A Global Study of the Distribution and Richness of Alien Bird Species

Total Page:16

File Type:pdf, Size:1020Kb

A Global Study of the Distribution and Richness of Alien Bird Species A global study of the distribution and richness of alien bird species Ellie E. Dyer A dissertation submitted for the degree of Doctor of Philosophy University College London Centre for Biodiversity and Environment Research (CBER) within the Department of Genetics, Evolution and Environment (GEE) University College London November 4, 2015 Declaration I, Ellie Eveness Dyer, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Ellie Dyer, 4th November 2015 2 Abstract Alien species are a major component of human-induced environmental change, yet spatial and temporal variation in the drivers of their introduction, and their subsequent distribution and richness, are poorly understood. Here, I present a global analysis of the drivers of this variation for a major animal group, birds (Class Aves), using the newly-created Global Avian Invasions Atlas (GAVIA) database. GAVIA includes information on introduction successes and failures, enabling me to examine the effect of colonisation pressure (the number of species introduced) on alien bird distributions. A description of the GAVIA database is given in Chapter 2, with details on its scope and sources, data collation and validation, and the production of alien range maps. Chapter 3 focuses on the early stages of the invasion pathway, and shows that historical introductions tend to originate in Europe, were driven by the global movements of British colonialism, and involved species deemed useful. Modern introductions, in contrast, tend to originate in Southeast Asia and Africa, are driven by factors associated with wealth, and involve species found in the pet trade. Chapter 4 identifies colonisation pressure as the principal determinant of alien bird species richness at a global scale. Additional anthropogenic factors (residence time, distance to historic port) and environmental variables (temperature range, precipitation) also influence richness. Chapter 5 analyses the factors influencing alien geographic range size, with species achieving a larger alien range if they have been introduced more often, have a larger native range and a shorter residence time. Chapter 6 examines latitudinal patterns of alien species richness and range size, and the likelihood of failure relative to latitude and native range limits. Overall, I demonstrate that alien bird distributions are primarily driven by anthropogenic influences, and highlight in particular the importance of incorporating a measure of colonisation pressure into studies of invasion. 3 Acknowledgements I would like to thank my supervisors: Phill Cassey for welcoming me to Adelaide and offering me endless advice and wine (or advice and endless wine?), and for feeding me delicious gluten-free barbeque cuisine; Ben Collen for being a calming influence, a voice of reason and a good friend; Kate Jones for her insights and guidance, and for making me laugh when I wanted to cry; and Tim Blackburn for getting me started on this alien bird journey in the first place, and offering advice and encouragement (and more wine) every step of the way. I am extremely grateful to the hundreds of ornithological experts around the world who shared their local knowledge on alien birds with me, and those who went out of their way to assist me in finding the information that I needed. The GAVIA database would not have been nearly as comprehensive without their help. I would like to extend a special thank you to Dan Richman, who spent many long afternoons with me designing the original structure of the GAVIA database. Getting it right from the start has helped enormously in the long run. I would like to thank my colleagues in the Institute of Zoology at the Zoological Society of London. Those that helped with GAVIA in the beginning: Victoria Franks, Fiona Spooner, Elizabeth Jones, Rebecca Herdson and Frances Davies. Those that have supported me during my thesis: Xavier Harrison, Mike Hudson and Robin Freeman. And those that made me look forward to going into the office every day: Monika Bohm, Patricia Brekke, Jessica Bryant, Frances Clare, Alanna Collen, Jennifer Crees, Nadia Dewhurst-Richman, Clare Duncan, Dada Gottelli and Kirsten McMillan. I would like to thank my colleagues at UCL, in particular Chris Langridge, David Redding, Henry Ferguson-Gow, Roee Maor, Tim Lucas, David Murrell, and Prabu Siva. I would no doubt have thrown my computer out of the window without your help. I would like to thank the team at the University of Adelaide: Miquel Val Illosera, Pablo Garcia Diaz, Talia Wittmann, and many others. Also I would like to make a special mention of Su Shan, for being a great friend and support during both trips to Adelaide and throughout my PhD. I have had such fun working with you. 4 To my parents: Chris and Jeannie – thank you for always encouraging and believing in me, and for staying up past midnight to help me produce a certain difficult figure! To the rest of my family: Jessie, Joel, Indi, Vivi and Alba, and my friends Cathryn and Helena – thank you for your support, endless cups of tea and soothing words, and for putting up with the hysteria and the many months of ‘I’m really nearly there…!’ The last three years would have been a great deal more difficult had I not been able to escape to you. And lastly my biggest thanks go to David. My anchor, my best friend, my adventurer. I could not have gotten this far without your never-ending encouragement, patience and laughter. Two PhDs, two kittens, eleven countries, and buying and renovating a house and garden is not too shabby for four years of teamwork. 5 Contents Declaration .................................................................................................................. 2 Abstract ....................................................................................................................... 3 Acknowledgements .................................................................................................... 4 List of figures .............................................................................................................. 9 List of tables ............................................................................................................. 15 Attribution ................................................................................................................. 19 Chapter 1. Introduction ........................................................................................... 20 1.1 The Invasion Pathway ...................................................................................... 20 1.1.1 Overview.................................................................................................... 20 1.1.2 Birds as a focal taxon................................................................................. 22 1.1.3 Transport and Introduction ......................................................................... 22 1.1.4 Establishment ............................................................................................ 26 1.1.5 Spread ....................................................................................................... 28 1.1.6 Impacts of alien species ............................................................................. 30 1.2 The Global Avian Invasions Atlas (GAVIA) ....................................................... 31 1.3 Thesis overview ................................................................................................ 32 Chapter 2. The GAVIA database: a global database of alien bird introductions . 34 2.1 Introduction ...................................................................................................... 34 2.2 Methods ........................................................................................................... 35 2.2.1 Data compilers ........................................................................................... 35 2.2.2 Criteria for data inclusion ........................................................................... 36 2.2.3 Data searches ........................................................................................... 36 2.2.4 Database design ........................................................................................ 38 2.2.5 Data entry .................................................................................................. 42 2.2.6 Taxonomic names and classification .......................................................... 47 2.2.7 Biogeographical coverage ......................................................................... 48 2.2.8 Distribution range maps ............................................................................. 50 2.2.9 Cross validation between database and distribution maps ......................... 52 2.3 Results ............................................................................................................. 53 2.4 Discussion ........................................................................................................ 60 6 Chapter 3. Temporal change of global drivers of alien bird introductions .......... 62 3.1 Introduction ...................................................................................................... 62 3.2 Methods ........................................................................................................... 66 3.2.1 Data ..........................................................................................................
Recommended publications
  • Species List
    Dec. 11, 2013 – Jan. 01, 2014 Thailand (Central and Northern) Species Trip List Compiled by Carlos Sanchez (HO)= Distinctive enough to be counted as heard only Summary: After having traveled through much of the tropical Americas, I really wanted to begin exploring a new region of the world. Thailand instantly came to mind as a great entry point into the vast and diverse continent of Asia, home to some of the world’s most spectacular birds from giant hornbills to ornate pheasants to garrulous laughingthrushes and dazzling pittas. I took a little over three weeks to explore the central and northern parts of this spectacular country: the tropical rainforests of Kaeng Krachen, the saltpans of Pak Thale and the montane Himalayan foothill forests near Chiang Mai. I left absolutely dazzled by what I saw. Few words can describe the joy of having your first Great Hornbill, the size of a swan, plane overhead; the thousands of shorebirds in the saltpans of Pak Thale, where I saw critically endangered Spoon-billed Sandpiper; the tear-jerking surprise of having an Eared Pitta come to bathe at a forest pool in the late afternoon, surrounded by tail- quivering Siberian Blue Robins; or the fun of spending my birthday at Doi Lang, seeing Ultramarine Flycatcher, Spot-breasted Parrotbill, Fire-tailed Sunbird and more among a 100 or so species. Overall, I recorded over 430 species over the course of three weeks which is conservative relative to what is possible. Thailand was more than a birding experience for me. It was the Buddhist gong that would resonate through the villages in the early morning, the fresh and delightful cuisine produced out of a simple wok, the farmers faithfully tending to their rice paddies and the amusing frost chasers at the top of Doi Inthanon at dawn.
    [Show full text]
  • Current Perspectives on the Evolution of Birds
    Contributions to Zoology, 77 (2) 109-116 (2008) Current perspectives on the evolution of birds Per G.P. Ericson Department of Vertebrate Zoology, Swedish Museum of Natural History, P.O. Box 50007, SE-10405 Stockholm, Sweden, [email protected] Key words: Aves, phylogeny, systematics, fossils, DNA, genetics, biogeography Contents (cf. Göhlich and Chiappe, 2006), making feathers a plesiomorphy in birds. Indeed, only three synapo- Systematic relationships ........................................................ 109 morphies have been proposed for Aves (Chiappe, Genome characteristics ......................................................... 111 2002), although monophyly is never seriously ques- A comparison with previous classifications ...................... 112 Character evolution ............................................................... 113 tioned: 1) the caudal margin of naris nearly reaching Evolutionary trends ............................................................... 113 or overlapping the rostral border of the antorbital Biogeography and biodiversity ............................................ 113 fossa (in the primitive condition the caudal margin Differentiation and speciation ............................................. 114 of naris is farther rostral than the rostral border of Acknowledgements ................................................................ 115 the antorbital fossa), 2) scapula with a prominent References ................................................................................ 115 acromion,
    [Show full text]
  • January 2020.Indd
    BROWN PELICAN Photo by Rob Swindell at Melbourne, Florida JANUARY 2020 Editors: Jim Jablonski, Marty Ackermann, Tammy Martin, Cathy Priebe Webmistress: Arlene Lengyel January 2020 Program Tuesday, January 7, 2020, 7 p.m. Carlisle Reservation Visitor Center Gulls 101 Chuck Slusarczyk, Jr. "I'm happy to be presenting my program Gulls 101 to the good people of Black River Audubon. Gulls are notoriously difficult to identify, but I hope to at least get you looking at them a little closer. Even though I know a bit about them, I'm far from an expert in the field and there is always more to learn. The challenge is to know the particular field marks that are most important, and familiarization with the many plumage cycles helps a lot too. No one will come out of this presentation an expert, but I hope that I can at least give you an idea what to look for. At the very least, I hope you enjoy the photos. Looking forward to seeing everyone there!” Chuck Slusarczyk is an avid member of the Ohio birding community, and his efforts to assist and educate novice birders via social media are well known, yet he is the first to admit that one never stops learning. He has presented a number of programs to Black River Audubon, always drawing a large, appreciative gathering. 2019 Wellington Area Christmas Bird Count The Wellington-area CBC will take place Saturday, December 28, 2019. Meet at the McDonald’s on Rt. 58 at 8:00 a.m. The leader is Paul Sherwood.
    [Show full text]
  • A Molecular Phylogeny of the Pheasants and Partridges Suggests That These Lineages Are Not Monophyletic R
    Molecular Phylogenetics and Evolution Vol. 11, No. 1, February, pp. 38–54, 1999 Article ID mpev.1998.0562, available online at http://www.idealibrary.com on A Molecular Phylogeny of the Pheasants and Partridges Suggests That These Lineages Are Not Monophyletic R. T. Kimball,* E. L. Braun,*,† P. W. Zwartjes,* T. M. Crowe,‡,§ and J. D. Ligon* *Department of Biology, University of New Mexico, Albuquerque, New Mexico 87131; †National Center for Genome Resources, 1800 Old Pecos Trail, Santa Fe, New Mexico 87505; ‡Percy FitzPatrick Institute, University of Capetown, Rondebosch, 7700, South Africa; and §Department of Ornithology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024-5192 Received October 8, 1997; revised June 2, 1998 World partridges are smaller and widely distributed in Cytochrome b and D-loop nucleotide sequences were Asia, Africa, and Europe. Most partridge species are used to study patterns of molecular evolution and monochromatic and primarily dull colored. None exhib- phylogenetic relationships between the pheasants and its the extreme or highly specialized ornamentation the partridges, which are thought to form two closely characteristic of the pheasants. related monophyletic galliform lineages. Our analyses Although the order Galliformes is well defined, taxo- used 34 complete cytochrome b and 22 partial D-loop nomic relationships are less clear within the group sequences from the hypervariable domain I of the (Verheyen, 1956), due to the low variability in anatomi- D-loop, representing 20 pheasant species (15 genera) and 12 partridge species (5 genera). We performed cal and osteological traits (Blanchard, 1857, cited in parsimony, maximum likelihood, and distance analy- Verheyen, 1956; Lowe, 1938; Delacour, 1977).
    [Show full text]
  • Disaggregation of Bird Families Listed on Cms Appendix Ii
    Convention on the Conservation of Migratory Species of Wild Animals 2nd Meeting of the Sessional Committee of the CMS Scientific Council (ScC-SC2) Bonn, Germany, 10 – 14 July 2017 UNEP/CMS/ScC-SC2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II (Prepared by the Appointed Councillors for Birds) Summary: The first meeting of the Sessional Committee of the Scientific Council identified the adoption of a new standard reference for avian taxonomy as an opportunity to disaggregate the higher-level taxa listed on Appendix II and to identify those that are considered to be migratory species and that have an unfavourable conservation status. The current paper presents an initial analysis of the higher-level disaggregation using the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World Volumes 1 and 2 taxonomy, and identifies the challenges in completing the analysis to identify all of the migratory species and the corresponding Range States. The document has been prepared by the COP Appointed Scientific Councilors for Birds. This is a supplementary paper to COP document UNEP/CMS/COP12/Doc.25.3 on Taxonomy and Nomenclature UNEP/CMS/ScC-Sc2/Inf.3 DISAGGREGATION OF BIRD FAMILIES LISTED ON CMS APPENDIX II 1. Through Resolution 11.19, the Conference of Parties adopted as the standard reference for bird taxonomy and nomenclature for Non-Passerine species the Handbook of the Birds of the World/BirdLife International Illustrated Checklist of the Birds of the World, Volume 1: Non-Passerines, by Josep del Hoyo and Nigel J. Collar (2014); 2.
    [Show full text]
  • The Birds (Aves) of Oromia, Ethiopia – an Annotated Checklist
    European Journal of Taxonomy 306: 1–69 ISSN 2118-9773 https://doi.org/10.5852/ejt.2017.306 www.europeanjournaloftaxonomy.eu 2017 · Gedeon K. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:A32EAE51-9051-458A-81DD-8EA921901CDC The birds (Aves) of Oromia, Ethiopia – an annotated checklist Kai GEDEON 1,*, Chemere ZEWDIE 2 & Till TÖPFER 3 1 Saxon Ornithologists’ Society, P.O. Box 1129, 09331 Hohenstein-Ernstthal, Germany. 2 Oromia Forest and Wildlife Enterprise, P.O. Box 1075, Debre Zeit, Ethiopia. 3 Zoological Research Museum Alexander Koenig, Centre for Taxonomy and Evolutionary Research, Adenauerallee 160, 53113 Bonn, Germany. * Corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] 1 urn:lsid:zoobank.org:author:F46B3F50-41E2-4629-9951-778F69A5BBA2 2 urn:lsid:zoobank.org:author:F59FEDB3-627A-4D52-A6CB-4F26846C0FC5 3 urn:lsid:zoobank.org:author:A87BE9B4-8FC6-4E11-8DB4-BDBB3CFBBEAA Abstract. Oromia is the largest National Regional State of Ethiopia. Here we present the first comprehensive checklist of its birds. A total of 804 bird species has been recorded, 601 of them confirmed (443) or assumed (158) to be breeding birds. At least 561 are all-year residents (and 31 more potentially so), at least 73 are Afrotropical migrants and visitors (and 44 more potentially so), and 184 are Palaearctic migrants and visitors (and eight more potentially so). Three species are endemic to Oromia, 18 to Ethiopia and 43 to the Horn of Africa. 170 Oromia bird species are biome restricted: 57 to the Afrotropical Highlands biome, 95 to the Somali-Masai biome, and 18 to the Sudan-Guinea Savanna biome.
    [Show full text]
  • Draft Environmental Assessment Evaluation of the Field Efficacy Of
    Draft Environmental Assessment Evaluation of the field efficacy of broadcast application of two rodenticides (diphacinone, chlorophacinone) to control mice (Mus musculus) in native Hawaiian conservation areas Prepared by: U.S. Fish and Wildlife Service, Pacific Islands Fish and Wildlife Office (PIFWO), Region 1 Cooperating Agencies: USDA Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center (NWRC), Hilo, Hawai’i; U.S. Fish and Wildlife Service, Migratory Birds and Habitat Program, Pacific Region BACKGROUND In keeping with its mission, the U.S. Fish and Wildlife Service (Service) is striving to recover and restore native species and their habitats in Hawai’i. To achieve this goal it is necessary to remove invasive rodents, including mice, from large geographic areas within the state. However, some of the scientific information needed to support removal of mice from the natural environment is currently lacking. Therefore, the Service, in cooperation with the USDA Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center (NWRC) are proposing to conduct a study at the U.S. Army Garrison, Pōhakuloa Training Area, Hawai’i to determine the response of mice to different application rates of two rodenticides: diphacinone and chlorophacinone. The Service would provide the funding for the proposed project and the NWRC would conduct the proposed study. Currently, diphacinone is the only rodenticide labeled for conservation purposes in Hawai’i. The information from the study would, if warranted by results, also be used to pursue registration for a conservation label from the Environmental Protection Agency (EPA) for chlorophacinone. Invasive1 house mice (Mus musculus) are abundant and widespread in Hawaiian ecosystems.
    [Show full text]
  • Phylogeography of Finches and Sparrows
    In: Animal Genetics ISBN: 978-1-60741-844-3 Editor: Leopold J. Rechi © 2009 Nova Science Publishers, Inc. Chapter 1 PHYLOGEOGRAPHY OF FINCHES AND SPARROWS Antonio Arnaiz-Villena*, Pablo Gomez-Prieto and Valentin Ruiz-del-Valle Department of Immunology, University Complutense, The Madrid Regional Blood Center, Madrid, Spain. ABSTRACT Fringillidae finches form a subfamily of songbirds (Passeriformes), which are presently distributed around the world. This subfamily includes canaries, goldfinches, greenfinches, rosefinches, and grosbeaks, among others. Molecular phylogenies obtained with mitochondrial DNA sequences show that these groups of finches are put together, but with some polytomies that have apparently evolved or radiated in parallel. The time of appearance on Earth of all studied groups is suggested to start after Middle Miocene Epoch, around 10 million years ago. Greenfinches (genus Carduelis) may have originated at Eurasian desert margins coming from Rhodopechys obsoleta (dessert finch) or an extinct pale plumage ancestor; it later acquired green plumage suitable for the greenfinch ecological niche, i.e.: woods. Multicolored Eurasian goldfinch (Carduelis carduelis) has a genetic extant ancestor, the green-feathered Carduelis citrinella (citril finch); this was thought to be a canary on phonotypical bases, but it is now included within goldfinches by our molecular genetics phylograms. Speciation events between citril finch and Eurasian goldfinch are related with the Mediterranean Messinian salinity crisis (5 million years ago). Linurgus olivaceus (oriole finch) is presently thriving in Equatorial Africa and was included in a separate genus (Linurgus) by itself on phenotypical bases. Our phylograms demonstrate that it is and old canary. Proposed genus Acanthis does not exist. Twite and linnet form a separate radiation from redpolls.
    [Show full text]
  • Recording Some of Breeding Birds in Mehmedan Region of Republic Yemen
    Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library European Journal of Experimental Biology, 2014, 4(1):625-632 ISSN: 2248 –9215 CODEN (USA): EJEBAU Recording some of breeding birds in Mehmedan region of Republic Yemen Fadhl Adullah Nasser Balem and Mohamed Saleh Alzokary Biology Department, Aden University, Yaman _____________________________________________________________________________________________ ABSTRACT Mehmedan region is always green and there are different trees, shrubs, herbs and a lot of land which cultivated by corn, millet and other monetary plants. The site has been identified by the authors as an important Bird Area and especially for passerines breeding birds. Aim of this paper is to recording of some breeding birds.Many field visits during the year (2012) were conducted and (13) breeding bird species were recoded, these birds relating to (5) Orders, (10) Families, and (11) Genera. Key words: Breeding birds, Mehmedan, Yemen. _____________________________________________________________________________________________ INTRODUCTION At present time about (432) bird species were recorded in avifauna of Yemen of which (1) is endemic, (2) have been introduced by humans, and (25) are rare or accidental, (14) species are globally threatened.Mehmedan region located in southern Tehama which defined as lying south of (21 0N) along the Saudi Arabian and Yemen Red Sea lowlands and east along the Gulf of Aden to approximately (46 0E).Temperatures and humidity greatly increase southwards and rainfall decreases but the area has many permanent water courses and much subsurface water due to the considerable rub-off of rainwater from the highlands. Consequently there is much more vegetation in the wadis and there is a good deal of traditional, small scale agriculture mostly of millet, sorghum and vegetables[1].
    [Show full text]
  • Species Limits in the Indigobirds (Ploceidae, Vidua) of West Africa: Mouth Mimicry, Song Mimicry, and Description of New Species
    MISCELLANEOUS PUBLICATIONS MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN NO. 162 Species Limits in the Indigobirds (Ploceidae, Vidua) of West Africa: Mouth Mimicry, Song Mimicry, and Description of New Species Robert B. Payne Museum of Zoology The University of Michigan Ann Arbor, Michigan 48109 Ann Arbor MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN May 26, 1982 MISCELLANEOUS PUBLICATIONS MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN The publications of the Museum of Zoology, University of Michigan, consist of two series-the Occasional Papers and the Miscellaneous Publications. Both series were founded by Dr. Bryant Walker, Mr. Bradshaw H. Swales, and Dr. W. W. Newcomb. The Occasional Papers, publication of which was begun in 1913, serve as a medium for original studies based principally upon the collections in the Museum. They are issued separately. When a sufficient number of pages has been printed to make a volume, a title page, table of contents, and an index are supplied to libraries and individuals on the mailing list for the series. The Miscellaneous Publications, which include papers on field and museum techniques, monographic studies, and other contributions not within the scope of the Occasional Papers, are published separately. It is not intended that they be grouped into volumes. Each number has a title page and, when necessary, a table of contents. A complete list of publications on Birds, Fishes, Insects, Mammals, Mollusks, and Reptiles and Amphibians is available. Address inquiries to the Director, Museum of Zoology, Ann Arbor, Michigan 48109. MISCELLANEOUS PUBLICATIONS MUSEUM OF ZOOLOGY, UNIVERSITY OF MICHIGAN NO. 162 Species Limits in the Indigobirds (Ploceidae, Vidua) of West Africa: Mouth Mimicry, Song Mimicry, and Description of New Species Robert B.
    [Show full text]
  • Behavioural Adaptation of a Bird from Transient Wetland Specialist to an Urban Resident
    Behavioural Adaptation of a Bird from Transient Wetland Specialist to an Urban Resident John Martin1,2*, Kris French1, Richard Major2 1 Institute for Conservation Biology and Environmental Management, School of Biological Sciences, University of Wollongong, Wollongong, New South Wales, Australia, 2 Terrestrial Ecology, Australian Museum, Sydney, New South Wales, Australia Abstract Dramatic population increases of the native white ibis in urban areas have resulted in their classification as a nuisance species. In response to community and industry complaints, land managers have attempted to deter the growing population by destroying ibis nests and eggs over the last twenty years. However, our understanding of ibis ecology is poor and a question of particular importance for management is whether ibis show sufficient site fidelity to justify site-level management of nuisance populations. Ibis in non-urban areas have been observed to be highly transient and capable of moving hundreds of kilometres. In urban areas the population has been observed to vary seasonally, but at some sites ibis are always observed and are thought to be behaving as residents. To measure the level of site fidelity, we colour banded 93 adult ibis at an urban park and conducted 3-day surveys each fortnight over one year, then each quarter over four years. From the quarterly data, the first year resighting rate was 89% for females (n = 59) and 76% for males (n = 34); this decreased to 41% of females and 21% of males in the fourth year. Ibis are known to be highly mobile, and 70% of females and 77% of males were observed at additional sites within the surrounding region (up to 50 km distant).
    [Show full text]
  • First Record of the Austral Negrito (Aves: Passeriformes) from the South Shetlands, Antarctica
    vol. 36, no. 3, pp. 297–304, 2015 doi: 10.1515/popore−2015−0018 First record of the Austral Negrito (Aves: Passeriformes) from the South Shetlands, Antarctica Piotr GRYZ 1,2, Małgorzata KORCZAK−ABSHIRE 1* and Alina GERLÉE 3 1 Zakład Biologii Antarktyki, Instytut Biochemii i Biofizyki PAN, ul. Pawińskiego 5a, 02−106 Warszawa, Poland *corresponding author <[email protected]> 2 Instytut Paleobiologii PAN, ul. Twarda 51/55, 00−818 Warszawa, Poland <[email protected]> 3 Zakład Geoekologii, Wydział Geografii i Studiów Regionalnych, Uniwersytet Warszawski, ul. Krakowskie Przedmieście 30, 00−927 Warszawa, Poland <[email protected]> Abstract: The order Passeriformes is the most successful group of birds on Earth, however, its representatives are rare visitors beyond the Polar Front zone. Here we report a photo− −documented record of an Austral Negrito (Lessonia rufa), first known occurrence of this species in the South Shetland Islands and only the second such an observation in the Antarc− tic region. This record was made at Lions Rump, King George Island, part of the Antarctic Specially Protected Area No. 151 (ASPA 151). There is no direct evidence of how the indi− vidual arrived at Lions Rump, but ship assistance cannot be excluded. Key words: Antarctica, King George Island, avifauna monitoring, Lessonia rufa, vagrant birds. Introduction Monitoring of the avifauna in Admiralty and King George Bays on King George Island (South Shetland Islands, Antarctica; Fig. 1) is an important part of the Polish Antarctic research, and has been conducted since 1977 (Jabłoński 1986; Trivelpiece et al. 1987; Sierakowski 1991; Lesiński 1993; Korczak−Abshire et al.
    [Show full text]