N-confused pyrrole Tetrakis-(meso-4-carboxyphenyl)porphyrin derivatives of, II: 140–141 on HOPG, XVIII: 18 Tetranaphthoporphyrins, retro-Diels-Alder hydrogen-bonded network on HOPG, microwave-assisted synthesis of, XVIII: 18 II: 203, II: 205 Tetrakis(meta-hydroxyphenyl)chlorin Tetranaphthotriazaporphyrin (TNTAP) (m-THPC). See Tetra(meta- derivative, cyclic voltammogram for hydroxyphenyl)chlorin (m-THPC) metal-free, XVI: 374 Tetrakis(pentafluorophenyl)-N-confused derivatives, structures of, XVI: 373

porphyrin (NCTPP-F20), Cu(II) complex MCD spectra and UV-vis spectra of, of, II: 325–326, II: 327 XVI: 365 Tetrakis(thiadiazole) porphyrazine (TTDPz), Tetraones, synthesis of, XVII: 66 XVIII: 215 Tetra(2,3-naphtho)porphyrin zinc complex Tetrakis-pyridyl-tetrahydroporphyrin tosylate (ZnTNP), II: 7 (THP), IV: 42 Tetra(2,3-naphtho)porphyrins (TNPs), Tetrakis(quinolone-1,2,3-triazole)porphyrin, synthesis of isomers of, II: 14–15, “click chemistry” synthesis of, II: 278, II: 16 II: 280 Tetra-N-methylpyridiniumporphyrin

Tetrakisquinoxalinoporphyrin, synthesis of, (TMPyP4), IV: 18, IV: 19–20, IV: 55 II: 88–89, II: 92 Tetra-(N-methylpyridyl)porphyrinate (TPyP), Tetrameric (squared) porphyrins joined my manganese-oxo complexes (corrole M(II) links, XII: 139 synthesis/reactivity) and, XIV: 533

and SnO2 hybrid sensor with methanol Tetraoctylammonium bromide (TOAB), Brust vapors, XII: 154–155 method and metal nanoparticles, Tetrameric N-confused tetraphenylporphyrin XII: 359–360 silver complex, synthesis of, II: 327, Tetraphenylazuliporphyrin, attempted II: 329 synthesis via azulene dicarbinol, Tetra-meso-aryl porphyrins (TAPs), Adler-type XVI: 71 combinatorial reactions and, III: 493 Tetraphenylbenzocarbaporphyrin, ORTEP III Tetra(meta-hydroxyphenyl)chlorin (m-THPC) drawing, XVI: 32 derivatives, IV: 40–41, IV: 333, Tetraphenylchlorin (TPC), IV: 145, IV: 146, IV: 346–347, IV: 352 IV: 148, IV: 372–373

folic acid conjugates, IV: 41–42 Tetraphenyl derivative of ZnTNP (ZnPh4TNP), Foscan, IV: 40–42, IV: 147, IV: 160, product mix in synthesis of, II: 8 IV: 254 Tetraphenylporphyrin (TPP) hydrophobicity, IV: 386 and deposition on glass surfaces, XII: 140

monoclonal antibody (MAb) conjugates, and supramolecular organization on TiO2 IV: 160–161, IV: 333–334 surface, XII: 391–393 as photosensitizers, IV: 40–42, IV: 329, dications, XVIII: 134–137 IV: 346–347 structures of, XVIII: 128–129 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 295 FA

Cumulative Index to Volumes 1–25 295

dications, XVIII: 140 ring skeletal structures of, VIII: 294–295 synthesized and functionalized with Pt stepwise coupling of pyrrolic precursors NPs, XVIII: 196–197 and preparation of open-chain Tetraphenylporphyrin (TPP) derivatives, direct oligopyrroles, VIII: 376–377 immobilization of macrocycle (complex supramolecular assemblies and, porphyrin system immobilization) and, VIII: 483–485 X: 253–256 types of tri-/tetrapyrrolic species, Tetraphenylporphyrin oligomers, XVIII: 79 VIII: 348–352 Tetraphenylporphyrin zinc complex (ZnTPP), with reduced meso-positions (see XIV: 119–121, XIV: 469–470 porphyrinogens) Tetraphenylporphyrins in dendrimers, IV: 371 Tetrapyrrolic macrocycles. See Palladium- Tetraphenyltetraacenaphthoporphyrin catalyzed carbon-heteroatom C–C (TPTANP), spectral properties and reactions; Peripherally metalated calibration, XIV: 487 porphyrin derivatives Tetraphenylsapphyrin, protonation of, XVI: 293 Tetrapyrrolic porphyrin analogs, with benzene Tetraphenyl S-confused thiaporphyrin and or pyridine linkers, XVI: 292 related thialactone, synthesis of, Tetraquinonoporphyrin, Diels-Alder reaction XVI: 222 in synthesis of, II: 86, II: 89 Tetraphenyl-22-hydroxybenziporphyrin, Tetra-(quinoxalino[2,3])-5,10,15,20- tautomerization of, XVI: 150 tetraazaporphyrin, synthesis of, II: 43, Tetraphenyl-1,4-naphthiporphyrin II: 46 protonation of, XVI: 175 Tetrapyrroles, XIX: 112, XX: 145. see also synthesis from naphthalene dicarbinol, siroheme (SH) XVI: 172 biosynthesis, “common” steps of, XX: 7–8 synthesis from naphthitripyrrane biosynthesis pathways, XIX: 113 intermediate, XVI: 174 modified biosynthetic pathway, Tetrapyrroles, I: 235–236 XIX: 146, XIX: 148 coupling of dipyrrolic building blocks and distribution in plants, XX: 178 preparation of open-chain enzymes, intracellular localization of, oligopyrroles, VIII: 365–373 XX: 173 coupling two pyrrole units with dipyrrole enzymes involved in Chl branch, and preparation of open-chain XX: 176–177 oligopyrroles, VIII: 371, localization of enzymes involved in VIII: 373–376 heme biosynthesis, XX: 173–176

dinuclear L1M1 complexes/associates and linear, polymerization of PBGs by PBG open-chain oligopyrroles, deaminase to form, XX: 153 VIII: 410–428 in plants, structures of, XX: 147 ligands from biliverdin/bilirubin and metal insertion into, XIX: 149 preparation of open-chain PBG, acetic-acid chain of, XIX: 147 oligopyrroles, VIII: 361–362 plants produced classes of, XX: 146

mononuclear L2M2 complexes and signaling functions of, XX: 194–195 open-chain oligopyrroles, involvement of tetrapyrroles in VIII: 428–432 retrograde signaling, non-planarity in, XVIII: 126 XX: 195–196 oxidative ring-opening and preparation multiple functions of CHLH, XX: of open-chain oligopyrroles, 196–197 VIII: 363–365 trafficking of, XX: 177–180 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 296 FA

296 Cumulative Index to Volumes 1–25

Tetrapyrrole biosynthesis in plant systems, biosynthesis of phytochrome chro- XX: 145–146 mophore by PΦB synthase, biosynthesis of ALA, XX: 151 XX: 169 charge of plastid tRNAGlu with insertion of central ferrous ion by glutamate by glutamyl-tRNA ferrochelatase, XX: 167–168 synthetase, XX: 151 oxidative cleavage by heme oxygenase, formation of ALA by GSA XX: 169–169 aminotransferase, XX: 152 localization of tetrapyrrole biosynthetic reduction of glutamyl-tRNAGlu by enzymes in plants, XX: 174 glutamyl-tRNA reductase, polymerization of PBG by PBGD to form XX: 151–152 linear tetrapyrrole, XX: 153 Chl branch, XX: 155 siroheme branch, XX: 170–171 formation of isocyclic ring to form formation of precorrin-2 by urogen III PChlide by Mg-proto IX ME methyltransferase, XX: 171 cyclase, XX: 159–160 formation of siroheme by insertion of central magnesium ion by sirohydro-chlorin FeCh, MgCh, XX: 155–159 XX: 171–172 methylation of Mg-Proto IX by putative dehydrogenase involved in Mg-proto IX methyltransferase, formation of sirohydrochlorin, XX: 159 XX: 171 PChlide oxidoreductase reduces tetrapyrrole biosynthetic pathway in PChlide a to form chlide a, archaea, XX: 172–173 XX: 160–164 tetrapyrrole biosynthesis, regulation of, Chl cycle, XX: 164–165 XX: 180–181 conversion of Chl a to Chl b by chlide a quality control of Chl metabolism, oxygenase, XX: 165 XX: 191–194 conversion of Chl b to 7-hydroxymethyl regulation at onset of chloroplast Chl a by Chl b reductase, biogenesis, XX: 185–188 XX: 165–166 regulation during development in dark, conversion of 7-hydroxymethyl Chl a to XX: 181–185 Chl a by HCAR, XX: 166 regulation for maintenance of functional condensation of two ALA molecules by chloroplasts, XX: 188–191 ALA dehydratase, XX: 153 tetrapyrrole biosynthetic pathways in decarboxylation by urogen III plants, XX: 149–150 decarboxylase, XX: 154 trafficking of tetrapyrroles, XX: 177–180 formation of transcriptional regulation of genes involved aromatized fluorescent protoporphyrin in, XX: 182 IX by protogen IX oxidase, Tetrapyrrole biosynthesis regulation, XX: 155 XX: 180–181 cyclic tetrapyrrole by urogen III quality control of Chl metabolism, synthase, XX: 153–154 XX: 191–194 protoporphyrinogen IX by coprogen III regulation of protein stability of CAO, oxidases, XX: 154–155 XX: 192–193 heme/bilin branch, XX: 166–167 sensing of free Chls and intermediates, assembly of cytochrome c, XX: 170 XX: 193–194 biosynthesis of mitochondrial heme a, regulation at onset of chloroplast XX: 169 biogenesis, XX: 185–188 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 297 FA

Cumulative Index to Volumes 1–25 297

post-translational regulation of at onset heteroleptic bis(phthalocyaninato) of chloroplast biogenesis, complexes XX: 188 homoleptic bis(phthalocyaninato) transcriptional regulation at onset of complexes chloroplast biogenesis, homoleptic/heteroleptic bis(porphyrinato) XX: 186–188 complexes regulation during development in dark, importance of electronic absorption XX: 181–185 spectroscopy, XIV: 297, XIV: 299 post-translational regulation in dark, IR vibrational spectroscopy, XIV: 342–374 XX: 184–185 mixed (phthalocyaninato) (porphyrinato) transcriptional regulation in dark, double-decker complexes XX: 181–184 organic field effect transistor (OFET) and, regulation for maintenance of functional XIV: 448–451 chloroplasts, XX: 188–191 phthalocyaninato/porphyrinato post-translational regulation for triple-decker complexes maintenance of functional RR spectra, XIV: 375–394, XIV: 392, chloroplasts, XX: 190–191 XIV: 394–400, XIV: 398, transcriptional regulation for XIV: 401–413 maintenance of functional schematic structure, XIV: 253–254 chloroplasts, XX: 189–190 single molecule magnets (SMMs) and,

Tetrapyrrole L1M1 complexes/associates, XIV: 441–448 coordination chemistry of open-chain synthetic method, XIV: 255–260, oligopyrroles and mononuclear, XIV: 260–268, XIV: 265, VIII: 410–428 XIV: 269–270, XIV: 270–271,

Tetrapyrrole L2M2 complexes, coordination XIV: 271–275 chemistry of open-chain oligopyrroles Tetrapyrrole structures, basic, XIII: 255. See and dinuclear, VIII: 428–432 also Chlorophylls (Chls) (isolated), Tetrapyrrole rare earth complexes, structural chemistry sandwich-type Tetrapyrrole synthese, and transport of PPIX bis(phthalocyaninato) complexes to FECH, XV: 15 crystallographic molecular structure, Tetrapyrrole-nanocarbon hybrids XIV: 275–287 complementary electrostatics/π−π bis(porphyrinato) complexes interactions and, I: 413–416 crystallographic molecular structure, crown ether-alkyl ammonium dipole-ion XIV: 291–293 bonding, I: 351–352 crystallographic molecular structure, crown ether-alkyl ammonium interactions XIV: 287–290, XIV: 291, and, I: 417–419 XIV: 293–300 and donor-acceptor via polymer wrapping, electrochemical properties, XIV: 413–425, I: 419–421 XIV: 423, XIV: 425–427, and donor-SWNT hybrids via π−π XIV: 432–441, XIV: 431–432, interactions, I: 401–404 XIV: 427–431 electrostatic ion-pairing interactions and, electronic absorption spectroscopy, I: 338–339 XIV: 299, XIV: 301–312, ion-paired binding and, I: 411–413 XIV: 329–341, XIV: 312–319, and metal-ligand coordination approach XIV: 319–326, XIV: 327–328 of tetrapyrrole-SWNT hybrids, general information, XIV: 253–254 I: 404–407 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 298 FA

298 Cumulative Index to Volumes 1–25

metallotetrapyrrole-fullerene dyads and, Texaphyrins, IV: 46–49, IV: 98, IV: 251–252, I: 311–322 IV: 263–264 metal-oxygen bonding and, I: 322–325 See also Expanded porphyrins; Lutex and non-covalent functionalization of Thia-1,4-naphthiporphyrin, protonation of, carbon nanotubes, I: 401 XVI: 175 porphyrin-fullerene and π−π interactions, Thia-analog, synthesis from naphthitripyrrane I: 339–351 intermediate, XVI: 174 and porphyrin-fullerene conjugates via Thallium trifluoroacetate (TTFA), oxophlorins hydrogen bonding, I: 329–338 and, XIII: 210–213 π−π interactions/axial coordination and, Thallium, unsubstituted Pcs (UV-vis I: 408–411 absorption data) and, IX: 113–114 reversible switching of inter-/ THAP, heme sensor proteins and, XV: 420 intermolecular PET events, Theraphthal, III: 105–106 I: 397–399 Thermoanaerobacter tengcongensis rotaxanes/catenanes formation and, H-NOX and ligand selectivity, XV: 131 I: 352–361 and H-NOX regulation of output domains, and solubilization of carbon nanotubes, XV: 133 I: 400–401 TT-SONO enzyme and, V: 154 subphthalocyanine-fullerene donor- Thermodesulfobacteria phylum, XIX: 142 acceptor systems and, I: 325–329 Thermodesulfovibrio yellowstonii, XIX: 154 and supramolecular architectures for Thermodynamic behavior, of ligand binding, photochemical events, I: 361–397. V: 9 See also Supramolecular chemistry Thermodynamics of potent SOD mimics and supramolecular tetrapyrrole-acceptors β-substituted isomeric Mn(III) with other carbon structures, N-alkylpyridylporphyrins, I: 421–423 XI: 319–321 Tetra-aryl-N-confused porphyrins, synthesis Mn(III) N,N′-dialkylimidazolylporphyrins, of symmetrical vs. asymmetrical, XI: 321 II: 299–300 Mn(III) N,N ′-dialkylpyramidazolylpor- Tetrasubstituted compounds phyrins, XI: 321 adsorption of transition-metal ortho cationic Fe(III) N-substituted tetraaminophthalocyanines, III: 114, pyridylporphyrins, XI: 318–319 III: 119 ortho cationic Mn(III) N-alkylpyridyl- 1,8(11),15(18),22(25)-tetrasubstituted porphyrins, XI: 310–317 compounds of phthalocyanines, ortho cationic oxygen-derivatized III: 7–11 porphyrins, XI: 317–318 2,9(10),16(17),23(24)-tetrasubstituted para/meta Mn(III) N-alkylpyridyl- compounds of phthalocyanines, porphyrins, XI: 321–323 III: 10–16 and reactions with reactive species (general Tetra-tert-butyl-substituted TiPs/RuPcs with overview), XI: 328–329 carboxy groups at axial ligand, and Thermodynamics dye-sensitized solar cells, X: 161–162 and ideal electron transfer scenario, I: 148 Tetrathiafulvalene (TTF), porphyrin– rate constant and reorganization energy, nanocarbon composites and, X: 229 I: 139 Texaphyrin, metalloporphyrin structure/ Thermoplastic polymers (PMMA/polyvinyl electron configurations and, VI: 16–17 chloride), optical sensors and, XII: 315 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 299 FA

Cumulative Index to Volumes 1–25 299

Thermosynechococcus elongatus, XIII: 264 Third-generation biosensors, V: 211–214 and coordination of heme biosynthesis in defined, V: 298 cell, XV: 204 Third-generation photosensitizers, IV: 124, and FECH interaction with PPIX oxidase, IV: 330, IV: 371–372 XV: 95 Thodospirillales, XIII: 257 Thermus thermophilus Thorium, unsubstituted Pcs (UV-vis absorption and active site of bacterial NOR, V: 138 data) and, IX: 136 UROGEN structures and, XV: 177 Thr252Ala, XIX: 85 and UROS formation from ALA, XV: 185 Threitol-strapped ligands and chiral strapped Thiadiazolobenzoporphyrin, synthesis and UV porphyrins, X: 64 absorption spectra of, II: 51–53, II: 55 Threitol-strapped porphyrins, X: 37–38 Thiaphlorins, and porphyrins with double Through-bond BODIPY energy transfer bonds at meso positions, XIII: 227–228 cassettes, VIII: 65–70 Thienylthiazole (boryl-substituted) as analogs, and polypyridine complexes with accessory BODIPYs and, VIII: 148–150 BODIPY chromophores, Thin film bulk acoustic resonator (TFBAR), VIII: 77–80 mass transducers and, XII: 159–160 and porphyrin-based systems as Thioacetyl-functionalized porphyrins on Ag, photosynthesis models, VIII: 70–76 XII: 150 and potential biotechnology probes, Thioether-substituted species, phthalocyanines VIII: 80–86 with chiral carbons in side chains, Thyroid peroxidase (TPO), as component of XXIII: 383–389 superfamily of animal peroxidase, exaction coupling of left-handed Pc VI: 430 J-type dimer, XXIII: 389 THz spectral region. See Far-infrared (FIR) Thiol-functionalized porphyrins, XVIII: absorbance spectra 38–39 Time-correlated single-photon counting Thiol oxidation, electropolymerized Co(II)-31 (TCSPC) measurements, XXII: 81, 83 films and, XII: 257–258 Time-correlated single-photon counting Thiolactam in isobacteriochlorin, XVII: 14 (TCSPC), pentapyrrolic expanded Thiolate as heme-binding site, heme sensor porphyrins and, I: 517 proteins and, XV: 407–409 Time-dependent density functional theory Thiolate coordination to ferric heme-nitrosyls, (TD-DFT) XIV: 204–209 historical aspects of, XIV: 469 Thiol-derivatized europium triple-decker and origin of optical spectrum for sandwich complexes, Sonogashira C–C metalated porphyrin, XIV: 478–479 coupling reactions and, III: 342–343 and predicted absorption spectra based on Thiophene-containing porphyrinoids, synthesis TD-DFT/ZINDO/s methods, with phenylene linkages, XVI: 298 XIV: 514–515 Thiophene-substituted metalloporphyrins, prototropic tautomer detection and, XII: 239–251 XIV: 485 Thiophenol, with meso-tetra-arylazuli- Time-dependent density functional theory porphyrins, nucleophilic addition of, (TDDFT), XXII: 172 XVI: 80 basic equations of, XXII: 173–178 Thiosens, III: 176 classification in terms of LMCT/MLCT, Thiosphaera pantotropha, cytochrome XXII: 185

cd1-type and, V: 129 coupling matrix, XXII: 178 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 300 FA

300 Cumulative Index to Volumes 1–25

CT failure of, XXII: 183–184 as reductive photocatalysts, XI: 200–205 density change, XXII: 177 solar hydrogen production and, density response, XXII: 177 XI: 205–208 development of, XXII: 183 Stille C–C coupling reactions and, exchange-correlation potential and kernel, III: 346–347

XXII: 182–185 TiOPc: C60 cell, XVIII: 67

excitation energies with TDDFT, XXII: TiPc/ZrPc/ZrPc2/HfPc absorption spectra, 179–182 IX: 39–42 determination, XXII: 179 Tissue hypoxia and oxygen sensors, XII: 168 matrix eigenvalue equations for, Tissue inhibitor of matrix metalloproteinase XXII: 180 (TIMP), IV: 436

singlet-singlet and singlet-triplet Titania (TiO2), hybrid porphyrin-mesoporous excitations, XXII: 181 materials and, XII: 146–148 standard many electron theory for Titania nanocomposites and porphyrins dynamic dipole polarizability, dye-semiconductor bond and efficiency of XXII: 180 DSSCs, XII: 389–391 zero-order TDDFT estimate, XXII: 180 interface design at nanoscale level, external potential, matrix element, XII: 387–389 XXII: 178 introduction, XII: 384–387 formulation based on noncolinear morphology/supramolecular organization

representation, XXII: 181 on TiO2 surface, XII: 391–393 frequency-dependent response, XXII: 176 Titanium-oxo complexes KS-TDDFT, XXII: 182 corrolazines, XIV: 569–571 linear response of ground-state density, corroles, XIV: 568–569 XXII: 175 TlPc absorption spectra, IX: 78–86 local density approximation (LDA), TLR4, heme sensor proteins and, XV: 428 XXII: 182 Tmc complex, XIX: 205, XIX: 211 local HF (LHF), XXII: 184 TMP nonlocal HF exchange, XXII: 184 on Cu(001), XVIII: 6 spin flips (SF) with, XXII: 182 modified surface after evaporation of, time-dependent KS equations, 175 XVIII: 6 Time-dependent density functional theory on untreated Cu(100) surface, XVIII: 5–6 (TD-DFT), XXIII: 285 TMPyP, XVIII: 25 Time resolved emission spectroscopy (TRES), Tol-BINAP, III: 373 XXIV: 410 Toluene, reorganization energy and, I: 147 Tin complexes See Solvents 3− • (3-oxo-NCTPP )Cl H2O, synthesis under Toluenesulfonylmethyl isocyanide (TosMIC), aerobic conditions of, II: 334, II: 336 XVII: 19 + complex of, [Me4N] [(3-oxo- Tolyporphin A, XVII: 10 − NCTPP)Cl2] , II: 335, II: 336 synthesis, XVII: 16–18 3− (NCTPP )Cl2, synthesis under anaerobic Tolyporphins, XVII: 17 conditions of, II: 334 Tolypothrix nodosa, XVII: 10 unsubstituted Pcs (UV-vis absorption data) TonB system, and bacterial acquisition of iron, and, IX: 131 VI: 340–341 Tin porphyrins TonB-dependent receptors of gram-negative myoglobin/hemoglobin/HRP and, V: 28 organisms, XV: 361–364 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 301 FA

Cumulative Index to Volumes 1–25 301

TonB-dependent transporters (TBDT), Trans-A2B2 porphyrin, XXIII: 37 XXV: 217 Trans-AB porphyrin by [2+2] condensation, TonB, transperiplasmic protein, XXV: 220 XXIII: 102

Tookad (WSR09), IV: 255, IV: 257–258 Trans-A2B2 porphyrin from meso- Topoisomerase I, β-octabromo-meso- bromoporphyrin and arylboronic acid, tetrakis(4-carboxyphenyl)porphyrin as synthesis of, XXIII: 146

potential inhibitor of, II: 219 Trans-A2 porphyrins, preparation of, XXIII: 94 Tosylhydrazone, intramolecular C-H insertion, Trans-BCaTBPP, XVIII: 16, XVIII: 43 XXI: 350 on Au(111) surface, XVIII: 17 Total Correlation Spectroscopy (TOCSY), chemical structures of, XVIII: 17 2D NMR techniques and, VI: 64–69 Trans-B4CTBPP, XVIII: 8–10, XVIII: 15 Totally unsubstituted NCP, synthesis of, chemical structures of, XVIII: 14 II: 300 Trans-BECTBPP, XVIII: 12, XVIII: 15 Toxicity of Mn porphyrins, medical effects of Trans-bipyridylporphyrins, XXIII: 96 water-soluble metalloporphyrins and, Trans-BPyP, XVIII: 27 XI: 380 chemical structures of, XVIII: 29 Toxicity of NO, V: 149 Trans-cinnamaldehyde, hydrogenation of, TPFC [meso-tris(pentafluorophenyl) corrolate] XVIII: 310 and kinetic studies of LFP-generated Transcobalamin, XXV: 211–212 complexes, XIV: 538–539 Transcobalamins I, XXV: 105 iron-oxo complexes and, XIV: 554–556 Transcobalamins II, XXV: 105–106 TPP Transcription and hemopexin, XV: 305–306 dianion of tetraphenylporphyrin, VIII: 300 Transcription factors, XI: 332–334 non-Aufbau orbital filling and, VI: 42 Transfer reactions, I: 133. See also Charge (TPP)Fe derivatives transfer (porphyrin/phthalocyanines and and empirical methods of spectral analysis, carbon nanostructures); See catalysts

VI: 81–82 with B12 enzyme functions and resolution/assignment of spectral Transferrin, and bacterial acquisition of iron, analysis, VI: 70–73 VI: 340–341

TPPF20, and modification of porphyrin Transferrin conjugates, IV: 150–152, IV: 346 macrocycle, III: 512–513 Trans-(doubly N-confused porphyrin) (trans-

TPPS nanotubes N2CP), synthesis and X-ray structure of in ionic self-assembly of porphyrin Cu(III) complex of, II: 350, II: 351 nanostructures, XI: 184–187 Trans-DCPP, XVIII: 19 and metal porphyrins as reductive Trans-doubly NCPs, synthesis and metalation photocatalysts, XI: 201–202 of, XVI: 250 photoconductivity and, XI: 196–200 Transducers, mass, XII: 156–160 UV-vis absorption/emission spectra of, Trans-membrane (TM) α-helices, XIX: 343 XI: 194–195 Trans-tetrabenzodiazaporphyrin TPPS, and water-splitting nanodevice for solar (trans-TBDAP), XVI: 334 hydrogen production, XI: 207–209 cis isomers of (tert-Bu) –H TBDAP, 2 2 TPyP, XVIII: 26, XVIII: 28, XVIII: 30 structures of, XVI: 361 molecules adsorbed on Cu(111) surface, derivatives in devices, proposed structures XVIII: 28 for applications of, XVI: 399

Trans-AB2C porphyrin from condensation of PdTBDAP, normalized phosphorescence dipyrromethane–dicarbinol and emission spectra exhibited by, dipyrromethane, XXIII: 103 XVI: 369 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 302 FA

302 Cumulative Index to Volumes 1–25

synthesis using carboxylic acids, XVI: 346 silicon and, IX: 104–113

trans isomers of (tert-Bu)2–H2TBDAP, silver and, IX: 130 structures of, XVI: 361 sodium and, IX: 103 Trans-tetraolbacteriochlorin, XVII: 48 tantalum and, IX: 134 Trans-vinylene bridged hexaphyrin, I: 529–534 thallium and, IX: 113–114 Transient absorption spectroscopy, defined, thorium and, IX: 136 XI: 14 tin and, IX: 131 Transistor memory, hybrid electronics and, tungsten and, IX: 134 X: 302–303 uranium and, IX: 136 Transition energy (intensity) UV-vis absorption data, IX: 102–136 unsubstituted Pcs UV-vis absorption data of aluminum and, IX: 103–104 α -and/or β-substituted Pcs and, antimony and, IX: 131 IX: 137–314 beryllium and, IX: 103 naphthalocyanine/anthracocyanine/ bismuth and, IX: 134 ring-expanded Pc analogs and, cadmium and, IX: 130 IX: 383–396 chromium and, IX: 114–115 Pc analogs with cobalt and, IX: 119–120 heteroatoms inside aromatic skeleton copper and, IX: 120–121 and, IX: 415–448 dysprosium and, IX: 136 triazole units and, IX: 579–584 europium and, IX: 135 Pc derivatives with crown-ether units gadolinium and, IX: 135–136 and, IX: 449–479 gallium and, IX: 122 Pc dimers/oligomers and, IX: 538–578 germanium and, IX: 122 Pc polymers and, IX: 585–601 2H and, IX: 102–103 sandwich-type Pcs and, IX: 489–537 hafnium and, IX: 131–134 sub-/super-Pcs and, IX: 397–414 indium and, IX: 130 TAPs and mono-/di-/triaza porphyrin iridium and, IX: 134 analogs and, IX: 315–382 iron and, IX: 115–119 tetraazachlorin derivatives and, lead and, IX: 134 IX: 480–486 lithium and, IX: 103 triazacorrole derivatives and, lutetium and, IX: 136 IX: 487–488 magnesium and, IX: 103 vanadium (unsubstituted Pcs) and, IX: 114 manganese and, IX: 115 zinc (unsubstituted Pcs) and, IX: 121–122 mercury and, IX: 134 zirconium (unsubstituted Pcs) and, molybdenum and, IX: 127 IX: 122–127 neodymium and, IX: 134 Transition metal catalysts nickel and, IX: 120 meso-/β-brominated porphyrins and, I: 7 osmium and, IX: 134 and porphyrin array synthesis, I: 5 palladium and, IX: 130 Transition metal catalyzed reactions, phosphorus and, IX: 113 XXIII: 130–189 platinum and, IX: 134 “click” reaction, XXIII: 169–181 rhenium and, IX: 134 generation of 5- and 5,15-vinyl-10,20- rhodium and, IX: 130 diphenylporphyrins by coupling of ruthenium and, IX: 127–130 freebase bromoporphyrins with samarium and, IX: 135 vinyl-tri-n-butyltin, XXIII: 133 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 303 FA

Cumulative Index to Volumes 1–25 303

Heck reaction, XXIII: 166–169 [Fe(TPP)–O–Cr(TPP)(Pip)] complex, porphyrinyl cyclobutenediones to XXIV: 28 porphyrin–quinone architectures, six-coordinate chromium(III) XXIII: 134 complexes, XXIV: 27 Sonogashira reaction, XXIII: 159–166 d4 complexes, XXIV: 28–36 – Stille coupling to access to porphyrinyl anionic complex [Mn(TPP)(O2)] , cyclobutenediones, XXIII: 133 XXIV: 33 Suzuki reaction, XXIII: 134–159 bis-cyanide derivative, XXIV: 34 Transition metal complexes, bis(oxygen-ligated)manganese(III) β-functionalization of meso- complexes, XXIV: 34 tetraarylporphyrins using, II: 206 closest pairs of phenyl rings, XXIV: 31 Transition metal complexes of porphyrins/ five-coordinate manganese(III) species, porphyrinoids, XVIII: 304–305 XXIV: 33 lanthanide porphyrin complexes, five-coordinate manganese(III) XVIII: 376–402 structures, XXIV: 28–29 porphyrin complexes of platinum with “four-coordinate” metalloporphyrins, 5d transition metals, XVIII: 348 XXIV: 35 chemical and spectral properties of Mn–O(H)–Mn angle, XXIV: 29 complexes with platinum bound selected structural features for mono- within the macrocycle cavity, bridged binuclear porphyrinato XVIII: 348–357 complexes, XXIV: 32 iridium, osmium, and rhenium d5 complexes, XXIV: 36–38 porphyrins, XVIII: 374–376 five-coordinate [Mn(TPP)(1-MeIm)], peripherally platinated porphyrin structure of, XXIV: 36 complexes, XVIII: 357–371 four-coordinate Mn(TPP), XXIV: 36 platinum and supramolecular arrays, d6 complexes, XXIV: 38–41 XVIII: 371–374 bis(ligated) ruthenium complexes, porphyrin complexes with 4d transition XXIV: 40 metals, XVIII: 305 five-coordinate rhodium(III) palladium and porphyrins, XVIII: 321–348 organometallic complexes, porphyrin complexes with niobium, XXIV: 38–40 ruthenium, and rhodium, rhodium(III) and iridium(III) XVIII: 305–320 complexes, XXIV: 41 Transition metal derivatives, XXIV: 19 six-coordinate cobalt(III) complexes, d0 complexes, XXIV: 19–25 XXIV: 38

double decker [Zr(OEP)2], 23 six-coordinate rhodium species, square antiprismatic coordination group XXIV: 41

in [Zr(OEP)-(OAc)2], XXIV: 22 six-coordinate ruthenium(II) complexes, stereochemistry of d0 niobium(V), XXIV: 40 XXIV: 24 d7 complexes, XXIV: 41–44 d1 complexes, XXIV: 25–26 Co(OEP) derivative, characterization,

complex [Ti(TPP)(OCH3)], XXIV: 25 XXIV: 43 Molybdenum(V), XXIV: 26 crystalline four-coordinate cobalt(II) types, XXIV: 25 derivative, XXIV: 43 d2 complexes, XXIV: 26–27 five-coordinate cobalt(II) derivatives,

[Os(Por)(O)2] complexes, XXIV: 27 XXIV: 42 d3 complexes, XXIV: 27–28 M(TPP) isomorphic series, XXIV: 44 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 304 FA

304 Cumulative Index to Volumes 1–25

d8 complexes, XXIV: 44–50 nitrogen oxide ligands with iron crystalline square-planar Pd(TPP) and porphyrinates, XXIV: 100–102 Pt(TPP), XXIV: 49 second and third row nitrosyl meso-cyclohexyl substituents in derivatives, XXIV: 98–100 Ni(TCHP), XXIV: 48 six-coordinate nitrosyl derivatives with nickel(II) porphyrinates, stereochemical iron(II), XXIV: 96–98 parameters for selected four- six-coordinate nitrosyl derivatives with coordinate, XXIV: 46 iron(III), XXIV: 98–100 nickel porphyrinate with reliable Transition-metal hexadecafluoro parameters, XXIV: 45 phthalocyanines, as low-voltage ruffled Ni(OEP) structure, XXIV: 45 thin-film transistors, III: 69 “tri B” form of Ni(OEP), XXIV: 47 Transition-metal 1,3,8(11),10(9),15(18), d9 complexes, XXIV: 50–52 17(16),22(25),24(23)-Octanitrophthalo- crystalline Cu(TPP), XXIV: 50 cyanine, synthesis of, III: 79, III: 82 crystal structure of Ag(TPP), XXIV: 51 See also High-valent transition metal d10 complexes, XXIV: 52–56 corroles/corrolazines cadmium(II) derivatives, XXIV: 56 and charge transfer in optical spectrum,

complex [Zn(T-p-NPCP)(C2H5OH)], XIV: 469 ethanol replaced by pyridine in, Transition-metal phthalocyanines XXII XXIV: 53 with closed-shell ground state, derivative [Zn(TPyP)(Py)], XXIV: 52 XXII: 209–220 pyridine ligand with four p-nitrophenyl adiabatic excitation energies computed groups, XXIV: 53 for LMCT, XXII: 213 zinc group metal(II) ions, XXIV: 52 electron-releasing methoxy groups, zinc porphyrinate, discrete bis(pyridine) XXII: 211 complexes of, XXIV: 55 energy level scheme for NiPc, NiNc,

iron derivatives, XXIV: 56–88 NiPc(OMe)8, and NiNc(OMe)8, four-coordinate iron(II) derivatives, XXII: 212 XXIV: 77–78 evolution of transient absorption five-coordinate iron(II) derivatives, difference spectra of

XXIV: 78–83 NiNc(OBu)8, XXII: 219 six-coordinate iron(II) derivatives, excitation energies, composition and XXIV: 83–88 character of lowest excited states four-coordinate iron(III) derivative, of NiPc/NiNc, XXII: 213 XXIV: 75–77 excitation energies, composition and five-coordinate iron(III) derivatives, character of lowest excited states

XXIV: 56–65 of NiPc(OMe)8/NiNc(OMe)8, (porphyrinato)iron derivatives, XXIV: 56 XXII: 214 six-coordinate iron(III) derivatives, excited-state diagram for NiPc, NiNc,

XXIV: 65–75 NiPc(OMe)8, and NiNc(OMe)8, porphyrin nitrosyls and related iron species XXII: 214 with nitrogen oxide ligands, excited state pattern of NiNc, XXIV: 89–102 XXII: 216 five-coordinate nitrosyl derivatives, kinetic behavior of transient XXIV: 89–96 absorptions, XXII: 218 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 305 FA

Cumulative Index to Volumes 1–25 305

1,3LMCT states, due to upshift of Transition-metal porphyrins with closed-shell HOMO going from NiNc to ground state, XXII: 186–204

NiNc(OMe)8, XXII: 218 old(III) porphyrins, XXII: 198–201 normalized ground state absorption excitation energies and oscillator spectra of NiPc, NiNc, strengths [AuP]+ and ZnP,

NiPc(OBu)8, XXII: 215 XXII: 200 spectral cuts at 2 ps, 8 ps, and 150 ps of frontier orbital diagram for gold(III) + NiPc(OBu)8 photoexcited in porphine, [AuP] and zinc(II) toluene at 730 nm, XXII: 217 porphine, ZnP, XXII: 199 transient absorption experiments, mechanism of triplet relaxation XXII: 215 processes in, XXII: 198 transient absorption experiments on NiOMTP, XXII: 192–198

NiPc(OBu)8, XXII: 217 conductor-like continuum solvent model ultrafast transient absorption (COSMO), using, XXII: 193 π π spectrometry data, XXII: 210 deactivation scheme for S1 ( , *) and α π π upshift of HOMO upon substitution S2 ( , *) states of NiOMTP, of Nc ring, XXII: 212 XXII: 196 with open-shell ground state, energy level scheme for ruffled NiP and XXII: 220–228 NiOMTP conformers, XXII: 194 cobalt complex, TDDFT calculations, excitation energies of lowest singlet and XXII: 225 triplet excited states of NiOMTP, deactivation processes, XXII: 228 XXII: 197

energy level scheme of CoNc(OMe)8, photoexcitation studies of NiOMTP, in XXII: 222 toluene, XXII: 193

energy level scheme of CuNc(OMe)8 spectral cuts from surface, 196 from spin-unrestricted spectral cuts from transient dynamic DFT/BP86/TZ2P calculations, surface generated upon XXII: 223 excitation, XXII: 194 excitation energies, composition, and stability of NiOMTP conformers, character of lowest excited states XXII: 193

of CuNc(OMe)8, XXII: 224 TDDFT calculations of singlet and excitation energies, composition and triplet states, XXII: 195 character of lowest excited states NiP, NiOEP, NiTPP, XXII: 186–192

of CoNc(OMe)8, XXII: 225 adiabatic energies of these states, geometry optimization, XXII: 220 XXII: 189 Gouterman LUMOs, XXII: 221 computed excitation energies, ground state absorption and static XXII: 190

emission spectra of CuNc(OBu)8, energy level scheme for planar (D4h XXII: 224 symmetry) and ruffled NiP LMCT state, XXII: 225 conformers, XXII: 187 solvation and geometry relaxation excitation energies of lowest singlet and effects, XXII: 225 triplet excited states, XXII: 189 TDDFT and SF-TDDFT calculations, excitation energies of lowest singlet XXII: 221 excited states, XXII: 191 TDDFT calculations in gas-phase excitation energies of lowest triplet located, XXII: 222 excited states, XXII: 191 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 306 FA

306 Cumulative Index to Volumes 1–25

TDDFT calculations on excited states, Transmission electron microscopy (TEM) XXII: 188 images vibrational relaxation (cooling) of hot four-leaf clover self-assembly of porphyrin metal-centered (MC) state, nanostructures, XI: 187–188 XXII: 186 and metal porphyrins as reductive NiTPTBP, XXII: 201–204 photocatalysts, XI: 201–204 excitation energies of low-lying singlet platinum nanostructures for fuel cells, and triplet excited states of, XI: 216 XXII: 203 TPPS ionic self-assembly of porphyrin photophysical behavior of, XXII: 203 nanostructures, XI: 185–187 photophysics of, XXII: 202 Translation and hemopexin, XV: 305–306 pump-probe transient absorption Translocator protein (TSPO), XX: 179 investigation of, XXII: 201 Transverse relaxation-optimized spectroscopy as sensitizer in cancer photothermal (TROSY), and HasA–HasR interaction, therapy (PTT), XXII: 202 VI: 355 TDDFT results, XXII: 204 Tren-capped porphyrins, XXI: 24 transient spectra of, XXII: 202 activity of, XXI: 25 vertical excitation energies and Tri- and tetra-sulfonamidophenylporphyrins, oscillator strengths, XXII: 204 synthesis of, II: 203 Transition-metal porphyrins, XXII: 185–186 Triads for charge stabilization, with open-shell ground state, 204–208 tetrapyrrole-nanocarbon hybrids, copper complex singly occupied I: 377–384 molecular orbital (SOMO), Triads, organic molecular solar cells, XXII: 206 XVIII: 76–79 energy level scheme for MTPTBP, Trialkylsilyl-substituted phthalocyanines, XXII: 205 III: 42–45 excitation energies, composition and Triaminotriazine (TAZ), and LB film character of lowest excited states formation, XII: 128 of CoTPTBP, XXII: 206 Trianions, guanidinocarbonyl-based anion excitation energies, composition and receptors and, VIII: 173 character of lowest excited states Triazacorrole derivatives, UV-vis absorption of CuTPTBP, XXII: 207 data, IX: 487–488 TDDFT description of excited states, Triazaporphyrin analogs. See TAPs and XXII: 204–205 mono-/di-/triaza porphyrin analogs, transient absorption experiments, UV-vis absorption data XXII: 205 Triazole bisporphyrin, “click chemistry” Transition-metal tetraaminophthalocyanines, synthesis of, II: 274, II: 276 III: 114, III: 119 Triazolehemiporphyrazines, XVII: 173–177 Transition-metal tetrabromophthalocyanines, free base and divalent metal complexes of, cyclotetramerization and, III: 70–71 XVII: 175–176 Transition-metal tetrapyrroles XXII similarity to benziphthalocyanine, deactivation mechanism, characterized as XVII: 176 “nonemitters,” XXII: 171 structural elucidation, XVII: 175 photodynamics of nonemitter, XXII: 172 synthesized and properties of, XVII: 176 photophysics of, XXII: 171 thiadiazole ring segments of expanded Transmetalation. See Metal complexes macrocycle, XVII: 180 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 307 FA

Cumulative Index to Volumes 1–25 307

Triazole units of Pc analogs, UV-vis phosphite-bridged and metalloporphyrins, absorption data, IX: 579–584 I: 97, I: 101–102 Tribenzoporphyrins, synthesis of mono-, porphyrin, syntheses with structural di(adj)-, di(opp)-, and, II: 22, II: 23, modifications, XIII: 157–160 II: 24–27 Suzuki-Miyaura/Sonogashira coupling Tribenzosubporphyrin, II: 3 reactions for, I: 41, I: 43–44 Tribenzoazuliporphyrins, synthesis of, synthesis of tris(1,10-phenantrene) Ru(II)- XVI: 67 centered porphyrin timer, I: 117–118 Tributyl phosphate (TBP), optical sensors and, X-ray diffraction analysis of, I: 85–87 XII: 315 Trimethylsilyl trifluoromethanesulfonate Tricarbaporphyrinoid system, attempted (TMSOTf), XVIII: 257 synthesis of, XVI: 268 Trimethylsilyldiazomethane, XXI: 333 Trichloroacetic acid (TCA), amperometric Trimethylsilylphthalonitrile, preparation of, sensors and, XII: 197 III: 42, III: 44 Trichoderma, and fungal NO reductase, V: 143 Trimethylsilyl-substituted phthalocyanines Trichuris, and heme transport in helminths, spectra, III: 261 XV: 24 Trioctylphosphine (TOPO), semiconductor Triethylamine (TEA), CSPT fingerprint of nanocrystals and, XII: 376

1500 ppm of, XII: 209–210 Trioxo N3CH, synthesis and X-ray structure of Trifluoroacetates acetylacetonato derivative of, II: 360, oxophlorins and, XIII: 210–213 II: 361, II: 362 and porphyrin analogs with exocyclic Triple component systems of tectons double bonds, XIII: 241 coordination bonding and three Trifluoromethyl groups in substituted complementary tectons, phthalocyanines, solubility and, III: 72 XIII: 353–360 Trifluorosulfanyl-/trifluorosulfanyl-substituted H-bonded networks for, XIII: 381–384 phthalocyanines, halogen-substituted Triple decker phthalocyanines and, III: 76–77 Pc derivatives. See UV-vis absorption data Trimacrocycle, synthesis of, XI: 28–32 of sandwich-type Pcs Trimeric aerobic enzyme CobU, XXV: 65 phthalocyaninato/porphyrinato complexes, Trimeric and oligomeric systems, chiral as sandwich-type tetrapyrrole rare phthalocyanines synthesis/ earth complexes, XIV: 273–275 characterization, XXIII: 433–437 sandwich complexes, III: 342–343 Φ Φ structures of apple procyanidin monomer-, Triplet quantum yields ( T) and lifetimes ( T) dimer-, trimer- and tetramer-TiPc basic photophysical parameters of, complexes, XXIII: 435 VII: 399–401 structures of rare-earth triple deckers, carboxylated derivatives and, VII: 316–317

XXIII: 434 MPc(SO3)mix complexes (sulfonated UV-visible absorption and CD spectra of derivatives), VII: 315–316

procyanidins recorded in CH3OH, MPc(SO3)n complexes (sulfonated XXIII: 436 derivatives), VII: 316

Trimeric intermediate in synthesis of H3bzpc, quaternized derivatives and, VII: 317–318 structure of, XVII: 154 Triplet state

Trimers (ZnOEP)3Ph2, XXII: 107 lifetimes, and difference between distorted Trimers tetraaryl-substituted/planar meso- antenna pigments and, XI: 7 unsubstituted molecules, XIII: 9 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 308 FA

308 Cumulative Index to Volumes 1–25

Φ quantum yields ( T) bis(oxazolinyl)pyrroles [H(bop)] and basic photophysical parameters of, preparation of open-chain VII: 399–402 oligopyrroles, VIII: 359, VIII: 361 MPc/Pc parameters and, VII: 275–277 prodigiosenes and preparation of open- studies (photophysics), porphyrin isomers, chain oligopyrroles, VIII: 352–353 VII: 407–409 types of tri-/tetrapyrrolic species, Triplet-triplet absorption VIII: 348–352 transient absorption spectroscopy and, Tris(pentafluorophenyl)corrole, IV: 57 XI: 14 Tris(phthalocyaninato) complexes two-photon absorption as, XI: 9–10 electrochemical properties of, XIV: 432–436 Triply fused Zn(II) porphyrin oligomers, electronic absorption spectroscopy of, XXIII: 222 XIV: 329–332 Triply linked arrays, Resonance Raman as sandwich-type tetrapyrrole rare earth spectra (dihedral angle control) of, complexes, XIV: 271–273, I: 469–472 XIV: 291–295

Triply N-confused hexaphyrins (N3CH), Tris(pyrazolyl)borate(Tp) ligands, N-fused synthesis of, II: 360, II: 361 porphyrinato ligands and, II: 347, Triply-linked diporphyrins, as dipolarophile in II: 348 1,3-dipolar cycloaddition of azomethine Trisporphyrin, chemical model for, XI: 100–103 ylide, II: 265–267 Trisquinoxalinoporphyrin, synthesis of, Triporphyrins, transition-metal-meditated II: 88–89, II: 92 cycloaddition reaction for, I: 57–58 Triton X-100, I: 280, I: 282 Tripyrrane Trivalent rhodium, porphyrin complexes of, analogs, attempted synthesis from XVIII: 316 cyclopentadienyl cation, XVI: 256 Tropiporphyrins, II: 160, XVI: 4, XVI: 91–98 with cycloheptatriene dialdehyde, Ag(III) coordinated complex and its crystal condensation of, XVI: 92 structure of, II: 161, II: 162 intermediates MacDonald-type “3 + 1” synthesis of, proposed mechanism for acidolytic XVI: 92 cleavage of, XVI: 17 partial 500-MHz proton NMR spectrum in synthesis of, XVI: 15 in CDCl3, XVI: 94 Tripyrrane condensation with diformylpyrrole, protonation of, XVI: 94 XXIII: 108 reactions of, XVI: 96

Tripyrrane with 2-formylpyrrole, condensation UV-vis spectra in 1% Et3N-CHCl3, of, XXIII: 107 XVI: 93 Tripyrrin-/bai-based coordination polymers, TrpRS, heme sensor proteins and, XV: 428 supramolecular assemblies and, Trypaflavin, XII: 302 VIII: 470–478 Trypanosoma brucei Tripyrrinone/tripyrrin metal chelates, heme-binding extracellular proteins and, coordination chemistry of open-chain XV: 31 oligopyrroles and, VIII: 378–389 and heme/hemoglobin uptake in Tripyrrolemethane, amidopyrrole-based trypanosomatids, XV: 22 receptors and, VIII: 184–186 Trypanosoma congolense, and Tripyrroles heme/hemoglobin uptake in bis(arylimino)isoindolines [H(bai)] and trypanosomatids, XV: 22 preparation of open-chain Trypanosoma cruzi, and heme/hemoglobin oligopyrroles, VIII: 356–360 uptake in trypanosomatids, XV: 21 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 309 FA

Cumulative Index to Volumes 1–25 309

Trypanosoma vivax, and heme/hemoglobin and pathological roles of IDO/TDO, uptake in trypanosomatids, XV: 22 V: 77–78 Trypanosomatids, heme/hemoglobin uptake in, and proposed mechanism of dioxygenase XV: 21–22 reaction, V: 114–118 Tryptophan 2,3-dioxygenase (TDO) and resonance Raman spectra of rhlDO, allosteric interaction of, V: 90–92 V: 94–97 bacterial TDO compared with IDO and resonance Raman spectra of rhTDO, structure, V: 112–114 V: 97–103 biological/biochemical properties of, and spectra of rabbit IDO, V: 82–83, V: 85, V: 73–75 V: 87 biological functions of, V: 73–74 and spectra of recombinant human IDO, catalytic properties of, V: 75–76 V: 82–83, V: 87 endogenous reducing system for, V: 76–77 and spectra of rhTDP human, V: 87–90 EPR study of rhTDO, V: 92, V: 94 and structures of importance of, V: 80 related enzymes (bacterial TDO), metabolic importance of, V: 73 V: 108–109 and metabolic pathway of L-tryptophan, TDO from X. campestris, V: 109–112 V: 73–74 Tryptophan residue, XXI: 9 physiological roles of, V: 78 TSPP, semiconductor nanocrystals and, primary structures of, V: 74–75 XII: 374–375 and resonance Raman spectra of rhTDO, T-T absorption measurement for optical V: 97–103 sensing, XII: 324–330 and structures of TTPPC [5,10,15-tris(2,4,6-triphenylphenyl)- related enzymes (bacterial TDO), corrolate], manganese-oxo complexes V: 108–109 (corrole synthesis/reactivity) and, TDO from X. campestris, V: 109–112 XIV: 540–541, XIV: 540–541 Tryptophan catabolism (heme dioxygenases) TT-SONO enzyme and allosteric interaction of TDO, V: 90–92 crystal structure of, V: 155 bacterial TDO compared with IDO Thermoanaerobacter tengcongensis and, structure, V: 112–114 V: 154 and biological/biochemical properties of Tuberculosis, IV: 284–285 IDO/TDO, V: 73–75 See Mycobacterium tuberculosis and catalytic properties of IDO/TDO, Tumor imaging V: 75–76 activatable photosensitizers, IV: 281 and endogenous reducing system for histological techniques vs. noninvasive IDO/TDO, V: 76–77 imaging, IV: 287–288 EPR study of rhTDO, V: 92, V: 94 HPPH–cyanine dye (CD) for fluorescence EPR study of rlDO/rhlDO, V: 92–93 imaging and PDT, IV: 290–293 and heme environment/binding mode of pyropheophorbide conjugates, IV: 36, L-Trp in xcTDP, V: 111–113 IV: 274 heme environment of rhlDO, V: 105–107 radiolabeled photosensitizers, IV: 90–95 IDO2 properties, V: 75 See also Fluorescence imaging; importance of, V: 73, V: 80 Multifunctional agents; Positron mutagenesis study and rhlDO, V: 107–108 emission tomography (PET) overall structure of IDO and rhlDO, Tumor microenvironment and PDT, V: 103–106 IV: 425–441 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 310 FA

310 Cumulative Index to Volumes 1–25

activator protein 1 (AP-1) element, IV: 430 prostaglandin E (PGE ), IV: 429, IV: 432, 2 2 Akt phosphorylation, IV: 437–438, IV: 440 IV: 435 17-allylamino-17-methoxygeldanamycin protein kinase B induction by PDT, (17-AAG), IV: 439–440 IV: 437–438 anti-angiogenesis treatment, IV: 427, SAPK/JNK inhibitor SP600125, IV: 430 IV: 428, IV: 432–435 stress-activated protein kinase/c-Jun Avastin (bevacizumab), IV: 434–435 N-terminal kinase (SAPK/JNK), background, IV: 426–427 IV: 430 CCAAT/enhancer-binding protein (C/EBP) survivin expression following PDT, element, IV: 430 IV: 438–439 cyclic AMP response element 2 (CRE-2), tissue inhibitor of matrix metalloproteinase IV: 430 (TIMP), IV: 436 cyclooxygenase-1 (COX-1), IV: 427, IV: 428 tumor necrosis factor alpha (TNF-α), cyclooxygenase-2 (COX-2), IV: 427, IV: 432, IV: 435 IV: 428–429 vascular endothelial growth factor 2 cyclooxygenase-2 (COX-2) inhibitors, (VEGF 2), IV: 427, IV: 432–435, IV: 427–432 IV: 440 EMAP-II, IV: 434 See also Photodynamic therapy (PDT) extracellular matrix metalloproteinase Tumor necrosis factor alpha (TNF-α), IV: 432, inducer (EMMPRI), IV: 436 IV: 435

extracellular signal-regulated kinase Tumor suppressor cytochrome b561 (TSCytb), (ERK1/2), IV: 430 XIX: 341, XIX: 360–361 heat shock protein (Hsp), IV: 439–440 oxidation-reduction titrations, XIX: 361 HIF-1 responsive genes, IV: 433 X-Band EPR spectra of, XIX: 361 hypoxia induced by PDT, IV: 426, Tumor tissue targeting. See Cellular targeting IV: 432–433, IV: 441 Tungsten, unsubstituted Pcs (UV-vis hypoxia-inducible factor absorption data) and, IX: 134 HIF-1α, IV: 432–433, IV: 435, IV: 440 Tunneling, coherent double hydrogen HIF-1β, IV: 432 tunneling in isolated molecules, IM862, IV: 434 VII: 411–416 interleukin-1 beta (IL1β), IV: 432, IV: 435 Twin-coronet porphyrins, X: 27–28, X: 30 matrix metalloproteinase (MMP) activation Two-dimensional IR spectroscopy by PDT, IV: 427, IV: 435–437, approach to, VII: 479–480 IV: 440, IV: 441 and estimation of angles/distances between MEK1/2 inhibitor PD98059, IV: 430, molecules, VII: 481 IV: 431 importance of, VII: 441 mitogen-activated protein kinase (MAPK), and OH stretching/H-bonding with water, IV: 430–431, IV: 435 VII: 480–481 N-(2-cyclohexyloxy-4-nitrophenyl)- Two-dimensional NMR techniques, VI: 64–69 methane sulfonamide (NS-398), Two-electron-oxidized products of Fe(III) IV: 428–429 porphyrins nuclear factor kappa B (NFκB), IV: 430 electronic structures of, VII: 6–7 nuclear factor kappa B (NFκB) inhibitor general considerations, VII: 129 SN50, IV: 430 Fe(III) N-oxides, VII: 134 p38 MAPK inhibitors SB203580 and Fe(III) porphyrin dications, VII: 134 SB202190, IV: 430, IV: 431 Fe(V) porphyrins, VII: 134–136 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 311 FA

Cumulative Index to Volumes 1–25 311

oxoiron(IV) cation radicals, VII: 130–134 Ultracentrifugation, circular dichrosim (CD) Two-photon absorption (TPA), XI: 9–10 and, I: 234 of β-to-β-linked diporphyrins, I: 20 Umpolung principle, XIII: 11–12 enhancement via double bridging strategy, Uncoupling, in catalytic cycle of cytochromes I: 21 P450, V: 181–182 impact of conjugation length increase, Undecyl 5-aminolevulinate (Und-ALA), I: 18 IV: 366 molecular engineering/rational synthesis Unsaturated porphyrins, Heck protocol in and, I: 4–5 synthesis of, II: 232 multiply linked porphyrin arrays and, Unsubstituted BODIPY, VIII: 6–7 I: 82–83, I: 88–89 Unsubstituted Pcs, UV-vis absorption data Two-photon absorption (TPA) efficiency abbreviations for, IX: 2–3 expanded porphyrins and, I: 508, I: 510 metal/solvent/transition energy/remarks/ hexapyrrolic expanded porphyrins and, reference number, IX: 102–136 I: 527 Unsymmetrical halogenated porphyrins, pentapyrrolic expanded porphyrins and, palladium-catalyzed coupling reactions I: 513, I: 518–519 starting from, XXIII: 163 self-assembling metalloporphyrins and, Unsymmetrical phthalocyanine, XVIII: 265 I: 92–93 Unsymmetrically substituted Two-point bound porphyrin-fullerene carboxy-Zn(II)Pcs, and dye-sensitized conjugates solar cells, X: 162–163 cation-crown ether, tetrapyrrole- µ-Oxo iron Hp complexes nanocarbon hybrids, I: 385–389 Uranium, unsubstituted Pcs (UV-vis H-bonding, tetrapyrrole-nanocarbon absorption data) and, IX: 136 hybrids, I: 369–377 Urease, IV: 365 π−π interaction, tetrapyrrole-nanocarbon Ureido-substituted phthalocyanines, hybrids, I: 368–369 III: 115–118

Type I cytochrome c3 (TpI-c3), XIX: 167 UROD assay, 303–304 absorption bands from D. africanus, adjusting pH and starting reaction, XIX: 168 XIX: 309–310 amino acid sequence alignment of, chemical reduction of porphyrins as XIX: 176 substrates, XIX: 306–307 studied by EPR spectroscopy in oxidized coupled assay, XIX: 304–305 state, XIX: 169 critical parameters, XIX: 312–313 Type-III hemes, symmetrical with Type-XIII, materials, XIX: 305–306 V: 10 palladium on carbon reduction of Tyr171, XV: 151–152 porphyrins, XIX: 307–309 Tyr70, XV: 142 reducing porphyrin to porphyrinogen, Tyrosine radical, molecular structures of, V: 310 XIX: 307 separation and quantification of reaction U products by HPLC, XIX: 310–312 235U-labeled phthalocyanines, IV: 95 UROD assay, XIX: 303–304 235U-labeled porphyrins, IV: 95 adjusting pH and starting reaction, Ullmann coupling, XXIII: 252–253 XIX: 309–310 Ullmann homocoupling, meso-meso linked chemical reduction of porphyrins as diporphyrins obtained by substrates, XIX: 306–307 Ni(0)-mediated, XXIII: 252–253 coupled assay, XIX: 304–305 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 312 FA

312 Cumulative Index to Volumes 1–25

critical parameters, XIX: 312–313 gene encoding, XIX: 287 erythrocyte, XIX: 302 hereditary hemochromatosis gene HPLC tracing of porphyrin standards and (HFE), XIX: 289 UROD reaction products, XIX: 311 Urod+/− mouse, XIX: 289 materials, XIX: 305–306 UROD mRNA, XIX: 288 palladium on carbon reduction of heme biosynthetic enzyme, XIX: 286 porphyrins, XIX: 307–309 human diseases materials, XIX: 308 laboratory diagnosis of PCT and HEP, porphyrin reduction, XIX: 308–309 XIX: 301–302 reducing porphyrin to porphyrinogen, pathogenesis, XIX: 299–301 XIX: 307 Porphyria Cutanea Tarda (PCT), separation and quantification of reaction XIX: 298–299 products by HPLC, XIX: 310–312 treatment, XIX: 302–303 solvent gradient for HPLC separation of hypothesis for mechanism of porphyrins, XIX: 311 decarboxylation, XIX: 296 wavelength maximum and molar extinction molecular biology, XIX: 287–289 coefficient for porphyrins in 1.5 N mouse hepatic porphyrin accumulation, HCl, XIX: 307 XIX: 290 Urod+/− mouse, XIX: 289 phototoxic effect of porphyrins, XIX: 301 UROD mRNA, XIX: 288 porphomethene inhibitor of, XIX: 300 Uro’gen III, XXV: 28, 32–33 proposed reaction mechanism for, Uro’gen III cosynthetase, actions of, XXV: 22 XIX: 297 Uro’gen III synthase, “spiro” mechanism reaction catalyzed by, XIX: 285 proposed for, XXV: 28 residues within different quadrants of Urogen III decarboxylase (UROD), XX: 154 substrate, XIX: 295 decarboxylation by, XX: 154 structure, XIX: 289–292 Urogen III synthase (UROS), XX: 153 β-barrel fold of, XIX: 292 cyclic tetrapyrrole formation by, dimeric, XIX: 291 XX: 153–154 enzyme, XIX: 289 Uroporphyrin, III: 491–492 with ligands, XIX: 294 Uroporphyrinogen decarboxylase (UROD), model of uroporphyrinogen-III in active and heme synthesis intermediate site of, XIX: 291 transport, XV: 8 urine porphyrin profile from PCT patient, Uroporphyrinogen decarboxylase (UROD), XIX: 287 XIX: 285–287 Uroporphyrinogen, enzymatic generation of, activity present in variety of normal and XIX: 305 porphyric tissues, XIX: 313 Uroporphyrin I (URO I), XIX: 146–148 alignment of primary amino acid sequence , XXIII: 9, 15 of, XIX: 288 Uroporphyrinogen III (Urogen III), XX: 7, alternative ways to calculate activity of, XX: 150, XX: 220–221 XIX: 312 Uroporphyrinogen III (UROGEN), XIX: 146 charge surface representation of monomer, ALA conversion to, XV: 176 XIX: 293 conversion to heme chemistry, XIX: 292–298 CPDH and, XV: 194–197 decarboxylation for uroporphyrinogen-III, CPO and, XV: 191–194 XIX: 295 FC and, XV: 200–203 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 313 FA

Cumulative Index to Volumes 1–25 313

general information, XV: 186–187 UV-vis absorption data PPO and, XV: 197–200 of α -and/or β-substituted Pcs UROD and, XV: 188–190 structure/metal/solvent/transition general discussion of formation, energy/remarks/reference XV: 175–177 number, IX: 137–314 heme biosynthesis and, XV: 163–164 of naphthalocyanine/anthracocyanine/ring- metabolism of, XIX: 286 expanded Pc analogs, IX: 383–396 model of, in active site of, XIX: 295 numbering system used in absorption porphobilinogen deaminase (PBGD) and, database for, IX: 100–101 XV: 181–183 of Pc analogs with heteroatoms inside porphobilinogen synthase (PBGS) and, aromatic skeleton, IX: 415–448 XV: 177–180 of Pc analogs with triazole units, uroporphyrinogen III synthase (UROS) IX: 579–584 and, XV: 183–186 of Pc derivatives with crown-ether units, and heme synthesis intermediate transport, IX: 449–479 XV: 8 of Pc dimers/oligomers, IX: 538–578 and transport of heme precursors between of Pc polymers, IX: 585–601 cytosolic enzymes, XV: 11–12 of sandwich-type Pcs, IX: 489–537 Uroporphyrinogen III biosynthesis, XXV: 27–30 of sub-/super-Pcs, IX: 397–414 Uroporphyrinogen III synthase (UROS), of TAPs and mono-/di-/triaza porphyrin XXV: 27 analogs, IX: 315–382 Uroporphyrinogen III, XXIII: 7–8, 15 of tetraazachlorin derivatives, IX: 480–486 Uroporphyrinogen III decarboxylase (UROD), of triazacorrole derivatives, IX: 487–488 and UROGEN conversion to heme, of unsubstituted Pcs XV: 188–190 metal/solvent/transition energy/remarks/ Uroporphyrinogen III synthase (UROS) reference number, IX: 102–136 and conversion of PBG into UROGEN, UV-vis absorption spectroscopy, XV: 176 importance/relevance of, IX: 3–4 and coordination of heme biosynthesis in UV-vis spectrum of cell, XV: 204 β, meso, β-anthracene triply fused and UROGEN formation from ALA, porphyrins, II: 60 XV: 183–186 β, meso-anthracene doubly fused Uroporphyrinogen isomers, XXIII: 7–11 porphyrins, II: 60 biomimetic studies, XXIII: 8–10 bacteriophins, II: 208–209 biosynthesis, XXIII: 7–8 chlorophins, II: 208–209 sketches, XXIII: 8 dithiadiazuliporphyrin dication, II: 170 enumeration of, XXIII: 10–11 UV-vis absorption/emission spectra non-enzymic condensation of data of water-soluble porphyrins, porphobilinogen, XXIII: 9 XI: 342–344 uroporphyrinogens I-IV, XXIII: 9 of self-assembled porphyrin nanostructures, Uroporphyrinogen macrocycles, XXIII: 8–9 XI: 194–196 UROS gene, XX: 154 Ursodeoxycholic acid (UDCA), IV: 408–409 V UV spectroscopy. See also Spectroscopy 2-Vinyindoles as versatile dienes with various and hemin insertion into heme pocket, V: 6 dienophiles, reactions of, XVII: 313 − − − and ligands O2/CO/N3 /F /CN , V: 8 3-Vinylbacteriochlorophyllide, XX: 5 polymeric films and, XII: 251 3-Vinyl-Bchlide a, XX: 127 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 314 FA

314 Cumulative Index to Volumes 1–25

3-Vinyl-8-ethyl-protochlorophyllide, XX: 22 and ring skeletal structures of tetrapyrrole 8-Vinyl group, reduction of, XX: 21 ligands, VIII: 294–295 esterification, XX: 35–36 Verdohemochromogen, and chemical identification of genes encoding 8-vinyl oxidation of porphyrin, XIII: 205 reductases, XX: 24–25 Vernier assembling strategy, self-assembling and its localization in pathway, XX: 22–24 metalloporphyrins and, I: 96, I: 99 reduction of pyrrole ring B, XX: 33–35 Verteporfin, IV: 126, IV: 142–143, IV: 171, reduction of pyrrole ring D, XX: 25–33 IV: 183, IV: 185 8-Vinylprotochlorophyllide, XX: 5, XX: 8–9 See also Benzoporphyrin derivative 8-Vinyl reduction, XX: 22 monoacid ring A (BPD-MA) variable routes for, XX: 23 Vibration Vacataporphyrin, XVIII: 332 metal-ligand vibrations and, VII: 454–456 as an annulene-porphyrin hybrid, II: 141, T-derivative spectroscopy and, II: 142 VII: 456–458 conformational changes and coordination Vibrational properties, ferric heme-nitrosyls complexes of, II: 147–149 with proximal imidazole coordination, crystal structure of, II: 142 XIV: 193–198 metalation of, XVI: 276 Vibrio cholerae, post-transcriptional heme synthesis of, XVI: 275 regulation and, XV: 384 van der Waals forces Vibrio fischeri, and H-NOX regulation of carbon nanohorns and, I: 422 output domains, XV: 133 covalent bridge and, I: 150 Vilsmeier formylation of metallocomplexes, and three-dimensional compared with XVIII: 349 two-dimensional acceptors of Vilsmeier reaction, synthesis of electron transfer, I: 144–145, I: 147 formylporphyrins using, II: 78, II: 79 Vanadium, unsubstituted Pcs (UV-vis Vilsmeier-Haack reactions, and electrophilic absorption data) and, IX: 114 substitution reactions of BODIPYs with Vanadium-oxo complexes heteroatom substituents, VIII: 28 corrolazines, XIV: 569–571 Vinylchlorins, olefins and cross-metathesis in corroles, XIV: 568–569 modification of, II: 237 Vanadium-substituted hemoproteins, V: 27 Vinylogous diazulihexaphyrin, synthesis and Vapor deposition to incorporate Pcs into protonation of, XVI: 304 OPVs, X: 146–152 Vinylogous formylation reactions, XXIII: 116 Variegate porphyria (VP), XV: 199 Vinylogous porphyrins, XVI: 279–283 Vascular endothelial growth factor 2 (VEGF 2), Vinylogous porphyrinoids, XVI: 282 IV: 143, IV: 427, IV: 432–435, IV: 440 Vinylporphyrins, olefins and cross-metathesis Vasodilation. See Hypoxic vasodilation in modification of, II: 237 Vaulted binaphthylporphyrins, X: 41–42 Vinylporphyrins, singlet oxygen additions to, Verdohemes XVII: 46 coupled oxidation and, VIII: 296 Vinyl-substituted porphyrins, formation by dehydration of bilindione, electropolymerization of, XII: 251–263 VIII: 301, VIII: 304 Vinyltriethoxysilane (VTES), XII: 395 formation by porphyrin oxidation, Visudyne, IV: 30, IV: 254

VIII: 296–302 Vitamin B12, XXV: 135. See also Vitamin B12- heme catabolism and, VIII: 295–296 derivatives XXV: 84-85, 137–141, and open-chain tetrapyrroles from ring 143–152, 156, 216 opening of, VIII: 301–307 base-on/base-off equilibrium of, XXV: 88 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 315 FA

Cumulative Index to Volumes 1–25 315

cisplatin derivative conjugated to, XXV: 109 biosynthesis of hydroxymethylbilane, constitutions of Co(III), Co(II) and Co(I) XXV: 22–27 states of, XXV: 87 biosynthesis of porphobilinogen, coordinated to cisplatin, XXV: 122 XXV: 16–21 Eschenmoser/Woodward and Eschenmoser biosynthesis of uroporphyrinogen III, approaches leading to key corrin XXV: 27–30 intermediate for synthesis of, anaerobic pathway, XXV: 46–48 XXV: 302 CbiH, ring contraction and methylation fluorescence labeling of, XXV: 115–118 at C-17, XXV: 56–58 fluorescent cobalamin analogs, CbiL, C-20 methylation, XXV: 54–56 XXV: 117 cobalt-precorrin-5 and role of CbiF and with functionalities for conjugating active CbiG, XXV: 58–59 sites for imaging modalities, from cobalt-precorrin-5B to cobyrinic structures derived from, XXV: 108 acid, XXV: 59–61 functionalization of, XXV: 105–107 from precorrin-2 to cobalt-factor II, PAMA derivatives of, XXV: 113 XXV: 49–54 radioiodination of, XXV: 110 transformation of cobyrinic acid into radiolabeling of cobyric acid, XXV: 61–62 57Co and radioiodide, XXV: 107–110 nucleotide loop assembly, XXV: 64 99mTc and 111In, XXV: 110–115 synthesis of adenosylcobinamide-GDP, reaction with guanosine and cleavage of XXV: 64–66 Pt(II) complexes from, XXV: 123 synthesis of α -ribazole, XXV: 67 structures, XXV: 3, 267 synthesis of lower base 5,6-dimethyl- X-ray structure of, XXV: 109 benzimidazole (DMB),

Vitamin B12, biosynthesis of, XXV: 3 XXV: 66–67 aerobic pathway synthesis of adenosylcobinamide adenosylcobyric acid synthesis, XXV: 46 (phosphate), XXV: 62–64 adenosylcobyrinic acid a,c-diamide synthesis of precorrin-2, XXV: 31

synthesis, XXV: 44–46 Vitamin B12-derivatives XXV

cobalt reduction, XXV: 43–44 and B12-transporters HC/IF/TC, equilibrium cob(II)yrinic acid a,c-diamide synthesis, dissociation constants, XXV: 216 XXV: 42–43 in crystal and in solution, structure, hydrogenobyrinic acid a,c-diamide XXV: 141 synthesis, XXV: 41–42 “base-on/base-off” constitutional switch hydrogenobyrinic acid synthesis, of “complete corrinoids,” XXV: 40–41 XXV: 153–156 precorrin-6A and precorrin-6B “complete” corrinoids, XXV: 143–152 synthesis, XXV: 39–40 “incomplete” corrinoids, XXV: 142–143 precorrin-3A synthesis, XXV: 32–34 modified, from “organic” transformations

precorrin-3B synthesis, XXV: 34–37 of vitamin B12, XXV: 137–141 precorrin-4 synthesis, XXV: 37–39 organometallic and redox-chemistry of, precorrin-5 synthesis, XXV: 39 XXV: 156 precorrin-8 synthesis, XXV: 40 formation and cleavage of (Co–C)-bond, ALA to uroporphyrinogen III XXV XXV: 156–163 δ biosynthesis of -aminolevulinic acid, redox-chemistry of B12-derivatives, XXV: 3–16 XXV: 163–168 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 316 FA

316 Cumulative Index to Volumes 1–25

structural formulas of B12-derivatives Voltammetry. See Protein-film voltammetry modified at ring B, XXV: 137 (PFV) structures listed in Cambridge VPc/NbPc/TaPc absorption spectra, IX: 42–45 Crystallographic Data Bank, XXV: 237A–244A W

Vitamin B12-derivatives for spectroanalytical Wang resin, dendrimers/conjugated polymers and medicinal applications, (macromolecules) and, III: 348 XXV: 84–85 Water-effect on electropolymerization of coordination chemistry of corrinoids, pyrrole, XVII: 252–254 XXV: 85–86 “Water mediated” mechanism for peroxidase spectroscopic properties of corrinoids, Compound I formation, XIX: 61 XXV: 89–92 Water oxidation, manganese-oxo complexes structure, constitution and nomenclature (corrole synthesis/reactivity) and, of corrinoids, XXV: 86–88 XIV: 541–542 optical/colorimetric detection with Water-soluble benzoporphyrins, II: 29 corrin-based chemosensors XXV Water-soluble BODIPYs comparison with detection of cyanide from coupling/substitution reaction, using porphyrins, XXV: 100–102 VIII: 40–42 cyanide, XXV: 92–100 from electrophilic substitution reaction, sulfite, XXV: 102 VIII: 39–40

Vitamin B12 as carrier for targeted drug Water-soluble carboxyphthalocyanine delivery XXV derivatives and cancer treatment, metallic cytotoxins, XXV: 120–123 III: 106–107 organic cytotoxins, XXV: 118–120 Water-soluble Fe(III) and Mn(III) porphyrins,

Vitamin B12 for radioimaging and as carrier low-molecular weight, XXI: 391 for targeted drug delivery XXV Water-soluble metalloporphyrins (chemistry/

fluorescence labeling of vitamin B12, biology/medical effects) XXV: 115–118 Alzheimer’s disease (AD) and, XI: 363

functionalization of vitamin B12, amyotrophic lateral sclerosis (ALS) and, XXV: 105–107 XI: 361–363 molecular imaging, XXV: 103–105 and antioxidative mechanism of action for 57 radiolabeling of vitamin B12: Co and cancer, XI: 365–368 radioiodide, XXV: 107–110 β-substituted isomeric Mn(III) 99m radiolabeling of vitamin B12: Tc and N-alkylpyridylporphyrins, 111In, XXV: 110–115 XI: 319–321 Vitellogenin, and heme uptake/detoxification catalase-like activity, XI: 331 in insects, XV: 23–24 cerebral palsy and, XI: 361 Vitiligo, IV: 3 detection of Mn porphyrins in plasma/ Vitreous carbon electrode, V: 221 tissues/cellular components, VO(OEP), lowest energy ionization of, XI: 348, XI: 350–354 VI: 42–43 diabetes and, XI: 364–365 Volatile organic compounds (VOCs), optical and electrostatic effects/structure-activity sensors and, XII: 163–164 relationships Voltammetric electrochemical sensors, anionic porphyrins, XI: 324–327 XII: 199–200, XII: 199–200 cationic porphyrins, XI: 323–324 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 317 FA

Cumulative Index to Volumes 1–25 317

neutral porphyrins, XI: 327–328 and reactions with reactive species (general imaging studies and, XI: 379–380 overview), XI: 328–329 and inhibition of activation of transcription reactive oxygen species (ROS) and, factors, XI: 332–334 XI: 304 ischemia/reperfusion conditions and, reactive species/cellular signaling/oxidative XI: 371–373 stress (historically), XI: 297–299 lipophilicity (partition coefficient between and reactivity towards

n-octanol/water, POW), XI: 347–350 cellular reductants, XI: 332 lung injuries and, XI: 372–374 HClO, XI: 332 metalloporphyrins (historically), XI: 298, lipid-based reactive species, XI: 332 XI: 300–304 sepsis and, XI: 379 Mn porphyrins sickle-cell disease and, XI: 374 in mitochondria, XI: 355–356 and SOD mimicking versus in nucleus/cytosol, XI: 356 Mn-transporting mechanisms Mn(III) N,N ′-dialkylimidazolylporphyrins, (stability), XI: 345–347 XI: 321 spinal cord injury and, XI: 359–360 Mn(III) N,N ′-dialkylpyramidazolyl- staurosporine-induced neurotoxicity and, porphyrins, XI: 321 XI: 363–364 and MnP stroke and, XI: 358–360 in brain cancer model, XI: 369 subarachnoid hemorrhage and, XI: 360 in breast cancer model, XI: 369 superoxide dismutases (SODs) and, in prostate cancer model, XI: 369 XI: 305 in skin cancer model, XI: 368–370 superoxide reactivity/targets and, nitrosation and, XI: 331 XI: 306–308 ortho cationic superoxide reducing ability and, XI: 329 Fe(III) N-substituted pyridylporphyrins, superoxide sources in E. coli, XI: 305–306 XI: 318–319 synthesis of Mn porphyrins, XI: 334–336 Mn(III) N-alkylpyridylporphyrins, and thermodynamic effects of SOD mimics XI: 310–317 (Mn porphyrin-based), XI: 308–309 oxygen-derivatized porphyrins, and toxicity of Mn porphyrins, XI: 380 XI: 317–318 in vivo accumulation of Mn porphyrins oxygen/glucose deprivation and, XI: 363 affected by cellular reductants, pain management and, XI: 374–375 XI: 356 para/meta Mn(III) N-alkylpyridyl- and Zn porphyrins as photosensitizers, porphyrins, XI: 321–323 XI: 380–383 Parkinson’s disease and, XI: 363 Water-soluble metalloporphyrins, XXI: 386 peroxynitrite-reducing ability and, background of catalysis in/on water, XI: 329–331 XXI: 380–381 pharmacokinetics and, XI: 356–358 catalysis by, XXI: 379 pro-oxidative action and, XI: 334 catalytic cycle of CYP450, XXI: 392 and pro-oxidative mechanism of action for chlorite dismutation, XXI: 398–399 cancer, XI: 370–371 history, XXI: 379–380 purity/characterization of Mn porphyrins, metal coordination-directed oxidation, XI: 337–344 XXI: 390 radiation injuries and, XI: 375–378 oxidation of cyclohexene, XXI: 391 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 318 FA

318 Cumulative Index to Volumes 1–25

oxidation reactions, XXI: 382 Wittig reaction, 3-ethenyl substituents alkene cleavage, XXI: 396 (semisynthetic chlorophylls) and, C–H hydroxylation, XXI: 390–392 XI: 240–241 epoxidation, XXI: 384–390 Wittig-Horner reaction sequences, and lignin oxidation, XXI: 396–397 alkenyl/alkynyl substituents of mechanisms of epoxidation and phthalocyanines, III: 41 hydroxylation, XXI: 392–394 Wolinella succinogenes, nitrite reduction and, oxidation of alcohols, XXI: 395 V: 130 oxidation of chlorophenol, Wood–Ljungdahl pathway of autotrophic XXI: 397–398 carbon dioxide fixation, XXV: 178 oxime oxidation, XXI: 396s Woodward–Hoffmann rules, XXV: 268, 270, sulfoxidation, XXI: 382–384 281–282 PEG-1 and PEG-2 (poly(ethylene) glycol) Wortmannin, IV: 418–419, IV: 437–438 porphyrins, schematic structure, WPc absorption spectra, IX: 45–49 XXI: 389 reactions of diazo compounds, XXI: 400 X cyclopropanation reactions, XAl(III)Pc complexes, quantum yields for, XXI: 401–402 VII: 337 N–H and S–H insertions, Xanthene and dibenzofuran cofacial systems, XXI: 403–404 XXI: 98 reductive dechlorination of alkenes, Xanthene and dibenzofuran pillared XXI: 399–400 manganese porphyrins, XXI: 108 superoxide dismutase mimics, XXI: 400 Xanthene and dibenzofuran pillars, XXI: 58–67 Suzuki–Miyaura reaction, XXI: 404 Xanthene (DPX) pillar, XXI: 58 Water-soluble phthalocyanine complexes Xanthene Hangman porphyrins, XXI: 129 aggregation behavior in, VII: 278–281 Xanthene-linked dyad of cobalt and free base Φ fluorescence spectra/quantum yields ( F) porphyrins, XXI: 76 in, VII: 281–314 Xanthene Pacman porphyrins, XXI: 63

photobleaching quantum yields (ΦP), Xanthene porphyrins, Suzuki-type C–C VII: 320–321 coupling reactions and, III: 337–338

singlet oxygen quantum yields (Φ∆), Xanthomonas pruni, and TDO VII: 318–320 identification/characterization, V: 81 Φ triplet quantum yields ( T) and lifetimes Xanthoporphyrinogen, and porphyrins with τ ( F), VII: 315–318 double bonds at meso positions, Water-soluble porphyrins XIII: 201–202 examples, XXI: 381 X-confused porphyrins mechanism of peroxide activation by, concept of, II: 113–114 XXI: 393 coordinating properties of, II: 120 Water-soluble ruthenium porphyrin catalysts, coordination compounds of, II: 120 XXI: 181 flexibility of molecular and electronic Water-splitting nanodevice, solar hydrogen structure of, II: 120 production and, XI: 207–209 oxidation states of coordinated metal ions Whole body radioprotection, medical effects and aromatic derivatives of, II: 120 of water-soluble metalloporphyrins, synthesis of, II: 117–118 XI: 375–376 Xenobiotics Williamson ether synthesis, benzene-centered and catalytic cycle of cytochromes P450, porphyrin hexamers and, I: 38–39 V: 170 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 319 FA

Cumulative Index to Volumes 1–25 319

and cleavage of C–C bonds by cytochrome of Pt-bridged cofacial diporphyrin, P450, V: 191–192 I: 117–118 cytochrome P450 enzymes and, V: 166 X-ray photoelectron microscopy (XPS), Xenon, main trapping site of porphycene in, self-assembled monolayers and, VII: 398–399 XII: 150 Xenopus laevis peroxidases (plant/fungal/bacterial and [2Fe-2S]+ cluster as cofactor of FECH, superfamily) and, VI: 412–414 XV: 63 X-ray structures of

and transport of ALA out of mitochondria, acetylacetonato trioxo N3CH, II: 360, XV: 10 II: 361, II: 362 XGa(III)Pc complexes, quantum yields for, B(III) complex of NFTPP, II: 330, II: 332 VII: 337–339 catalytic intermediates of peroxidases XIn(III)Pc complexes, quantum yields for, (animal superfamily), VI: 431–432 VII: 337–339 Co(III) complex of NCTPP, II: 316

Xiphonphorus helleri, hemopexin and, XV: 234 Cu(III) complex of cis- and trans-N2CP, X-ray absorption II: 340, II: 350, II: 351 fine structure (EXAFS) studies, and metal- doubly N-confused sapphyrin derivative, ion-binding sites of FECH, XV: 73 II: 356

Near Edge Structure (XANES), TBP8Cz doubly N-fused porphyrins (N2FP), complexes and, XIV: 547 II: 350, II: 352 X-ray characteristics etheno-bridged NCP, II: 343–344 of bismetalated biscorroles, XI: 48–50 of ethyl chlorophyllide a dihydrate, of bismetalated bisporphyrins, XI: 42–44 I: 240–241 of bismetalated porphyrin-corroles, XI: 48 Fe(NCTPP 3−)NO and Fe(NCTPP2−)NO, and geometrical data of Pacman II: 314 bisporphyrins, XI: 35–41 Fe(II) complex of NCTPP, II: 310, II: 312, of monometalated bisporphyrins, XI: 41–42 II: 313 of monometalated porphyrin-corroles, Fe(III) complex of 21-oxo-NCTPP, II: 312, XI: 46–48 II: 313, II: 314 X-ray crystal structure analysis Mn(II) complex of NCTPP, II: 307, II: 308 cytochrome P450 enzymes and, V: 186–187 Mn(III) complex of NCTPP, II: 308 nonpropionated hemes and, V: 21–22 Mo(II) complex of TPP, II: 306 X-ray diffraction (XRD) analysis N-confused dithiasapphyrin, II: 351, II: 353 of 5-p-pyridyl-15-(3,5-di-tert-butylphenyl) Ni(II) and Ni(III) complexes of NCTPP, Zn(II) porphryin, I: 106 II: 348–349, II: 350 fully synthetic self-assembling BChl mimic P(V) complex of N-fused isophrolin, and, I: 279 II: 348–349, II: 350 iron-oxo complexes and, XIV: 552 Re(I) complex of of isomers in R-CID, I: 108–109 domino-fused sapphyrin, II: 354, II: 355 Karlsruhe Synchroton (ANKA) for BChl doubly N-confused pentaphyrin, II: 354, mimics, I: 263 II: 355 metallotetrapyrrole-fullerene dyads and, NCTPP, II: 315, II: 319 I: 315 N-Me-NPP, II: 309

of multiply linked dimer/trimer arrays, Re(VII) complex of (NFTPP)O3, II: 345, I: 85–87 II: 346 of porphyrin-fullerene held by π−π rhodium-fastened N-confused gable interactions, I: 340 porphyrin, II: 317, II: 318, II: 319 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 320 FA

320 Cumulative Index to Volumes 1–25

tetrabutyl ammonium salt of N-confused synthesis of ytterbium porphyrin dimer sapphyrin, II: 354 conjugated to [60]fullerene, Sn(IV) complex of 3-oxo-NCTPP, II: 335, XVIII: 400 II: 336 Ytterbium-substituted hemoproteins, Y(III) complex of myoglobin/hemoglobin/HRPand, V: 28

NCTPP, II: 337 Ytterbium triflate [Yb(OTf )3], XVII: 22

(NCTPP)[CpCo(II)(P(OMe)2O3)], Yttrium derivatives, XXIV: 20 II: 337, II: 338 YwbN, XIX: 275 Zn(II) complex of 5,20-diphenyl-NCP, II: 330, II: 332 Z See also Crystal structure of Zanamivir, inhibition of influenza and tetravalent derivatives of, II: 279 Y Zanamivir-porphyrin conjugate, “click γ-Phylloporphyrin XV, XXIII: 33 chemistry” synthesis of, II: 279

Y2Pc3 absorption spectra, IX: 24–28 Zeeman energy, and g-values of catalytic YcdB, XIX: 234, XIX: 277 intermediates, VI: 423–424 Yeast, heme uptake in, XV: 20–21 Zenopus laevis, FECH purification and, XV: 57 Yeast peroxisomal proteins, heme sensor Zerner’s intermediate neglect of differential proteins and, XV: 427 overlap/spectroscopic methods Yersinia entercolitica (ZINDO/s) and gram-negative bacterial heme uptake, and historical aspects of porphyrinoid XV: 361 optical spectroscopy, XIV: 467 heme specificity/affinity/dynamics and, MCD intensity and, XIV: 475–476 XV: 372 and predicted absorption spectra based on and metalloporphyrin inhibitors of heme TD-DFT and ZINDO/s methods, uptake, XV: 389–390 XIV: 514–515 Yersinia enterocolitica, and heme uptake in prototropic tautomer detection, gram-negative bacteria, XV: 18 XIV: 483–485 Yersinia pestis, and heme uptake in trends between calculated parameters and gram-negative bacteria, XV: 18 observed properties, XIV: 515–519 YfeX, XIX: 277 Zero-field splitting (D), and multifrequency Ylides, XXI: 353 EPR spectroscopy/reactivity of catalytic Ylide formation/2,3-sigmatropic intermediates, VI: 422–423 rearrangement, XXI: 359–361 Zero-field splitting contributions to 2− Y(III)(NCTPP ) [CpCo(II)(P(OMe)2O3)], pseudocontact shift, and curvature in synthesis and X-ray structure of, Curie plot over temperature range of II: 337, II: 338 measurement, VI: 79

YPc2 absorption spectra, IX: 24–28 Zigzag geometry of 1D networks, coordination Ytterbium porphyrin complexes, XVIII: 384, bonds for porphyrin-based tectons, XVIII: 386–387 XIII: 308–310 luminescence characteristics of, XVIII: 397 ZINDO method of TAP calculations, IX: 8–10 structure of dimer, XVIII: 401 Zirconium phosphonate, and assembly of structures of synthesized Yb(III) porphyrin multilayers on ITO, porphyrins, XVIII: 396 XII: 236 supramolecular helical structure, XVIII: 401 Zinc (Zn) synthesis of, XVIII: 399 alkylated Zn tetraazaporphyrins, IV: 71–72 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 321 FA

Cumulative Index to Volumes 1–25 321

alkyl-substituted benzenoid ZnPc Zinc oxide derivatives, IV: 84 and synthesis of extended porphyrins

alkynyl-substituted ZnPcS4 derivatives, by template condensation, XIII: 24, IV: 67–70 XIII: 28 carbohydrate-substituted ZnPc, IV: 74–76 Zinc phthalocyanine π orbitals, III: 281 β-cyclodextrin-substituted ZnPc, IV: 74–75 Zinc porphyrin linked by bisethynyl deoxyribose-substituted ZnPc, IV: 74, IV: 76 quaterthiophene to gold porphyrin, diethylaminoethanethiol-substituted ZnPc, XXIII: 249 IV: 82 Zinc porphyrins, crowned (metallo)porphyrins dodecakis(trifluoroethoxy)ZnPc, IV: 63–64 with, XXIV: 208–221 fluconazole-substituted ZnPc, IV: 74 with appended crown ether para-quinone, hexadeca-carboxy ZnPc, IV: 73 XXIV: 209 octacarboxyl ZnPc complex, IV: 73 biphenyl-20-crown-6-derived zinc octatriethyleneoxysulfonyl-substituted porphyrin dimer, XXIV: 210 ZnPc, IV: 73 bisporphyrin-calix[4]arene crown ethers, phosphate-substituted ZnPc, IV: 71–72 XXIV: 218, 221 pyridine ZnPc derivatives, IV: 84 bis(zinc porphyrin) ethynyl calix[4]arene tetratriethyleneoxysulfonyl-substituted compounds, XXIV: 220 ZnPc, IV: 73 calix[4]arene-zinc porphyrin conjugate, unsubstituted Pcs (UV-vis absorption data) XXIV: 218 and, IX: 121–122 with capped diaza-18-crown-6, XXIV: 209 zinc hexadecafluorophthalocyanine 18-crown-6 appended lanthanide porphyrin (ZnPcF ), IV: 62–63, IV: 64, IV: 65 system, XXIV: 223 16 65Zn-labeled zinc phthalocyanine (ZnPc), crowned porphyrins, XXIV: 221 IV: 126 crowned ytterbium porphyrins, XXIV: 223 Zn(II) naphthobenzoporphyrazines, IV: 86 Cu(II)-Cu(II) cyclam-capped porphyrin

zinc perfluorophthalocyanine (ZnPcF64), system, XXIV: 222 IV: 63 diaza crown ether-capped Zn porphyrin zinc phthalocyanine (ZnPc), IV: 4, receptors, XXIV: 214 IV: 62–63, IV: 126–127 doubly diazacrown capped zinc porphyrin Zinc 31-hydroxymethylpyrochlorophyllide d and its aquo complex, XXIV: 212 derivatives, XX: 95, XX: 97 metal-ligand coordination and Zinc acetate alkylammonium cation-crown ether and synthesis of extended porphyrins by binding, XXIV: 217 template condensation, XIII: 25–26 supramolecular porphyrin-fullerene system, synthesis of TBPs and Pcs and, II: 3 XXIV: 214 Zinc bacteriochlorin, XVII: 9 supramolecular porphyrin-fullerene Zinc hemoproteins, reconstituted hemoproteins systems, examples, XXIV: 215 and, V: 26–27 5,10,15,20-tetrakis-(benzo-18-crown-6)- Zinc insertion for metalloporphyrin formation, porphyrin, XXIV: 216 I: 17, I: 93, I: 97. See also Fully zinc(II) and lead(II) diaza 18-crown-6- synthetic self-assembling BChl mimic; porphyrin, XXIV: 219 Semisynthetic BChl mimics zinc porphyrin-benzo 15-crown-5 Zinc methyl pyrochlorophyllide a, XX: 66, conjugates, XXIV: 213 XX: 73 zinc porphyrin 12-crown-4 conjugate Zinc methyl pyrochlorophyllide d, XX: 93 and its magnesium analog, derivatives, XX: 98 XXIV: 212 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 322 FA

322 Cumulative Index to Volumes 1–25

zinc porphyrin which binds KCN, electrical conductance, I: 449–452 XXIV: 213 and nonlinear optical properties of Zinc porphyrins. See Fully synthetic self- porphyrin tapes, I: 466–467 assembling BChl mimic; Zinc insertion one-dimension linear, I: 443–448 for metalloporphyrin formation radiative coherent length, I: 448–449 carboxylic acid, synthesis of naphthalene- and resonance Raman spectra of strapped fused, II: 69–70 diporphyrins, I: 461–463 electropolymerized with fullerene, and resonance Raman spectra of triply XII: 274–278 linked arrays, I: 469–472 monomer/dimers, X: 190–191, X: 196–200 SMFS, I: 452–458 optical oxygen sensing and, XII: 326–327 strapped porphyrin dimers (dihedral angle palladium catalysis in meso- and β-amino control) and, I: 459–461 substituted synthesis of, II: 239 types of analysis, I: 441–442 as photosensitizers, medical effects of via coordination (dihedral angle control), water-soluble metalloporphyrins and, I: 463–464 XI: 380–383 via host-guest interactions (dihedral angle Zinc protoporphyrin, FECH purification and, control), I: 464–466

XV: 56 Zn2-gable-porphyrins, XXII: 109 Zinc pyrochlorophyllide d, XX: 98 ZnBCPP1, XVIII: 12 Zinc tetraphenylporphyrin (ZnTPP) chemical structures of, XVIII: 13 calculation using DFT minimization, and models of networks of, XVIII: 13 XIV: 480–481 ZnBCPP2, XVIII: 12 and MOs for ZnCP and complexes branched structure on Cu(111) surface, from Gaussian checkpoint files, XVIII: 13 XIV: 493–498 chemical structures of, XVIII: 13 and origin of intensity of absorption, and models of networks of, XVIII: 13 XIV: 476–477 molecular wires on Cu(111) surface, π–π * spectral regions of ring and, XIV: 479 XVIII: 13 and predicted absorption spectra based on ZnBCPP3, XVIII: 12 TD-DFT and ZINDO/s methods, chemical structures of, XVIII: 13 XIV: 514–515 and models of networks of, XVIII: 13 structure of, XIV: 469–470 ZnB3CTBPP, XVIII: 10, XVIII: 12, synthesis of β-boronic acid substituted, XVIII: 42–43

II: 221, II: 223 with C60 bound in pores, monolayer of, Zinc verdoheme, reactivity of, VIII: 302–307 XVIII: 44 Zinc(II) azaphthalocyanine, XVIII: 279 chemical structures, XVIII: 11 Zinc(II) complex of bacteriochlorin, XVII: 36 ZnB4CTBPP, XVIII: 10, XVIII: 15

Zn(II) complexes, molecular structures of ZnBCTBPP-C60 assembly, XVIII: 43 different macrocycles, XXIII: 299 ZnbisB3CTBPP, XVIII: 10, XVIII: 42 Zinc(II) octaethylporphyrin. See ZnOEP on Ag(111), XVIII: 11 Zinc(II) phthalocyanine. See ZnPc chemical structures, XVIII: 11 Zirconium, unsubstituted Pcs (UV-vis Zn-dependent PBGS octamer of E. coli, absorption data) and, IX: 122–127 XXV: 17 ZN arrays Zn-octaethylporphyrin/Zn-octaethylchlorin conformational heterogeneity, I: 458 dimers, XXII: 75 doubly linked arrays (dihedral angle ZnODEP, XVIII: 73–74 control) and, I: 467–469 ZnOEP, XVIII: 41–42, XVIII: 44 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 323 FA

Cumulative Index to Volumes 1–25 323

ZnONEP, XVIII: 74 ZnTPyP, XVIII: 29 ZnOOEP, XVIII: 73–74 Zn(II) Cd(II) complex of NCP2, II: 333 ZnPc derivatives, XXIV: 394–397 Zn(II) complex of 2 non-peripherally tetra-substituted, 5,20-Ph2-NCP , II: 330, II: 332 XXIV: 397–398 S- and A-trimers of NCP2, II: 332, II: 333 peripherally octa-substituted, Zn(II) porphyrin-[60]fullerene dyad, XXIV: 398–399 cross-metathesis protocol in synthesis ZnPc, XVIII: 45, XVIII: 62 of, II: 237 on Au(111) surface, XVIII: 41 ZnPc complexes, quantum yields for, derivatives, XVIII: 291 VII: 330–335

Zn(Hp(OH)4)py complex, structure of, ZnPc/CdPc/Cd2Pc3/HgPc absorption spectra, XVII: 140 IX: 74–78 ZnTCPP, XVIII: 176 ZrPc absorption spectra, IX: 39–42

ZnTEEP, XVIII: 22 ZrPc2 absorption spectra, IX: 39–42 chemical structure of, XVIII: 24 Zwitterions ZnTEEP-pyridine, XVIII: 22 guanidinocarbonyl-based anion receptors on HOPG, XVIII: 24 and, VIII: 171–172, VIII: 174 b1243_ Vol-1 25_Cumulative Index.qxd 9/13/2012 11:02 AM Page 324 FA