New Data on Minerals
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Minerals Named After Scientists
Dr. John Andraos, http://www.careerchem.com/NAMED/Minerals.pdf 1 MINERALS NAMED AFTER PEOPLE AND PLACES © Dr. John Andraos, 2003-2011 Department of Chemistry, York University 4700 Keele Street, Toronto, ONTARIO M3J 1P3, CANADA For suggestions, corrections, additional information, and comments please send e-mails to [email protected] http://www.chem.yorku.ca/NAMED/ PEOPLE MINERAL PERSON OR PLACE DESCRIPTION Abelsonite ABELSON, Philip Hauge (1913 - ?) geochemist Abenakiite ABENAKI people, Quebec, Canada Abernathyite ABERNATHY, Jess Mine operator American, b. ? Abswurmbachite ABS-WURMBACH, IRMGARD (1938 - ) mineralogist German, b. ? Adamite ADAM, Gilbert Joseph Zn3(AsO3)2 H2O (1795 - 1881) mineralogist French, b. ? Aegirine AEGIR, Scandinavian god of the sea Afwillite WILLIAMS, Alpheus Fuller (1874 - ?) mine operator DeBeers Consolidated Mines, Kimberley, South Africa Agrellite AGRELL, Stuart O. (? - 1996) mineralogist British, b. ? Agrinierite AGRINIER, Henri (1928 - 1971) mineralogist French, b. ? Aguilarite AGUILAR, P. Superintendent of San Carlos mine, Guanajuato, Mexico Mexican, b. ? Aikenite 2 PbS Cu2S Bi2S5 Andersonite ANDERSON, Dr. John Andraos, http://www.careerchem.com/NAMED/Minerals.pdf 2 Andradite ANDRADA e Silva, Jose B. Ca3Fe2(SiO4)3 de (? - 1838) geologist Brazilian, b. ? Arfvedsonite ARFVEDSON, Johann August (1792 - 1841) Swedish, b. Skagerholms- Bruk, Skaraborgs-Län, Sweden Arrhenite ARRHENIUS, Svante Silico-tantalate of Y, Ce, Zr, (1859 - 1927) Al, Fe, Ca, Be Swedish, b. Wijk, near Uppsala, Sweden Avogardrite AVOGADRO, Lorenzo KBF4, CsBF4 Romano Amedeo Carlo (1776 - 1856) Italian, b. Turin, Italy Babingtonite (Ca, Fe, Mn)SiO3 Fe2(SiO3)3 Becquerelite BECQUEREL, Antoine 4 UO3 7 H2O Henri César (1852 - 1908) French b. Paris, France Berzelianite BERZELIUS, Jöns Jakob Cu2Se (1779 - 1848) Swedish, b. -
New Minerals Approved Bythe Ima Commission on New
NEW MINERALS APPROVED BY THE IMA COMMISSION ON NEW MINERALS AND MINERAL NAMES ALLABOGDANITE, (Fe,Ni)l Allabogdanite, a mineral dimorphous with barringerite, was discovered in the Onello iron meteorite (Ni-rich ataxite) found in 1997 in the alluvium of the Bol'shoy Dolguchan River, a tributary of the Onello River, Aldan River basin, South Yakutia (Republic of Sakha- Yakutia), Russia. The mineral occurs as light straw-yellow, with strong metallic luster, lamellar crystals up to 0.0 I x 0.1 x 0.4 rnrn, typically twinned, in plessite. Associated minerals are nickel phosphide, schreibersite, awaruite and graphite (Britvin e.a., 2002b). Name: in honour of Alia Nikolaevna BOG DAN OVA (1947-2004), Russian crys- tallographer, for her contribution to the study of new minerals; Geological Institute of Kola Science Center of Russian Academy of Sciences, Apatity. fMA No.: 2000-038. TS: PU 1/18632. ALLOCHALCOSELITE, Cu+Cu~+PbOZ(Se03)P5 Allochalcoselite was found in the fumarole products of the Second cinder cone, Northern Breakthrought of the Tolbachik Main Fracture Eruption (1975-1976), Tolbachik Volcano, Kamchatka, Russia. It occurs as transparent dark brown pris- matic crystals up to 0.1 mm long. Associated minerals are cotunnite, sofiite, ilin- skite, georgbokiite and burn site (Vergasova e.a., 2005). Name: for the chemical composition: presence of selenium and different oxidation states of copper, from the Greek aA.Ao~(different) and xaAxo~ (copper). fMA No.: 2004-025. TS: no reliable information. ALSAKHAROVITE-Zn, NaSrKZn(Ti,Nb)JSi401ZJz(0,OH)4·7HzO photo 1 Labuntsovite group Alsakharovite-Zn was discovered in the Pegmatite #45, Lepkhe-Nel'm MI. -
Valid Unnamed Minerals, Update 2012-01
VALID UNNAMED MINERALS, UPDATE 2012-01 IMA Subcommittee on Unnamed Minerals: Jim Ferraiolo*, Jeffrey de Fourestier**, Dorian Smith*** (Chairman) *[email protected] **[email protected] ***[email protected] Users making reference to this compilation should refer to the primary source (Dorian G.W. Smith & Ernest H. Nickel (2007): A System of Codification for Unnamed Minerals: Report of the SubCommittee for Unnamed Minerals of the IMA Commission on New Minerals, Nomenclature and Classification. Canadian Mineralogist v. 45, p.983-1055), and to this website . Additions and changes to the original publication are shown in blue print; deletions are "greyed out and struck through". IMA Code Primary Reference Secondary Comments Reference UM1886-01-OC:HNNa *Bull. Soc. Minéral. 9 , 51 Dana (7th) 2 , 1104 Probably an oxalate but if not is otherwise similar to lecontite UM1892-01-F:CaY *Am. J. Sci. 44 , 386 Dana (7th) 2 , 37 Low analytical total because F not reported; unlike any other known fluoride 3+ UM1910-01-PO:CaFeMg US Geol. Surv. Bull. 419, 1 Am. Mineral. 34 , 513 (Ca,Fe,Mg)Fe 2(PO4)2(OH)2•2H2O; some similarities to mitridatite UM1913-01-AsO:CaCuV *Am. J. Sci. 35 , 441 Dana (7th) 2 , 818 Possibly As-bearing calciovolborthite UM1922-01-O:CuHUV *Izv. Ross. Akad. Nauk [6], 16 , 505 Dana (7th) 2 , 1048 Some similarities to sengierite 3+ UM1926-01-O:HNbTaTiU *Bol. Inst. Brasil Sc., 2 , 56 Dana (7th) 1 , 807 (Y,Er,U,Th,Fe )3(Ti,Nb,Ta)10O26; some similarities to samarskite-(Y) UM1927-01-O:CaTaTiW *Gornyi Zhurn. -
GEUS No 190.Pmd
G E O L O G Y O F G R E E N L A N D S U R V E Y B U L L E T I N 1 9 0 · 2 0 0 1 The Ilímaussaq alkaline complex, South Greenland: status of mineralogical research with new results Edited by Henning Sørensen Contributions to the mineralogy of Ilímaussaq, no. 100 Anniversary volume with list of minerals GEOLOGICAL SURVEY OF DENMARK AND GREENLAND MINISTRY OF THE ENVIRONMENT 1 Geology of Greenland Survey Bulletin 190 Keywords Agpaite, alkaline, crystallography, Gardar province, geochemistry, hyper-agpaite, Ilímaussaq, mineralogy, nepheline syenite, peral- kaline, Mesoproterozoic, rare-element minerals, South Greenland. Cover Igneous layering in kakortokites in the southern part of the Ilímaussaq alkaline complex, South Greenland. The central part of the photograph shows the uppermost part of the layered kakortokite series and the overlying transitional kakortokites and aegirine lujavrite on Laksefjeld (680 m), the dark mountain in the left middle ground of the photograph. The cliff facing the lake in the right middle ground shows the kakortokite layers + 4 to + 9. The kakortokite in the cliff on the opposite side of the lake is rich in xenoliths of roof rocks of augite syenite and naujaite making the layering less distinct. On the skyline is the mountain ridge Killavaat (‘the comb’), the highest peak 1216 m, which is made up of Proterozoic granite which was baked and hardened at the contact to the intrusive complex. The lake (987 m) in the foreground is intensely blue and clear because it is practically devoid of life. -
Summer Polar Adventures Kola Peninsula Washed by the White and the Barents Seas Is Situated Behind the Polar Circle
+7 (812) 313-43-39 +7 (953) 140-80-89 [email protected] Summer Polar adventures Kola Peninsula washed by the White and the Barents Seas is situated behind the Polar Circle. Since beginning of May and up to the middle of July The Sun is always in the sky and nights are similar to days. Ancient archeological and natural objects of Kola attract by mystic origin. Polar tundra keeps its special beauty of the Northern nature. We will drive off-road to the heart of Khibiny Mountains, meet Saami culture and see the Polar Summer phenomena: The Unsetting Sun. Welcome to the different world to get new impressions and to have the great adventures! Day 1: Murmansk Arrival in Murmansk. Transfer from the airport to the hotel. Overnight. Day 2: Kirovsk - Khibiny Mountains Breakfast and check out. At 08:00am transfer to Kirovsk city for the short city excursion and visiting the Museum of the Apatit Factory with interesting expositions devoted to mining. Then transfer to Tirvas hotel at the foot of Khibiny Mountains where we will have Lunch. After Lunch we get into off-road cars and start our trip to Khibiny mountains. We will drive on the Kukisvumchorr pass and stop at several places to make panoramic photos in mountains. Check-in at a small mountain hotel. Dinner. Evening walk to the waterfall. Then we will hike to a gletcher which never melts to see snow in the middle of Summer. Making photos of The Unsetting Sun in mountain view. Day 3: Saami settlement Breakfast. We drive out of Khibiny mountains to Saami settlement located at a place of traditional reindeer grazing areas. -
Introduction to Apatites
Chapter 1 Introduction to Apatites Petr Ptáček Additional information is available at the end of the chapter http://dx.doi.org/10.5772/62208 Abstract Apatite is the generic name, which was first introduced by German geologist A.G. Werner. These minerals and their synthetic analogs represent a major class of ionic compounds and the most common crystalline form of calcium phosphates, which are of interest of many industrial branches and scientific disciplines. Since, apatite (fluora‐ patite) is the most abundant phosphate mineral, apatite bearing phosphate rocks represents an important source of inorganic phosphorus. First chapter of this book introduces the basic concepts of nomenclature, composition, classification, crystal structure, mineralogy and properties of minerals from the supergroup of apatite. Furthermore, the minerals from the group of apatite and polysomatic apatites are described. Since, the most of the topics mentioned in this chapter will be developed in the following chapters, the key concepts provided in this chapter are important to understood before proceeding further. Keywords: Apatite, Group of Apatite, Polysomatic Apatites, Fluorapatite, Hydroxyla‐ patite, Chlorapatite, Vanadinite The minerals1 [1],[2],[3],[4],[5] from the apatite group2 [6] are classified as hexagonal or pseudo‐ hexagonal monoclinic anhydrous phosphates containing hydroxyl or halogen of the generic formula3: 1Minerals are individual components comprising rocks formed by geological processes classified according to their crystal structure and chemical composition. The total number of minerals accepted by mineralogical community is about 4000. Mineraloids are mineral-like phases including synthetic materials, human-treated substances, and some biological materials, which do not fulfill the criteria for the definition of mineral species [2]. -
Perceptions of the Arctic: Rich Or Scarce, Mass-Scale Or Traditional, Conflict Or Cooperation?
Calotte Academy 2017 Perceptions of the Arctic: Rich or Scarce, Mass-scale or Traditional, Conflict or Cooperation? Jussi Huotari & Salla Kalliojärvi The 26th Calotte Academy took place in early June 2017. The travelling symposium had its sessions in familiar places: in Inari, Finland, in Kirkenes, Norway and in Apatity, Russia. This year, part of the caravan continued their way to Umeå, Sweden where final sessions of the Calotte Academy 2017 were organized back-to-back with the International Congress of Arctic Social Sciences (ICASS). This year’s academy consisted of twelve full working days, eleven sessions, more than 30 presentations, two excursions, five border crossings and plenty of questions, comments and discussions during and outside the sessions. This would not have been possible without the committed participants, who were ready to allocate their time, were open-minded and willing to share their expertise. More than 30 participants representing thirteen different nationalities formed the group, with approximately half of the group participating for the first time. The multi-national and multidisciplinary background of the group, as well as different levels of experience in Arctic studies, fit very well with the main theme of this year’s academy. After travelling north from Rovaniemi, and entering Sami land and the Sami capital of Finland, Inari, the first working day of Calotte Academy 2017 began on June 1st. Even though June is considered to be one of the summer months in Finland, the weather was not very summery, as it was snowing and temperatures were around 2oC. However, the atmosphere and discussions were warm, while participants debated on the themes of the first two sessions. -
Zabardhzat = Chrysolite, Bukanov 409 (2006). Zabeltitzigyémánt = Transparent Quartz, László 95 (1995)
Zaba Gem = synthetic gem rutile, Nassau 214 (1980). zabardhzat = chrysolite, Bukanov 409 (2006). zabeltitzigyémánt = transparent quartz, László 95 (1995). Zabeltitzten diamond = transparent quartz, Read 244 (1988). zabeltitzter Diamant = transparent quartz, Haditsch & Maus 244 (1974). zaberzat = chrysoberyl or beryl or olivine, Bukanov 55, 64, 103 (2006). zacharowiet = zakharovite, Council for Geoscience 787 (1996). zacotinga = hematite ± gold, de Fourestier 387 (1999). zaffirin = blue asteriated gem Fe-Ti-rich corundum, László 319 (1995). zaffiro = blue asteriated gem Fe-Ti-rich corundum, Zirlin 96 (1981). Zafir = blue gem Fe-Ti-rich corundum, Zirlin 95 (1981). zafirin (Giesecke) = sapphirine, László 300 (1995). zafirin (Nose) = haüyne, László 300 (1995). zafirina = blue quartz-mogánite mixed-layer, AM 12, 392 (1927). zafírkvarc = quartz ± acicular rutile ± tourmaline ± fibrous riebeckite, László 153 (1995). zafírmacskaszem = blue gem Fe-Ti-rich corundum, László 300 (1995). zafiro = blue asteriated gem Fe-Ti-rich corundum, Dana 6th, 1134 (1892). zafiro de agua = cordierite, de Fourestier 387 (1999). zafiro del Brasil = blue gem elbaite, de Fourestier 387 (1999). zafiro falso = pink gem elbaite, de Fourestier 387 (1999). zafiro oriental = blue asteriated gem Fe-Ti-rich corundum, Novitzky 282 (1951). zafiro verdadero = blue asteriated gem Fe-Ti-rich corundum, Novitzky 282 (1951). zafirspinell = blue spinel, László 250 (1995). zagotinga = hematite ± gold, de Fourestier 387 (1999). zahab = gold, Egleston 139 (1892). zaharovait = Bi-bearing jamesonite, László 300 (1995). zaharovit = zakharovite, László 300 (1995). zähes Erdpech = bitumen, Egleston 34 (1892). Zahntürkis = Mn5+-rich fluorapatite, Doelter III.1, 507 (1914). zaïreite = zaïrite, MM 40, 916 (1976). zairite = zaïrite, Strunz & Nickel 463 (2001); MR 39, 134 (2008). zajacite = gagarinite-(Ce), CM 49, 1111 (2011). -
General Index Lep – Lil
GENERAL INDEX LEP – LIL SABINAITE Zaire Michigan Canada Shinkolobwe mine 8:(390), 9:33, 20:284 Isle Royale lode, Houghton County (various Québec SALESITE mines) (after clinochlore) 23:M68 Keweenaw Peninsula (several localities listed) Mt. St-Hilaire (tabular, micaceous to 6 mm) Chile (massive) 14:224 21:333–334p,d,c 9: 9: Chuquicamata 325h,d,c, 326p Laurium mine, Houghton County: after clino- SABUGALITE SAMARSKITE chlore; also primary acicular 23:M68; with Brazil Metamict 4:218 kinoite 14:224 Minas Gerais United States Mass mine, Ontonagon County (acicular) Córrego Frio mine, near Linópolis (spots in Colorado 14:224 scorzalite) 14:233 Pikes Peak region 16:228n “SAPPHIRE” Italy Texas See Corundum Sardinia Clear Creek pegmatite, Burnet County (small Arcu su Linnarbu, near Capoterra 18:183 masses) 8:90 SAPPHIRINE Spain SAMPLEITE Australia Pedro Alvaro, Salamanca region 9:(113) Northern Territory Chile SACROFANITE Harts Range, northeast of Alice Springs Chuquicamata 8:(390), 8:(517), 9:330d,c Italy 15:100–101c,p,q SAMSONITE Lazio Canada Sacrofano quarry (1 cm crystals) 23:434n Germany Northwest Territories Mt. Walker, Somerset Island (tabular crystals SAFFLORITE Niedersachsen St. Andreasberg 17:(9) to 3 cm) 22:386n Canada SANBORNITE Resolute (south of), Somerset Island 18:362n Northwest Territories Greenland Port Radium (safflorite-rammelsbergite) Canada Fiskenæsset (Qeqertarsuatsiaat) region 24:G12– 20:(207) Yukon 13p,h Germany Gunn claim, near MacMillan Pass 17:340n Madagascar Halle SANIDINE Androy: rounded, to 15 mm 24:50n; to 4 cm Mansfeld Kupferschiefer 17:(10) Bulgaria 24:230 Obersachsen Kyustendil (twins) 22:459n SARABAUITE Schneeberg 17:(13) Canada Malaysia Odenwald British Columbia Mackenheim 8:305 Sarabau mine, Sarawak: 9:(113); announced Beaverdell (near) (euhedral to 5 cm, some 9:116h Rheinland-Pfalz Carlsbad twins) 23:428n Angelika mine, Nieder-Beerbach 17:(7) Québec SARCOPSIDE Mexico Mt. -
Saint Petersburg State University
Saint Petersburg State University CHEREZOVA Anna Graduate Qualification Work KOLA PENINSULA PALAEOENVIRONMENTS AS REFLECTED BY LITHOLOGY AND SEDIMENTARY GEOCHEMISTRY OF LAKE IMANDRA SEDIMENT CORE Master program BМ.5710. “Cold Region Environmental Landscapes Integrated Sciences” Scientific supervisor: Dr. Grigory B. FEDOROV, Associate Professor, Geomorphology Dept., Institute of Earth Sciences, St. Petersburg State University, St. Petersburg, Russia Scientific supervisor: Prof. Dr. Martin MELLES, Professor for Geology, Institute of Geology and Mineralogy, University of Cologne, Cologne, Germany Reviewer: Dr. Vasiliy V. KOLKA, Laboratory Head, Geological Institute, Kola Scientific Centre of RAS, Apatity, Russia St. Petersburg 2018 Contents Introduction ________________________________________________________________3 Chapter 1. The state of the art __________________________________________________5 Chapter 2. Study site _________________________________________________________7 Chapter 3. Material and methods_______________________________________________12 3.1. Field work and core preparations _____________________________________12 3.2. Magnetic susceptibility and XRF scanning _____________________________13 3.3. Total organic carbon (TOC) and CNS analyses __________________________13 Chapter 4. Results __________________________________________________________14 4.1. Lithological core description ________________________________________14 4.2. Magnetic susceptibility and element composition ________________________18 4.2.1. Magnetic -
Shin-Skinner January 2018 Edition
Page 1 The Shin-Skinner News Vol 57, No 1; January 2018 Che-Hanna Rock & Mineral Club, Inc. P.O. Box 142, Sayre PA 18840-0142 PURPOSE: The club was organized in 1962 in Sayre, PA OFFICERS to assemble for the purpose of studying and collecting rock, President: Bob McGuire [email protected] mineral, fossil, and shell specimens, and to develop skills in Vice-Pres: Ted Rieth [email protected] the lapidary arts. We are members of the Eastern Acting Secretary: JoAnn McGuire [email protected] Federation of Mineralogical & Lapidary Societies (EFMLS) Treasurer & member chair: Trish Benish and the American Federation of Mineralogical Societies [email protected] (AFMS). Immed. Past Pres. Inga Wells [email protected] DUES are payable to the treasurer BY January 1st of each year. After that date membership will be terminated. Make BOARD meetings are held at 6PM on odd-numbered checks payable to Che-Hanna Rock & Mineral Club, Inc. as months unless special meetings are called by the follows: $12.00 for Family; $8.00 for Subscribing Patron; president. $8.00 for Individual and Junior members (under age 17) not BOARD MEMBERS: covered by a family membership. Bruce Benish, Jeff Benish, Mary Walter MEETINGS are held at the Sayre High School (on Lockhart APPOINTED Street) at 7:00 PM in the cafeteria, the 2nd Wednesday Programs: Ted Rieth [email protected] each month, except JUNE, JULY, AUGUST, and Publicity: Hazel Remaley 570-888-7544 DECEMBER. Those meetings and events (and any [email protected] changes) will be announced in this newsletter, with location Editor: David Dick and schedule, as well as on our website [email protected] chehannarocks.com.