Bufo Eichwaldi) in Northern Iran

Total Page:16

File Type:pdf, Size:1020Kb

Bufo Eichwaldi) in Northern Iran Herpetology Notes, volume 11: 31-33 (2018) (published online on 10 January 2018) Preliminary study of reproduction in the Talysh toad (Bufo eichwaldi) in northern Iran Haji Gholi Kami1,* and Nasim Bashirichelkasari1 The common or grey toads are distributed across the entire Palearctic realm from northwestern Africa to Japan. On the basis of gross morphology, these toads were united as the Bufo bufo species group) Inger, 1972), which subsequently became the genus Bufo in the revision by Frost et al. (2006). Subsequently, Bufo eichwaldi was described by Litvinchuk et al. (2008) based on genome size, allozyme variation, and morphological evidence. This species is a relatively large toad (SVL in females up to 170 mm, in males up to 120 mm; Litvinchuk et al., 2008) with a uniformly brown or grayish-brown dorsum with irregular black spots and markings; the venter is dirty white with irregular dark spots and markings (Fig. 1). Its distribution is limited by the Hyrcanian (Caspian) Figure 1. A female Bufo eichwaldi (snout–vent length approximately 90 mm) from Kordkuy, Golestan Province, Forest in southeastern Azerbaijan and northern Iran (up northern Iran. Photo by H.G. Kami. to elevations around 1200 m; Mozaffari and Moghari, 2012). Litvinchuk et al. (2008) stated in their original description that B. eichwaldi seem to be uncommonly encountered in nature, and they are quite rare in museum collections. As a consequence little is known about reproduction in this species. For this study, we collected 14 specimens (six males, eight females) of B. eichwaldi in Mazandaran and Golestan Provinces, Iran (Fig. 2). We observed that in our research area adult toads leave their hibernation sites in the forest and move to pools in late January. Their accumulation at mating ponds is dramatic, and the toad population size will increase until early February, when in some areas the number of toads becomes so large that they are encountered all over the local roads. Adult reproductive structures and amplexus.—During the reproductive period males have black pineal bodies Figure 2. Map of sampling localities for Bufo eichwaldi in 1 Department of Biology, Faculty of Sciences, Golestan northern Iran. Two localities were in Mazandaran Province University, Gorgan, Iran (left) and five in Golestan Province (right). In the inset, the * Corresponding author e-mail: [email protected] Caspian Sea is the grey body of water at the top of the map. 32 Haji Gholi Kami & Nasim Bashirichelkasari Figure 3. Callosoid bodies on three fingers of the forelimbs in male Bufo eichwaldi, here shown in an individual from Golestan Province, Iran. Photo by H.G. Kami. Figure 4. Axillary amplexus in Bufo eichwaldi. Photo by H.G. Kami. (callosoid bodies) on three fingers of the forelimbs (Fig. 3) and a visible vocal sac under the throat. Males, which are always smaller than females, jump onto the back of females and firmly clasp the base of the female forelimbs Tadpoles.—Tadpoles begin to emerge from eggs with their own (Fig. 4) in a typical axillary amplexus. approximately 2 d after fertilization. They grow During these attempts, vocalizations reminiscent of rapidly, and tadpole length can reach 32 mm over the screams may be heard from some individuals, perhaps 2-mo tadpole stage. �ight after hatching, tadpoles have to indicate a release call. tiny external gills for a brief period of time 1 d. These Spawning and eggs.—Spawning usually happens in morph into sinistral spiracles near the rear of body. The early April–June. Females may lay between 1200–6840 cloacal opening is centred at the base of the tail and the eggs (as determined from museum records; unpubl. labial tooth row formula (according to Altig, 1970) is data). Eggs are released in the form of two long and 2(2)/3. Both the upper lip and lower lip possess dentate sticky strings, one from each ovary (Fig. 5). These egg edges. The tail tip is rounded in lateral view. The width strings are 3–5 m in length and may rarely reach up to of the mouth is equal to the distance between the eyes 10 m. Females attach them to aquatic plants. and about twice the distance between the nostrils. Figure 5. Egg strings released by female Bufo eichwaldi. (Left) A string of eggs is released by an amplectant pair. (�ight) Egg coloration, size, and the parallel nature of the strings compared to a human hand. Photos by H.G. Kami. Preliminary study of reproduction in the Talysh toad in northern Iran 33 Figure 6. Growth series of tadpoles and the beginning stages Figure 9. Natural habitat showing the diurnal activities of of metamorphosis in Bufo eichwaldi. The tadpole at left is six dozens of amplectant pairs of Bufo eichwaldi, Golestan days post-hatching, and the one on the right 70 days. Photo Province, Iran. Photo by H.G. Kami. by H.G. Kami. the water in June or early July. Sexual maturity in B. eichwaldi occurs in the fourth year after emergence, and hibernation is underground in the soil. To our knowledge, this is the first report on the reproduction of this species in Iran. We hope that this study provides useful some information for fieldwork and an incentive for future studies of this species. Acknowledgments. We wish to thank Mr. �eza Figure 7. Tadpole with forelimbs, Day 84 of development in Yadollahvandmiandoab from Universidade Federal da Paraíba Bufo eichwaldi. Photo by H.G. Kami. and Mis. Najmeh Okhli from Golestan University for scientific and technical support. References Altig, �. (1970): A key to the tadpoles of the continental United States and Canada. Herpetologica 26: 180–207. Frost, D.�., Grant, T., Faivovitch, J.N., Bain, �.H., Haas, A., Haddad, C.L.F.B., de Sa, �.O., Channing, A., Wilkinson, M., Donnellan, S.C., �axworthy, C.J., Campbell, J.A., Blotto, B.L., Moler, P., Drewes, �.C., Nussbaum, �.A., Lynch, J.D., Green, D.M., Wheeler, W.C. (2006): The amphibian tree of life. Bulletin of the American Museum of Natural History 297: 1–370. Inger, �.F. (1972): Bufo of Eurasia. In: Evolution in the Genus Bufo, p. 102–118. Blair, W.F., Ed., Austin, Texas, USA, University of Texas Press. Litvinchuk, S.N., Borkin, L.J., Skorinov, D.V., �osanov, J.M. (2008): A new species of common toads from the Talysh Figure 8. Metamorphosed toadlet, after the 84th day of Mountains, south-eastern Caucasus: genome size, allozyme, development of Bufo eichwaldi. Photo by H.G. Kami. and morphological evidences. �ussian Journal of Herpetology 15: 19–43. Mozaffari, O., Moghari, E. (2012): Sexual dimorphism in Bufo eichwaldi’s snout shape with description of its usage in male- male competition. �ussian Journal of Herpetology 4: 349–351. The dorsum of tadpoles is completely black and their abdominal surface grey. Accepted by Hinrich Kaiser Metamorphosis and toadlets.—Tadpoles metamor- phose on Days 77–91 after hatching and toadlets leave .
Recommended publications
  • What Is a Tree in the Mediterranean Basin Hotspot? a Critical Analysis
    Médail et al. Forest Ecosystems (2019) 6:17 https://doi.org/10.1186/s40663-019-0170-6 RESEARCH Open Access What is a tree in the Mediterranean Basin hotspot? A critical analysis Frédéric Médail1* , Anne-Christine Monnet1, Daniel Pavon1, Toni Nikolic2, Panayotis Dimopoulos3, Gianluigi Bacchetta4, Juan Arroyo5, Zoltán Barina6, Marwan Cheikh Albassatneh7, Gianniantonio Domina8, Bruno Fady9, Vlado Matevski10, Stephen Mifsud11 and Agathe Leriche1 Abstract Background: Tree species represent 20% of the vascular plant species worldwide and they play a crucial role in the global functioning of the biosphere. The Mediterranean Basin is one of the 36 world biodiversity hotspots, and it is estimated that forests covered 82% of the landscape before the first human impacts, thousands of years ago. However, the spatial distribution of the Mediterranean biodiversity is still imperfectly known, and a focus on tree species constitutes a key issue for understanding forest functioning and develop conservation strategies. Methods: We provide the first comprehensive checklist of all native tree taxa (species and subspecies) present in the Mediterranean-European region (from Portugal to Cyprus). We identified some cases of woody species difficult to categorize as trees that we further called “cryptic trees”. We collected the occurrences of tree taxa by “administrative regions”, i.e. country or large island, and by biogeographical provinces. We studied the species-area relationship, and evaluated the conservation issues for threatened taxa following IUCN criteria. Results: We identified 245 tree taxa that included 210 species and 35 subspecies, belonging to 33 families and 64 genera. It included 46 endemic tree taxa (30 species and 16 subspecies), mainly distributed within a single biogeographical unit.
    [Show full text]
  • Regional Patterns of Postglacial Changes in the Palearctic
    www.nature.com/scientificreports OPEN Regional patterns of postglacial changes in the Palearctic mammalian diversity indicate Received: 14 November 2014 Accepted: 06 July 2015 retreat to Siberian steppes rather Published: 06 August 2015 than extinction Věra Pavelková Řičánková, Jan Robovský, Jan Riegert & Jan Zrzavý We examined the presence of possible Recent refugia of Pleistocene mammalian faunas in Eurasia by analysing regional differences in the mammalian species composition, occurrence and extinction rates between Recent and Last Glacial faunas. Our analyses revealed that most of the widespread Last Glacial species have survived in the central Palearctic continental regions, most prominently in Altai–Sayan (followed by Kazakhstan and East European Plain). The Recent Altai–Sayan and Kazakhstan regions show species compositions very similar to their Pleistocene counterparts. The Palearctic regions have lost 12% of their mammalian species during the last 109,000 years. The major patterns of the postglacial changes in Palearctic mammalian diversity were not extinctions but rather radical shifts of species distribution ranges. Most of the Pleistocene mammalian fauna retreated eastwards, to the central Eurasian steppes, instead of northwards to the Arctic regions, considered Holocene refugia of Pleistocene megafauna. The central Eurasian Altai and Sayan mountains could thus be considered a present-day refugium of the Last Glacial biota, including mammals. Last Glacial landscape supported a unique mix of large species, now extinct or living in non-overlapping biomes, including rhino, bison, lion, reindeer, horse, muskox and mammoth1. The so called “mammoth steppe”2–4 community thrived for approximately 100,000 years without major changes, and then became extinct by the end of Pleistocene, around 12,000 years BP5,6.
    [Show full text]
  • Description - What Is the Pattern? Than with Those of Other Continents
    since the Age of Exploration began, the geographical pattern of life's kinds it has become progressively clearer that is not haphazard or random... different parts of the world support in general, continental biotas are uniform, greatly different assemblages of organisms yet distinct from others, sometimes greatly so two aspects to this matter: elements of a given biota tend to be more closely-related among themselves Description - what is the pattern? than with those of other continents Analysis - how did the pattern arise? Wallace described this in his global system of http://publish.uwo.ca/~handford/zoog1.html Zoogeographical Realms 15 1 15 Zoogeographical Realms 2 Wallace's Realms almost..... Nearctic Realm Gaviidae - Loon this realm has no endemic bird families. But Loons are endemic Antilocapridae to Holarctic Realm = Pronghorn Nearctic + Palearctic 15 .........correspond to continents 3 15 4 Palearctic Realm Neotropical Realm this realm is truly the "bird-realm" a great number of among the many families are endemic endemic families including tinamous are anteaters and and toucans cavies panda 15 grouse 5 15 6 1 Ethiopian Realm Oriental Realm gibbon leafbird aardvark 15 lemur ostrich 7 15 8 Australasian Realm so continental biotas are distinct; Monotremes - but they are not equally distinct egg-laying mammals 79 families of terrestrial mammals RE GIONS! near.! neotr. palæar. ethio. orien. austr. nearctic! ! ! 4! ! ! ! 51/79! = 73% endemic neotropical! ! 6! 15!! ! ! to realms platypus palæarctic! ! 5! 2! 1! ! ! ethiopean! ! 0! 0!
    [Show full text]
  • An Evaluation of the Influence of Environment
    Journal of Biogeography (J. Biogeogr.) (2006) 33, 291–303 ORIGINAL An evaluation of the influence ARTICLE of environment and biogeography on community structure: the case of Holarctic mammals J. Rodrı´guez1*, J. Hortal1,2 and M. Nieto1,3 1Museo Nacional de Ciencias Naturales, ABSTRACT Madrid, Spain, 2Departamento de Cieˆncias Aim To evaluate the influence of environment and biogeographical region, as a Agra´rias, Universidade dos Ac¸ores, Ac¸ores, Portugal and 3Instituto de Neurobiologı´a proxy for historical influence, on the ecological structure of Holarctic Ramo´n y Cajal (CSIC), Madrid, Spain communities from similar environments. It is assumed that similarities among communities from similar environments in different realms are the result of convergence, whereas their differences are interpreted as being due to different historical processes. Location Holarctic realm, North America and Eurasia above 25° N. Methods Checklists of mammalian species occurring in 96 Holarctic localities were collected from published sources. Species were assigned to one of 20 functional groups defined by diet, body size and three-dimensional use of space. The matrix composed of the frequencies of functional groups in the 96 localities is used as input data in a correspondence analysis (CA). The localities are classified into nine groups according to Bailey’s ecoregions (used as a surrogate of regional climate), and the positions of the communities in the dimensions of the CA are compared in relation to ecoregion and realm. Partial regression was used to test for the relative influence of ecoregion and realm over each dimension and to evaluate the effect of biogeographical realm on the variation in the factor scores of the communities of the same ecoregion.
    [Show full text]
  • An Update of Wallacels Zoogeographic Regions of the World
    REPORTS To examine the temporal profile of ChC produc- specification of a distinct, and probably the last, 3. G. A. Ascoli et al., Nat. Rev. Neurosci. 9, 557 (2008). tion and their correlation to laminar deployment, cohort in this lineage—the ChCs. 4. J. Szentágothai, M. A. Arbib, Neurosci. Res. Program Bull. 12, 305 (1974). we injected a single pulse of BrdU into pregnant A recent study demonstrated that progeni- CreER 5. P. Somogyi, Brain Res. 136, 345 (1977). Nkx2.1 ;Ai9 females at successive days be- tors below the ventral wall of the lateral ventricle 6. L. Sussel, O. Marin, S. Kimura, J. L. Rubenstein, tween E15 and P1 to label mitotic progenitors, (i.e., VGZ) of human infants give rise to a medial Development 126, 3359 (1999). each paired with a pulse of tamoxifen at E17 to migratory stream destined to the ventral mPFC 7. S. J. Butt et al., Neuron 59, 722 (2008). + 18 8. H. Taniguchi et al., Neuron 71, 995 (2011). label NKX2.1 cells (Fig. 3A). We first quanti- ( ). Despite species differences in the develop- 9. L. Madisen et al., Nat. Neurosci. 13, 133 (2010). fied the fraction of L2 ChCs (identified by mor- mental timing of corticogenesis, this study and 10. J. Szabadics et al., Science 311, 233 (2006). + phology) in mPFC that were also BrdU+. Although our findings raise the possibility that the NKX2.1 11. A. Woodruff, Q. Xu, S. A. Anderson, R. Yuste, Front. there was ChC production by E15, consistent progenitors in VGZ and their extended neurogenesis Neural Circuits 3, 15 (2009).
    [Show full text]
  • Extinction of Threatened Vertebrates Will Lead to Idiosyncratic Changes in Functional Diversity Across the World ✉ Aurele Toussaint 1 , Sébastien Brosse 2, C
    ARTICLE https://doi.org/10.1038/s41467-021-25293-0 OPEN Extinction of threatened vertebrates will lead to idiosyncratic changes in functional diversity across the world ✉ Aurele Toussaint 1 , Sébastien Brosse 2, C. Guillermo Bueno1, Meelis Pärtel 1, Riin Tamme 1 & Carlos P. Carmona 1 1234567890():,; Although species with larger body size and slow pace of life have a higher risk of extinction at a global scale, it is unclear whether this global trend will be consistent across biogeographic realms. Here we measure the functional diversity of terrestrial and freshwater vertebrates in the six terrestrial biogeographic realms and predict their future changes through scenarios mimicking a gradient of extinction risk of threatened species. We show vastly different effects of extinctions on functional diversity between taxonomic groups and realms, ranging from almost no decline to deep functional losses. The Indo-Malay and Palearctic realms are par- ticularly inclined to experience a drastic loss of functional diversity reaching 29 and 31%, respectively. Birds, mammals, and reptiles regionally display a consistent functional diversity loss, while the projected losses of amphibians and freshwater fishes differ across realms. More efficient global conservation policies should consider marked regional losses of func- tional diversity across the world. 1 Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia. 2 Université Paul Sabatier, CNRS, IRD, UMR5174 EDB (Laboratoire Évolution et ✉ Diversité Biologique), Toulouse, France. email: [email protected] NATURE COMMUNICATIONS | (2021) 12:5162 | https://doi.org/10.1038/s41467-021-25293-0 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-25293-0 he loss of global biodiversity is accelerating throughout the with different key aspects of their ecology and their life-history Tworld1 triggering the sixth mass extinction crisis2.
    [Show full text]
  • How Complex Is the Bufo Bufo Species Group? ⇑ Jan W
    Molecular Phylogenetics and Evolution 69 (2013) 1203–1208 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Short Communication How complex is the Bufo bufo species group? ⇑ Jan W. Arntzen a, Ernesto Recuero b, Daniele Canestrelli c, Iñigo Martínez-Solano d, a Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands b Museo Nacional de Ciencias Naturales, CSIC, c/José Gutiérrez Abascal, 2, 28006 Madrid, Spain c Dept. Ecology and Biology, Tuscia University, Largo dell’Università s.n.c., I-01100 Viterbo, Italy d Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo, s/n, 13071 Ciudad Real, Spain article info abstract Article history: Species delineation remains one of the most challenging tasks in the study of biodiversity, mostly owing Received 10 April 2013 to the application of different species concepts, which results in contrasting taxonomic arrangements. Revised 9 July 2013 This has important practical consequences, since species are basic units in fields like ecology and conser- Accepted 10 July 2013 vation biology. We here review molecular genetic evidence relevant to the systematics of toads in the Available online 20 July 2013 Bufo bufo species group (Anura, Bufonidae). Two studies recently published in this journal (Recuero et al., MPE 62: 71–86 and Garci´a-Porta et al., MPE 63: 113–130) addressed this issue but reached oppos- Keywords: ing conclusions on the taxonomy of the group (four versus two species). In particular, allozyme data in Molecular systematics, Bufo bufo the latter paper were interpreted as evidence for hybridization across species (between B.
    [Show full text]
  • Species List of the European Herpetofauna
    Species list of the European herpetofauna – 2020 update by the Taxonomic Committee of the Societas Europaea Herpetologica Jeroen Speybroeck, Wouter Beukema, Christophe Dufresnes, Uwe Fritz, Daniel Jablonski, Petros Lymberakis, Iñigo Martínez-Solano, Edoardo Razzetti, Melita Vamberger, Miguel Vences, et al. To cite this version: Jeroen Speybroeck, Wouter Beukema, Christophe Dufresnes, Uwe Fritz, Daniel Jablonski, et al.. Species list of the European herpetofauna – 2020 update by the Taxonomic Committee of the Societas Europaea Herpetologica. Amphibia-Reptilia, Brill Academic Publishers, 2020, 41 (2), pp.139-189. 10.1163/15685381-bja10010. hal-03098691 HAL Id: hal-03098691 https://hal.archives-ouvertes.fr/hal-03098691 Submitted on 5 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Amphibia-Reptilia 41 (2020): 139-189 brill.com/amre Review Species list of the European herpetofauna – 2020 update by the Taxonomic Committee of the Societas Europaea Herpetologica Jeroen Speybroeck1,∗, Wouter Beukema2, Christophe Dufresnes3, Uwe Fritz4, Daniel Jablonski5, Petros Lymberakis6, Iñigo Martínez-Solano7, Edoardo Razzetti8, Melita Vamberger4, Miguel Vences9, Judit Vörös10, Pierre-André Crochet11 Abstract. The last species list of the European herpetofauna was published by Speybroeck, Beukema and Crochet (2010). In the meantime, ongoing research led to numerous taxonomic changes, including the discovery of new species-level lineages as well as reclassifications at genus level, requiring significant changes to this list.
    [Show full text]
  • Journal of Science Evaluation of the Reptilian Fauna in Amasya Province, Turkey with New Locality Records
    Research Article GU J Sci 31(4): 1007-1020 (2018) Gazi University Journal of Science http://dergipark.gov.tr/gujs Evaluation of The Reptilian Fauna in Amasya Province, Turkey with New Locality Records Mehmet Kursat SAHIN1,2, *, Murat AFSAR3 1Hacettepe University, Faculty of Science, Biology Department, 06800, Ankara, Turkey 2Karamanoglu Mehmetbey University, Kamil Ozdag Science Faculty, Biology Departmet, Karaman, Turkey 3Manisa Celal Bayar University, Faculty of Science and Letters, Biology Department, Manisa, Turkey Article Info Abstract The present study investigated the reptilian fauna in Amasya Province, Turkey. Reptile species Received: 14/01/2018 were identified from collections made during field studies or recorded in literature, with some Accepted: 18/06/2018 new locality records obtained. Field studies were undertaken over two consecutive years (2016 and 2017). Two lacertid species, one skink species, two colubrid species and one viper species were officially recorded for the first time or their information was updated. In addition to Keywords species locality records, chorotypical and habitat selection were also assessed and the Viper International Union for Conservation of Nature Red List of Threatened Species criteria Reptilia included. Data on the distribution and locality information for each taxon is also provided. Our Fauna findings demonstrate that Amasya might be an ecotone zone between the Mediterranean, Chorotype Caucasian, and European ecosystems. Although there are some concerns for the sustainable Eunis dynamics of reptilian fauna, relatively rich and different European nature information system habitat types provide basic survival conditions for reptilian fauna in the province. 1. INTRODUCTION Turkey is the only country that almost entirely includes three of the world’s 34 biodiversity hotspots: the Caucasus, Irano-Anatolian, and Mediterranean [1].
    [Show full text]
  • A Spatial Analysis Approach to the Global Delineation of Dryland Areas of Relevance to the CBD Programme of Work on Dry and Subhumid Lands
    A spatial analysis approach to the global delineation of dryland areas of relevance to the CBD Programme of Work on Dry and Subhumid Lands Prepared by Levke Sörensen at the UNEP World Conservation Monitoring Centre Cambridge, UK January 2007 This report was prepared at the United Nations Environment Programme World Conservation Monitoring Centre (UNEP-WCMC). The lead author is Levke Sörensen, scholar of the Carlo Schmid Programme of the German Academic Exchange Service (DAAD). Acknowledgements This report benefited from major support from Peter Herkenrath, Lera Miles and Corinna Ravilious. UNEP-WCMC is also grateful for the contributions of and discussions with Jaime Webbe, Programme Officer, Dry and Subhumid Lands, at the CBD Secretariat. Disclaimer The contents of the map presented here do not necessarily reflect the views or policies of UNEP-WCMC or contributory organizations. The designations employed and the presentations do not imply the expression of any opinion whatsoever on the part of UNEP-WCMC or contributory organizations concerning the legal status of any country, territory or area or its authority, or concerning the delimitation of its frontiers or boundaries. 3 Table of contents Acknowledgements............................................................................................3 Disclaimer ...........................................................................................................3 List of tables, annexes and maps .....................................................................5 Abbreviations
    [Show full text]
  • Status, Trends and Future Dynamics of Biodiversity and Ecosystems Underpinning Nature’S Contributions to People 1
    CHAPTER 3 . STATUS, TRENDS AND FUTURE DYNAMICS OF BIODIVERSITY AND ECOSYSTEMS UNDERPINNING NATURE’S CONTRIBUTIONS TO PEOPLE 1 CHAPTER 2 CHAPTER 3 STATUS, TRENDS AND CHAPTER FUTURE DYNAMICS OF BIODIVERSITY AND 3 ECOSYSTEMS UNDERPINNING NATURE’S CONTRIBUTIONS CHAPTER TO PEOPLE 4 Coordinating Lead Authors Review Editors: Marie-Christine Cormier-Salem (France), Jonas Ngouhouo-Poufoun (Cameroon) Amy E. Dunham (United States of America), Christopher Gordon (Ghana) This chapter should be cited as: CHAPTER Cormier-Salem, M-C., Dunham, A. E., Lead Authors Gordon, C., Belhabib, D., Bennas, N., Dyhia Belhabib (Canada), Nard Bennas Duminil, J., Egoh, B. N., Mohamed- (Morocco), Jérôme Duminil (France), Elahamer, A. E., Moise, B. F. E., Gillson, L., 5 Benis N. Egoh (Cameroon), Aisha Elfaki Haddane, B., Mensah, A., Mourad, A., Mohamed Elahamer (Sudan), Bakwo Fils Randrianasolo, H., Razafindratsima, O. H., 3Eric Moise (Cameroon), Lindsey Gillson Taleb, M. S., Shemdoe, R., Dowo, G., (United Kingdom), Brahim Haddane Amekugbe, M., Burgess, N., Foden, W., (Morocco), Adelina Mensah (Ghana), Ahmim Niskanen, L., Mentzel, C., Njabo, K. Y., CHAPTER Mourad (Algeria), Harison Randrianasolo Maoela, M. A., Marchant, R., Walters, M., (Madagascar), Onja H. Razafindratsima and Yao, A. C. Chapter 3: Status, trends (Madagascar), Mohammed Sghir Taleb and future dynamics of biodiversity (Morocco), Riziki Shemdoe (Tanzania) and ecosystems underpinning nature’s 6 contributions to people. In IPBES (2018): Fellow: The IPBES regional assessment report on biodiversity and ecosystem services for Gregory Dowo (Zimbabwe) Africa. Archer, E., Dziba, L., Mulongoy, K. J., Maoela, M. A., and Walters, M. (eds.). CHAPTER Contributing Authors: Secretariat of the Intergovernmental Millicent Amekugbe (Ghana), Neil Burgess Science-Policy Platform on Biodiversity (United Kingdom), Wendy Foden (South and Ecosystem Services, Bonn, Germany, Africa), Leo Niskanen (Finland), Christine pp.
    [Show full text]
  • Review Species List of the European Herpetofauna – 2020 Update by the Taxonomic Committee of the Societas Europaea Herpetologi
    Amphibia-Reptilia 41 (2020): 139-189 brill.com/amre Review Species list of the European herpetofauna – 2020 update by the Taxonomic Committee of the Societas Europaea Herpetologica Jeroen Speybroeck1,∗, Wouter Beukema2, Christophe Dufresnes3, Uwe Fritz4, Daniel Jablonski5, Petros Lymberakis6, Iñigo Martínez-Solano7, Edoardo Razzetti8, Melita Vamberger4, Miguel Vences9, Judit Vörös10, Pierre-André Crochet11 Abstract. The last species list of the European herpetofauna was published by Speybroeck, Beukema and Crochet (2010). In the meantime, ongoing research led to numerous taxonomic changes, including the discovery of new species-level lineages as well as reclassifications at genus level, requiring significant changes to this list. As of 2019, a new Taxonomic Committee was established as an official entity within the European Herpetological Society, Societas Europaea Herpetologica (SEH). Twelve members from nine European countries reviewed, discussed and voted on recent taxonomic research on a case-by-case basis. Accepted changes led to critical compilation of a new species list, which is hereby presented and discussed. According to our list, 301 species (95 amphibians, 15 chelonians, including six species of sea turtles, and 191 squamates) occur within our expanded geographical definition of Europe. The list includes 14 non-native species (three amphibians, one chelonian, and ten squamates). Keywords: Amphibia, amphibians, Europe, reptiles, Reptilia, taxonomy, updated species list. Introduction 1 - Research Institute for Nature and Forest, Havenlaan 88 Speybroeck, Beukema and Crochet (2010) bus 73, 1000 Brussel, Belgium (SBC2010, hereafter) provided an annotated 2 - Wildlife Health Ghent, Department of Pathology, Bacteriology and Avian Diseases, Ghent University, species list for the European amphibians and Salisburylaan 133, 9820 Merelbeke, Belgium non-avian reptiles.
    [Show full text]