<<

View metadata, citation and similar papers at core.ac.uk brought to you by CORE

provided by Earth-prints Repository

ANNALS OF GEOPHYSICS, VOL. 48, N. 6, December 2005

The high resolution bathymetric map of the exhalative area of (, )

Marco Anzidei (1), Alessandra Esposito (1), Giovanni Bortoluzzi (2) and Francesco De Giosa (3) (1) Istituto Nazionale di Geofisica e Vulcanologia, Roma, Italy (2) Istituto di Geologia Marina (ISMAR), CNR, , Italy (3) Coastal Consulting and Exploration srl, , Italy

Abstract On November 3, 2002 a shallow submarine gas eruption occurred in an area of 2.3 km2 east of Panarea (Aeo- lian , Southern Thyrrenian Sea, Italy). The exhalative area, surrounded by the islets of Dattilo, Panarelli, Lisca Bianca, Bottaro and Lisca Nera, has been known since historical times for the hydrothermal ac- tivity related to the Panarea volcanic complex. Due to the exceptional characteristics of the phenomenon, differ- ent geological, geochemical, geophysical and studies were carried out in this still poorly known volcanic area. A particular effort was devoted to producing a high resolution bathymetric map that also aimed to estimate the amount and location of the active exhalative centers and their variations in space and time. Data were obtained by three RTK multibeam surveys performed between December 2002 and December 2003. Here we show and discuss the technical details of the bathymetric surveys, the bathymetric map at 0.5 m resolution, and the accu- rate location of the 606 main exhalative centres active during the 2002-2003 crisis. The bathymetric data and the maps show two prevailing principal NE-SW and NW-SE alignments that match the spatial distribution of the exhalation centres. The accurate positioning at submeter accuracy of the gas vents is useful in the monitoring activity and to study their temporal and spatial variability.

Key words Panarea – bathimetry – DEM – hy- to a slab deepening under the Calabrian Arc drotermal systems (Chiarabba et al., 2005), active crustal defor- mation (Anzidei et al., 2000; Hollenstein et al., 2003; Tallarico et al., 2003; D’Agostino and 1. Introduction Selvaggi, 2004; Serpelloni et al., 2005), active volcanoes (, and ) and Panarea Island is located in the Southern hydrothermalism. The above features witness a and is part of the volcanic arc of long lasting activity, as described by Italiano the Aeolian Islands that is made up of seven is- and Nuccio (1991), Gamberi et al. (1997), lands, some minor islets and several seamounts Calanchi et al. (1999, 2002), De Astis et al. (fig. 1a). The area is characterized by a com- (2003) and Caliro et al. (2004). plex geodynamics (Falsaperla et al., 1999) be- Panarea is the smallest among the Aeolian ing affected by shallow to deep seismicity due Islands, representing the subaerial portion of a submarine about 2000 m high and 20 km wide (Gabbianelli et al., 1993; Gam- beri et al., 1997). East of Panarea, the islets of , Dattilo, Panarelli, Lisca Bianca, Mailing address: Dr. Marco Anzidei, Istituto Naziona- le di Geofisica e Vulcanologia, Via di Vigna Murata 605, Bottaro, Lisca Nera and Le Formiche (hereafter 00143 Roma, Italy, e-mail: [email protected] referred as the ‘Islets’) form an that

899 Marco Anzidei, Alessandra Esposito, Giovanni Bortoluzzi and Francesco De Giosa

a

b c

Fig. 1a-c. a) Regional setting of Panarea Island; b) Panarea Archipelago; c) the ALSEA vessel used during ba- thymetric surveys. In the map are also displayed the locations of the tide gauge, the TyrGeoNet GPS station and the area investigated by the bathymetric surveys. emerges from the eastern flank of the air, death of fishes, mud emerging from seafloor (fig. 1b). Panarea is made up of dacite to rhyo- occurred on 126 b.C. This event is likely referred lite lava domes, dated up to 149±5 kyr to the formation of Vulcanello, nowadays linked (Calanchi et al., 1999), interbedded with pyro- to Vulcano Island. The exhalative activity at clastic deposits. The island is topped by the py- Panarea has been described by Houel (1782), roclastic deposits of Punta del Torrione forma- Dolomieu (1783), (1810), Spallanzani tion, dated between 42 kyr and 11 kyr, which (1825), Dumas (1860), Mercalli (1883), Luigi also outcrop at Salina, Lipari, , Vulcano Salvatore d’ (1895), Romano (1973), Ital- and along the northern coast of and iano and Nuccio (1991), Gabbianelli et al. (Lucchi et al., 2003). (1990), Calanchi et al. (1995), Anzidei (2000), Boiling of the sea-water has been described Caliro et al., (2004), Caracausi et al. (2005). since historical times in the Aeolian Islands by At the beginning of November 2002, during Titus Livius, , Julis Obsequens, Orosius the eruptions of Etna and Stromboli volcanoes, Palulus, and Plinius the Elder (SGA, a submarine gas eruption started in a shallow 1993). An event that produced sudden changes in area up to 30 m water depth and 2.3 km2 of sur- the sea level, hot steam from sea surface, stinky face, bordered by the Islets. The event occurred

900 The high resolution bathymetric map of the exhalative area of Panarea (Aeolian Islands, Italy) suddenly, without significant seismicity (Sac- in the early days of December 2002, with par- carotti et al., 2003) and reached an intensity tial repetitions in selected areas during July level never observed before during the last cen- 2003 and December 2003. tury (SGA, 1996). The gas output was estimat- ed to be 109 l/day, two orders of magnitude higher than that previously measured (Caliro et 2. Bathymetric surveys al., 2004). The most active exhalation center (EC-1, fig. 7b) was located close to the SW A multibeam high resolution survey that wall of the islet of Bottaro, with gas flowing covered an area of about 9 km2 around the Islets vigorously up to the water surface. To provide was performed for the first time in December 8- the present day locations of the submarine gas 12, 2002, using the Alsea boat of Coastal Con- Exhalation Centres (EC) with respect to previ- sulting and Exploration Company (fig. 1c), ous studies (Gabbianelli et al., 1990; Anzidei, equipped with an ultra high resolution Reson 2000) and a first high resolution morphobathy- Seabat 8125 multibeam (240 beams, 120° sec- metric map of the exhalation centres, bathymet- tor coverage, 455 kHz) (table I). ric surveys were planned and performed during Before starting the surveys, a check of the the maximum activity. Surveys were carried out health of the GPS/RTK data link was performed

Table I. Instrumentation used during the bathymetric surveys.

Instrumentation Type Features

Vessel M/B ALSEA - Differential GPS receiver Ashtech-Aquarius 02 10 mm+0.5 ppm, XY (RTK mode) 20 mm+1.0 ppm, Z Multi beam Reson SeaBat 8125 Frequency 455 kHz Angle 120° Beams 240 Max depth 120 m Resolution 6 mm Gyrocompass SG Brown Meridian 0.05° static secant latitude 0.2° dynamic secant latitude Velocity sounder Navitronic SVP 15 Resolution 0.1 m/s Accuracy ±0.25 m/s CTD Microcat SBE 37-SI Conductivity accuracy 0.0003 S/m Temperature accuracy 0.002°C Motion sensor TSS DMS 2-05 Waves Static accuracy 5 cm Dynamic accuracy 0÷20 s period Pitch and roll Static accuracy 0.025° Dynamic accuracy 0.03°±5° Digital tide gauge Ott Hydrometry Accuracy <1 cm (at Panarea) Orphimedes On board computers Pentium IV- Data acquisition Windows 2000 Software RESON B.V. PDS 2000 Navigation and data analysis Software CARIS-HIPS 5.2 Data analysis Software ArcView GIS 8.2 Data management

901 Marco Anzidei, Alessandra Esposito, Giovanni Bortoluzzi and Francesco De Giosa

Fig. 2. Sketch (not in scale) of the Panarea Pier with the location of the tide gauge and the geodetic benchmark used to define its coordinates with respect to the TyrGeoNet GPS station of Panarea.

Table II. Coordinates of PANA TyrGeoNet station and tide gauge benchmark (WGS84, ellipsoidal heights).

Station Geographic UTM Height (m)

PANA (TyrGeoNet) Lat N 38°37l58.909 N 4276057.468 144554 Long E 15°04l26.457 E 506442.1583 Tide Gauge Lat N 38°38l16.772 N 4276608.335 43.30 Long E 15°04l40.257 E 506775.313 throughout the planned survey, having previ- urements using a Total Station, with reference ously found a local shadow area behind the to the GPS geodetic monument of PANA, locat- eastern wall of Dattilo. The bathymetric datum ed at Panarea (fig. 1a), which belongs to the was established by measuring the sea level Tyrrhenian Geodetic Network (TyrGeoNet), through a high accuracy tide gauge, temporari- whose 3D coordinates are known at a few mm ly installed along the pier at S. Pietro, Panarea level (Anzidei et al., 1995; Serpelloni et al., (fig. 1a and 2). The instrumental height of the 2005), (table II). zero level was referred to a WGS84 geodetic The decimetric positioning of the vessel benchmark previously set up over the pier (fig. was computed by GPS technique in RTK mode. 2 and table II). The latter was measured by ge- Real time coordinates were obtained by in- odetic space techniques using a couple of dual stalling an Ashtech Aquarius reference station frequency GPS receivers and by ground meas- located on the GPS station PANA and transmit-

902 The high resolution bathymetric map of the exhalative area of Panarea (Aeolian Islands, Italy)

ting the differential corrections by a High Fre- quency link at 1 Hz rate to the mobile Aquarius receiver which was placed on board of the ves- sel. In addition to this, a Sg-Brown Meridian Surveyor gyrocompass, a Tss DM505 MRU and a Fugro Omnistar Differential GPS, were interfaced to the Reson PDS2000 Navigation software (www.reson.com) for data acquisition (multibeam and positioning), control, calibra- tion and pre-processing. A SBE 37-SI Microcat CTD probe was located at the sonar head and interfaced to the sonar processor, so providing the real time speed of sound data for the beam forming, while the Navitronics SVP15 and a SeaBird CTD probes were also used for profil- ing the speed of sound along the water column (fig. 3). Additional details on the instrumenta- tion are reported in table I. Navigation routes were planned with the aim to achieve the full coverage of the sea bot- tom (fig. 4), with at least 20-30% overlap of the nearby swaths. The Reson PDS2000 software Fig. 3. Sound speed profile. Data were used to cal- was able to show in real time to the operator ibrate the multibeam system for sound speed veloci- and the pilot the ongoing multibeam and Digi- ty in the water to determine depths at 1 cm formal ac- tal Terrain Model (DTM) and the positioning curacy. information that were used for guidance.

Fig. 4. Course over the ground performed by ALSEA vessel during bathymetric surveys. The 30% overlapping between nearby lines guarantee the full coverage of the area.

903 Marco Anzidei, Alessandra Esposito, Giovanni Bortoluzzi and Francesco De Giosa

At the beginning of each survey, a full set of 3. Data analysis, bathymetric map multibeam calibration lines were acquired, on flat and exhalation centres bottoms and steep targets at 30-70 m water depth. The roll, pitch and yaw correction angles were Data analysis was performed by the Com- then used to correct the installation geometries. puter Aided Resource Information System- Calibration parameters were taken into account Hydrographic Information Processing System during data analysis to correct the observations. (CARIS-HIPS) Pro v. 5.2 software (CARIS,

a

b

Fig. 5a,b. a) Example of tide gauge recordings collected at 5 min sampling rate at Panarea Pier in the time span December 19-21, 2003 during bathymetric surveys. Tide amplitudes are <0.4 m, typical of the Central Mediter- ranean Sea. b) Comparison between tide data recorded by the tide gauge located at Panarea (grey line) and those registered by the GPS/RTK system located on board of the vessel (black line) during bathymetric surveys. The GPS/RTK tide data have been collected at 1 min sampling rate but averaged at 10 min to remove the high fre- quency noise. The two data sets are in good agreement. Tidal values were used to correct depth measurements, that were reduced to a mean sea level.

904 The high resolution bathymetric map of the exhalative area of Panarea (Aeolian Islands, Italy)

a

b

d

c

Fig. 6a-d. a-c) Multibeam images of some typical exhalation centres (vertical exaggeration 4X), showing upris- ing gas bubbles from the seafloor and the related small size craters produced by the exhalation activity; d) under- water picture of exhalation centres west of Bottaro Island. Gas bubbles are reaching the sea surface (0A class).

2000), specifically designed to process multi- 2. Data quality check: only 15% of the data beam data under Windows NT® and capable to were discarded due to a low signal to noise ratio. manage images in a of the seafloor and 3. Sea level correction using the tide gauge produce raster and analytical maps. The data and RTK data (fig. 5a,b). processing sequence was as follows: 4. High and medium frequency spike remov- 1. System calibration and multibeam data al, keeping intact the signatures produced by the reprocessing. uprising gas bubbles from the seafloor (fig. 6a-d).

905 Marco Anzidei, Alessandra Esposito, Giovanni Bortoluzzi and Francesco De Giosa

5. Production of high accuracy Marine Dig- The classified EC were mapped over the ital Elevation Models (MDEM) (table III). MDEM, allowing a view of the active exhala- Through the repeated computations, the sig- tion centres for the whole area during the time nal to noise ratio was greatly improved, allow- span 2002-2003 (fig. 7a), and at December ing a precise discrimination of the significant 2002, during the maximum intensity of the cri- signal and the subsequent identification and lo- sis (fig. 7b). Bathymetric surveys were partial- cation of EC (table IV). ly repeated during July and December 2003 A total of 606 EC were detected (Appendix) (fig. 4), focusing on the most active area around and classified by intensity and significance lev- Lisca Bianca, Bottaro and EC-1 (fig. 7b). el (fig. 7b). The latter criteria were expressed To produce the MDEM at 0.5 m average by the number of soundings that identified each pixel size, of 9 million of 3D punctual data in EC from multiple overlapping swaths (0-1-2 the UTM33-WGS84 coordinate system were levels of table IV) and from their height above used. the seafloor (A-B-C levels of table IV). The MDEM for each survey data set (De- The exhalation centres were further divided cember 2002, July and December 2003), was into three classes (table IV): analysed to reduce any positioning offset or er- A) High activity centres, with bubbles ror. The difference grids display pixels whose columns interesting the entire water column up values are the difference of depth at two survey to the sea surface (figs. 6d and 8). epochs. The residuals between the three MDEMs B) Medium activity centres, with bubble were estimated, as reported in table III. By the av- columns extending for 3 to 4 m from the bottom erage standard deviations and excluding values but not reaching the sea surface (fig. 8). >1 m, supposed to be related to the active exha- C) Moderate activity centres, with bubble lation centres, the statistical difference between columns extending up to 2 m from the ground the surveys for all the investigated area was esti- floor, not reaching the sea surface (fig. 6a). mated within 14 cm.

Table III. Accuracy of the MDEMs.

Survey epoch Average of the residuals Average standard deviation (month/year) between grids (m) between grids (m)

12/03-12/02 +0.02 0.14 07/03-12/02 +0.10 0.13 12/03-07/03 −0.09 0.11

Table IV. Classification of the exhalation centres.

Detection level Based on the number Based on the height Based on the quality of lines which detected extension of the gas column of the detection the exhalation centre High 0 (>3 lines) A (all water column, 0A (high) from seafloor to sea surface) 0B (medium) 0C (low) Medium 1 (2÷3 lines) B (4 m height from the seafloor) 1A (high) 1B (medium) 1C (low) Low 2 (1÷2 lines) C (2 m height from seafloor) 2A (high) 2B (medium) 2C (low)

906 The high resolution bathymetric map of the exhalative area of Panarea (Aeolian Islands, Italy)

a

b

Fig. 7a,b. a) Bathymetry of Panarea Archipelago at 2.0 m countour level. The red dots are the A and B class- es of exhalation centres, respectively, detected in the time span December 2002-December 2003. Blue lines are the cross sections aal and bbl; b) location of the main exhalation centres active during December 2002, based on their classification (Appendix). In the map are shown the EC-1 (latitude 383818.8N; longitude 150634.0E, depth 13.3 m), EC-8 (latitude 383819.9N, longitude 150637.1E, depth 8.7 m), which were the largest exhalation cen- tres and the EC named black smoke (latitude 383815.1N, longitude 150617.4E, depth 20.8 m). The latter is a 175 m wide and 5 m deep subcircular depression, interested by moderate dark exhalation, surrounded by lava outcrops that show deposition of alunite, and sulfates.

907 Marco Anzidei, Alessandra Esposito, Giovanni Bortoluzzi and Francesco De Giosa

Fig. 8. Classification of the exhalation centres based on their intensity, as detected by the multibeam sensor. See also table III.

a

b

Fig. 9a,b. Cross sections of the investigated area: aal, bbl, running a) W-E and b) NW-SE, respectively. It is remarkable the 20 m height vertical slope in cross section aal, that could be related with a tectonic structure run- ning SW-NE (labelled with A in fig.10a).

908 The high resolution bathymetric map of the exhalative area of Panarea (Aeolian Islands, Italy)

Once the offsets were analysed and applied, Applying this analysis to a limited area in- the final MDEMs were produced and made cluding the EC-1, a crater about 40 m long, 15 available for the morphostructural analysis, in- m wide and 9 m deep (fig. 11), which was the cluding the Exhalation Center (EC) detection, largest activated on December 2002, the mor- production of contour maps at 1:2500 scale phological differences during time were evi- (fig. 7a,b), cross sections (fig. 9a,b) and shaded denced. Figure 12 shows the results obtained by relief (fig. 10a,b), which show the roughness comparing the December 2002-December 2003 and complexity of this sector of the Panarea data: starting from a reference surface which volcano surface. fits the average surface of the seafloor around

Fig. 10a. Marine Digital Elevation Model (MDEM) showing the morphobathymetry of the area. Scale colour shows depths ranging between 0 and –60 m. Exhalation centres (red dots) and main lineaments (red lines) re- vealed by the exhalation centres distribution are reported in the map. The exhalation area is located at the top of the stratovolcano. A and B, are two areas that displays relevant tectonic features; C, is likely to be a past exha- lation centre.

909 Marco Anzidei, Alessandra Esposito, Giovanni Bortoluzzi and Francesco De Giosa

Fig. 10b. Three dimensional view of the area (vertical exaggeration = 2).

Fig. 11. Digital Terrain Model of the EC-1. The cross section profiles obtained by multibeam data displayed a crater about 40 m long, 15 m wide and 9 m deep. The spikes located in the deepest part of the crater are the up- rising gas bubbles.

910 The high resolution bathymetric map of the exhalative area of Panarea (Aeolian Islands, Italy) the EC-1, we tentatively estimated that the ex- Panarelli and Secca dei Panarelli the map re- plosive opening of the crater produced an ex- veals large lava flow surfaces, smooth and traction at 3852 m3 of rock during the maximum lobed. of the crisis. One year after its opening, the The deepest sector dislays evident morpho- crater was partially filled with approximately logical structures such as those located in the 221 m3 of debris due to rock falls of the inner northwest area, NE- NNE- NNW- and E-trend- flank of the crater the upwelling gas and water ing lineaments (fig. 10a: A,B). The southwest flows. sector displays a sub-elliptical shape wide de- pression probably due gravitative movements (C in fig. 10a). 4. Discussion and conclusions The shaded relief (fig. 10a,b) does not show a -like structure as suggested in Gabi- The high resolution multibeam technique anelli et al. (1990) and Caliro et al. (2004). provided the first 3D detailed bathymetric map The high quality of the surveys disclosed of the seafloor at 0.5 m average pixel resolution 606 exhalation centres (Apppendix), which and the location and distribution of the exhala- were classified on the basis of their different tion centres, during the crisis that has affected size and activity level, as estimated from the in- the Panarea area since November 2002 (fig. terferences on the multibeam sensor. The loca- 10a,b). These data are useful to improve and tion of the gas vents, mapped on the bathymet- support the geological, volcanological, geo- ric maps, revealed the existence of preferential chemical, geophysical research and monitoring EC aligments NE-SW and NW-SE trending of this still poorly known volcanic area. More- (fig. 10a,b) and along which the gas eruption over, they represent the first accurate record of took place. These alignments match those the last submarine exhalation crisis which oc- measured from the fractures, the alunite veins curred at Panarea. and the fossil gas-pipes exposed on the lava of The MDEM (fig. 10a,b) shows that the area the seafloor and along the Islets’ cliffs (Anzidei of Panarea Archipelago represents a positive et al., 2003, 2004a,b; Esposito et al., 2005). geomorphic feature which is defined by the the Therefore we suggest that the NE-SW and NW- coalescence of individual volcanic edifices. SE systems are the main pathways for the up- This is an asymmetric structure sloping at high welling of hydrothermal fluids. angle in its southeastern flank while the others The comparison between the gas bubble flanks display smoother slopes. The area within alignments and those inferred by morphology- the Islets is characterised by a shallow seafloor cal analysis, suggests that presently the gas path platform, bewteen 0 and –30 m, gently slooping is mainly driven by an active extension along to NW between Panarelli and Secca dei the NE- and NW-trending fracture systems.The Panarelli (fig. 10a,b). Lisca Bianca, Bottaro and trends of the fracture systems are in agreement Lisca Nera islets are NE-trending coalescent with the main regional tectonic structures (De structures. The Dattilo structure shows an elon- Astis et al., 2003). gated tongue-like marine abrasion platform, SE The maximum number of exhalation centres trending, for 0.8 km at depths between –5 and was located in a limited extended zone, west of –8 m. Bottaro and Lisca Bianca islets, whereas clus- The area within the Islets is dotted by hun- ters of minor centres were sparse in the area. dreds of circular or horseshoe-shaped depres- The largest and most active exhalation centre sions up to several metres deep and wide, large- EC-1 was located a few tenths of metres south ly distributed especially surrounding Dattilo, of Bottaro (figs. 7b and 11). The ellipsoidal Lisca Nera and Bottaro. The high frequency re- crater rim spans between –8 m and –15 m. Its lief of coarse textured morphology, at metre to main axis, NW-oriented, is 40 m long and the decimetre size pinnacles and troughs, is well minor axis is 25 m long. The hundreds of de- developed between Lisca Bianca, Bottaro and pression features identified on the seafloor (fig. Secca dei Panarelli. In the area between 10a,b) can be related to fossil exhalation cen-

911 Marco Anzidei, Alessandra Esposito, Giovanni Bortoluzzi and Francesco De Giosa

Fig. 12. Topographic changes of the groundfloor at the EC-1, after one year from its opening. The differential MDEM obtained from multibeam data in the time span December 2002-December 2003, estimated 3852 m3 of extracted rock during the gas explosion; 221 m3 were recovered after 12 months, due to a continuous but de- creasing gas flux from the seafloor. Positive values are negative groundfloor changes (blue) due to slides inside the crater; negative values (red) are positive groundfloor changes, due to the progressive filling of the bottom of the crater. tres suggesting that the area has been the site of canic interpretations are not the object of this past episodes of gas eruptions similar to that of paper, which aims to shows bathymetric survey November 2002 (Anzidei et al., 2003, 2004 a,b; data and results applied to the submarine part of Esposito et al., 2005). Panarea volcano, we think that a change in the The differential MDEM obtained from regional and local strain fields in this area may multibeam data in the time span December have produced a reactivation of previous frac- 2002-December 2003, estimated 3852 m3 of ex- tures or the opening of new ones, causing a sub- tracted rock during the gas explosion; 221 m3 sequent gas exhalation during the 2002-2003 were recovered after 12 months, due to a con- Panarea crisis, as more extensively described in tinuous but decreasing gas flux from the Caliro et al. (2004), Caracausi et al. (2005) and seafloor (fig. 12). As far as the tectonic and vol- Esposito et al. (2005).

912 The high resolution bathymetric map of the exhalative area of Panarea (Aeolian Islands, Italy)

Appendix.

Coordinates of the 606 exhalation centres (UTM 33 coordinates). Their depth reported to the mean sea level during surveys, classification and epoch of detection, are also reported.

EC 0A 12/02 39 150637.10 383819.65 8 0A 12/02 No. Long Lat Depth Class Date 40 150637.27 383819.65 8.1 0A 12/02 41 150637.77 383819.72 8 0A 12/02 1 150634.05 383823.87 13.6 0A 12/02 42 150626.09 383813.30 12.5 0A 12/02 2 150634.41 383814.31 13.2 0A 12/02 43 150617.69 383814.06 22.5 0A 12/02 3 150634.41 383814.35 13.1 0A 12/02 4 150631.68 383815.80 11.8 0A 12/02 EC 0B 12/02 5 150629.03 383818.20 12.4 0A 12/02 No. Long Lat Depth Class Date 6 150629.03 383818.17 12.5 0A 12/02 44 150631.80 383815.70 11.9 0B 12/02 7 150628.99 383818.04 12.3 0A 12/02 45 150631.84 383815.67 11.7 0B 12/02 8 150634.32 383814.30 13 0A 12/02 46 150631.80 383815.70 11.7 0B 12/02 9 150634.12 383814.56 11.3 0A 12/02 47 150631.80 383815.76 11.8 0B 12/02 10 150634.16 383814.52 11.2 0A 12/02 48 150631.80 383815.76 11.9 0B 12/02 11 150634.09 383814.51 11.3 0A 12/02 49 150631.89 383815.76 12.2 0B 12/02 12 150634.20 383814.48 11.3 0A 12/02 50 150631.89 383815.83 12.2 0B 12/02 13 150634.20 383814.43 11.3 0A 12/02 51 150631.89 383815.83 12 0B 12/02 14 150633.83 383814.66 11.4 0A 12/02 52 150631.72 383815.83 12.1 0B 12/02 15 150632.67 383815.37 11.2 0A 12/02 53 150631.55 383816.02 12.2 0B 12/02 16 150632.69 383815.44 11.5 0A 12/02 54 150631.72 383815.86 12.1 0B 12/02 17 150634.01 383823.68 13.7 0A 12/02 55 150633.93 383814.60 11.3 0B 12/02 18 150634.05 383823.84 12.7 0A 12/02 56 150633.77 383814.73 11.3 0B 12/02 19 150634.88 383823.74 16 0A 12/02 57 150623.37 383818.43 21.5 0B 12/02 20 150634.09 383823.94 13 0A 12/02 58 150628.63 383821.44 13.2 0B 12/02 21 150634.13 383824.00 12.6 0A 12/02 59 150634.54 383823.78 17 0B 12/02 22 150635.17 383824.03 16.2 0A 12/02 60 150635.04 383823.94 16.5 0B 12/02 23 150634.26 383824.16 11.9 0A 12/02 61 150634.09 383822.02 10.8 0B 12/02 24 150634.88 383824.39 15.1 0A 12/02 62 150634.54 383822.22 10.9 0B 12/02 25 150634.63 383824.49 14.7 0A 12/02 63 150636.20 383822.28 10.3 0B 12/02 26 150635.70 383825.14 17.5 0A 12/02 64 150634.67 383823.58 16.1 0B 12/02 27 150635.71 383825.20 17.5 0A 12/02 65 150634.59 383823.52 15.8 0B 12/02 28 150638.02 383826.82 19.2 0A 12/02 66 150634.17 383822.96 12.5 0B 12/02 29 150638.07 383826.85 19.2 0A 12/02 67 150637.97 383819.55 6.3 0B 12/02 30 150634.09 383821.99 10.8 0A 12/02 68 150638.01 383819.62 6.7 0B 12/02 31 150634.21 383822.06 10.7 0A 12/02 69 150637.64 383819.62 7.7 0B 12/02 32 150634.25 383822.12 10.9 0A 12/02 70 150637.56 383819.75 8.2 0B 12/02 33 150634.96 383823.58 15.7 0A 12/02 71 150619.28 383821.52 25.4 0B 12/02 34 150635.21 383823.55 15.2 0A 12/02 72 150625.47 383813.40 12.4 0B 12/02 35 150635.37 383823.51 15.2 0A 12/02 73 150617.15 3838,08.87 13.4 0B 12/02 36 150634.09 383823.00 12.6 0A 12/02 74 150616.49 383809.35 14 0B 12/02 37 150637.76 383819.49 6.7 0A 12/02 75 150616.57 383809.55 13.9 0B 12/02 38 150637.97 383819.59 6.6 0A 12/02 76 150618.92 383806.66 12.5 0B 12/02

913 Marco Anzidei, Alessandra Esposito, Giovanni Bortoluzzi and Francesco De Giosa

EC 0C 12/02 118 150623.41 383818.14 20.9 1A 12/02 No. Long Lat Depth Class Date 119 150626.73 383823.20 18.9 1A 12/02 120 150627.47 383822.00 16.7 1A 12/02 77 150632.71 383815.54 11.6 0C 12/02 121 150626.02 383821.93 17 1A 12/02 78 150634.88 383823.81 16.4 0C 12/02 122 150626.35 383819.63 17.2 1A 12/02 79 150637.23 383819.75 8 0C 12/02 123 150633.55 383822.87 12.2 1A 12/02 EC 1A 12/02 124 150633.55 383822.87 12.2 1A 12/02 No. Long Lat Depth Class Date 125 150634.01 383823.06 12.5 1A 12/02 126 150633.76 383823.29 12.9 1A 12/02 80 150639.03 383806.35 28.8 1A 12/02 127 150628.21 383822.48 15.8 1A 12/02 81 150641.02 383808.49 27.5 1A 12/02 128 150628.50 383821.51 13.5 1A 12/02 82 150639.03 383806.35 29 1A 12/02 129 150628.38 383821.45 13.7 1A 12/02 83 150641.18 383808.39 27.6 1A 12/02 130 150629.20 383821.05 13.4 1A 12/02 84 150641.22 383808.39 27.7 1A 12/02 131 150628.87 383820.37 13.9 1A 12/02 85 150639.32 383810.27 15 1A 12/02 132 150624.53 383823.72 21.1 1A 12/02 86 150636.93 383812.19 8 1A 12/02 133 150636.20 383823.77 13.2 1A 12/02 87 150636.88 383812.03 10.2 1A 12/02 134 150636.16 383823.77 13.8 1A 12/02 88 150636.88 383811.93 10.7 1A 12/02 135 150636.24 383823.87 13.6 1A 12/02 89 150636.97 383811.83 11.2 1A 12/02 136 150635.83 383824.00 15 1A 12/02 90 150636.97 383811.83 11.3 1A 12/02 137 150636.28 383824.03 14.2 1A 12/02 91 150636.97 383811.74 11.6 1A 12/02 138 150635.46 383824.13 15.9 1A 12/02 92 150637.71 383811.54 11.2 1A 12/02 139 150634.96 383824.20 15.7 1A 12/02 93 150636.88 383811.64 11.6 1A 12/02 140 150634.38 383824.23 13 1A 12/02 94 150636.80 383811.57 11.7 1A 12/02 141 150635.95 383824.33 14.5 1A 12/02 95 150636.93 383811.57 11.6 1A 12/02 142 150634.88 383824.33 16.6 1A 12/02 96 150637.75 383811.38 11.5 1A 12/02 143 150636.16 383824.33 15 1A 12/02 97 150639.08 383811.38 10.4 1A 12/02 144 150634.59 383824.42 15 1A 12/02 98 150637.63 383812.06 10.8 1A 12/02 145 150634.96 383824.49 16.2 1A 12/02 99 150637.30 383812.06 9.7 1A 12/02 146 150635.46 383824.49 15.5 1A 12/02 100 150636.21 383803.14 6.9 1A 12/02 147 150634.63 383824.52 15.2 1A 12/02 101 150636.09 383803.17 6.4 1A 12/02 148 150634.84 383824.55 15.3 1A 12/02 102 150636.17 383803.20 5.9 1A 12/02 149 150635.71 383825.33 17.5 1A 12/02 103 150636.21 383803.14 5.4 1A 12/02 150 150636.78 383825.40 15.6 1A 12/02 104 150636.13 383803.01 6 1A 12/02 151 150636.74 383825.53 16.5 1A 12/02 105 150636.08 383803.01 6.4 1A 12/02 152 150635.83 383825.98 15.9 1A 12/02 106 150636.08 383802.85 6.4 1A 12/02 153 150636.08 383826.08 16.1 1A 12/02 107 150636.13 383802.82 5.9 1A 12/02 154 150635.95 383826.14 16 1A 12/02 108 150635.92 383803.04 6.4 1A 12/02 155 150638.19 383826.50 17.8 1A 12/02 109 150631.68 383815.67 11.7 1A 12/02 156 150638.11 383826.59 18 1A 12/02 110 150631.64 383815.80 11.8 1A 12/02 157 150637.90 383826.72 18.4 1A 12/02 111 150628.99 383818.01 12.3 1A 12/02 158 150637.82 383827.21 19.9 1A 12/02 112 150629.12 383817.97 11.9 1A 12/02 159 150638.31 383827.60 21.4 1A 12/02 113 150629.08 383817.97 11.8 1A 12/02 160 150638.19 383827.57 21.2 1A 12/02 114 150634.36 383814.14 9.1 1A 12/02 161 150634.17 383821.73 10.7 1A 12/02 115 150633.70 383814.78 11.3 1A 12/02 162 150634.21 383821.83 10.7 1A 12/02 116 150633.70 383814.87 11.3 1A 12/02 163 150634.21 383821.89 10.8 1A 12/02 117 150633.71 383814.94 11.3 1A 12/02 164 150634.21 383821.99 10.7 1A 12/02

914 The high resolution bathymetric map of the exhalative area of Panarea (Aeolian Islands, Italy)

165 150634.25 383822.19 11.1 1A 12/02 209 150627.26 383822.32 17.6 1B 12/02 166 150634.34 383822.22 11.3 1A 12/02 210 150627.01 383822.22 17.6 1B 12/02 167 150634.38 383822.35 11.4 1A 12/02 211 150627.18 383822.13 17.6 1B 12/02 168 150634.30 383822.90 12.6 1A 12/02 212 150625.86 383821.80 17.1 1B 12/02 169 150634.42 383822.83 12.7 1A 12/02 213 150626.10 383820.57 16.1 1B 12/02 170 150634.50 383822.80 12.6 1A 12/02 214 150626.31 383819.66 17.6 1B 12/02 171 150634.67 383822.80 12.5 1A 12/02 215 150628.75 383820.44 14.1 1B 12/02 172 150635.08 383823.19 14.3 1A 12/02 216 150628.83 383820.37 13.7 1B 12/02 173 150637.39 383819.36 7.1 1A 12/02 217 150627.88 383819.24 14.3 1B 12/02 174 150637.56 383819.36 7 1A 12/02 218 150628.08 383819.30 14.4 1B 12/02 175 150637.89 383819.36 4.4 1A 12/02 219 150632.31 383824.10 14.3 1B 12/02 176 150637.68 383819.39 7.5 1A 12/02 220 150632.15 383824.10 14.3 1B 12/02 177 150637.43 383819.81 8 1A 12/02 221 150636.41 383823.71 12.7 1B 12/02 178 150637.81 383820.27 7.9 1A 12/02 222 150635.54 383823.74 16.3 1B 12/02 179 150638.06 383820.27 7.1 1A 12/02 223 150635.17 383824.94 16.1 1B 12/02 180 150638.23 383827.50 21.1 1A 12/02 224 150635.75 383824.88 16.4 1B 12/02 181 150641.96 383830.91 31.7 1A 12/02 225 150637.98 383827.31 20 1B 12/02 182 150641.92 383830.91 31.7 1A 12/02 226 150638.19 383827.50 20.7 1B 12/02 183 150638.43 383831.80 31 1A 12/02 227 150638.56 383827.70 21.4 1B 12/02 184 150641.75 383831.26 30 1A 12/02 228 150638.44 383827.70 21.7 1B 12/02 185 150621.14 383825.02 26.3 1A 12/02 229 150634.71 383822.57 12.2 1B 12/02 186 150621.70 383811.33 13.7 1A 12/02 230 150635.87 383822.61 10.3 1B 12/02 187 150613.64 383809.91 14.8 1A 12/02 231 150636.03 383823.55 14.6 1B 12/02 188 150612.51 383804.07 19.1 1A 12/02 232 150635.50 383823.22 14.2 1B 12/02 189 150626.61 383803.73 8.1 1A 12/02 233 150637.48 383819.98 8.5 1B 12/02 190 150620.38 383809.45 12.8 1A 12/02 234 150638.40 383827.05 20 1B 12/02 235 150638.60 383827.73 21.9 1B 12/02 EC 1B 12/02 236 150649.07 383826.32 15.2 1B 12/02 No. Long Lat Depth Class Date 237 150649.07 383826.45 15.3 1B 12/02 191 150637.55 383812.00 11 1B 12/02 238 150649.40 383826.45 15.4 1B 12/02 192 150637.59 383811.90 11.2 1B 12/02 239 150649.28 383826.49 15.2 1B 12/02 193 150637.13 383811.90 11.3 1B 12/02 240 150625.72 383813.30 12.2 1B 12/02 194 150636.84 383811.83 11.3 1B 12/02 241 150614.38 383809.49 14.7 1B 12/02 195 150636.55 383811.64 11.8 1B 12/02 242 150617.36 383808.87 13.3 1B 12/02 196 150636.76 383811.57 11.2 1B 12/02 EC 1C 12/02 197 150638.62 383810.63 12.7 1B 12/02 No. Long Lat Depth Class Date 198 150635.71 383801.03 19.7 1B 12/02 199 150635.67 383801.26 18.4 1B 12/02 243 150644.70 383809.85 26.8 1C 12/02 200 150636.00 383802.85 6.5 1B 12/02 244 150639.36 383810.21 15.2 1C 12/02 201 150635.96 383803.24 6.5 1B 12/02 245 150642.80 383812.96 12.8 1C 12/02 202 150633.70 383814.89 11.4 1B 12/02 246 150639.36 383810.27 14.8 1C 12/02 203 150632.63 383815.24 11.1 1B 12/02 247 150636.80 383812.32 7.4 1C 12/02 204 150632.88 383818.03 11.4 1B 12/02 248 150636.68 383812.29 7.5 1C 12/02 205 150633.09 383817.61 8.1 1B 12/02 249 150637.01 383812.22 7.7 1C 12/02 206 150624.24 383818.14 17.6 1B 12/02 250 150636.76 383812.19 8.1 1C 12/02 207 150623.08 383817.82 16.3 1B 12/02 251 150636.76 383812.29 7.3 1C 12/02 208 150627.55 383822.39 17.8 1B 12/02 252 150636.76 383812.13 8 1C 12/02

915 Marco Anzidei, Alessandra Esposito, Giovanni Bortoluzzi and Francesco De Giosa

253 150636.76 383812.00 9.3 1C 12/02 290 150641.06 383808.46 27.4 0B 07/03 254 150637.21 383811.74 11.5 1C 12/02 291 150641.10 383808.39 27.5 0B 07/03 255 150636.55 383811.54 11.8 1C 12/02 292 150631.68 383815.83 11.7 0B 07/03 256 150639.16 383811.18 10.9 1C 12/02 293 150631.80 383815.80 11.8 0B 07/03 257 150638.66 383811.38 10.5 1C 12/02 294 150631.93 383815.83 11.9 0B 07/03 258 150626.23 383821.74 16.1 1C 12/02 295 150631.68 383815.76 11.8 0B 07/03 259 150626.43 383819.47 17 1C 12/02 296 150631.72 383815.70 11.7 0B 07/03 260 150632.73 383824.85 15 1C 12/02 297 150631.84 383815.70 11.6 0B 07/03 261 150632.23 383824.26 14.7 1C 12/02 298 150631.84 383815.67 11.5 0B 07/03 262 150634.05 383823.84 13 1C 12/02 299 150632.71 383815.54 11 0B 07/03 263 150637.86 383827.24 20.2 1C 12/02 300 150632.71 383815.50 11 0B 07/03 264 150614.83 383810.13 15.5 1C 12/02 301 150632.55 383815.47 11.5 0B 07/03 EC 2A 12/02 302 150632.67 383815.44 11 0B 07/03 No. Long Lat Depth Class Date 303 150632.67 383815.34 11.1 0B 07/03 265 150636.67 383806.64 19.2 2A 12/02 EC 0C 07/03 266 150639.16 383811.48 9.8 2A 12/02 No. Long Lat Depth Class Date 267 150635.91 383821.02 8 2A 12/02 304 150641.18 383808.39 27.4 0C 07/03 268 150635.53 383821.21 8 2A 12/02 269 150638.65 383827.24 21 2A 12/02 EC 1A 07/03 270 150638.36 383827.24 21 2A 12/02 No. Long Lat Depth Class Date 271 150619.20 383825.05 26.2 2A 12/02 272 150619.61 383825.22 26.1 2A 12/02 305 150639.03 383806.15 30.9 1A 07/03 273 150621.37 383808.64 12 2A 12/02 306 150638.78 383805.96 28.1 1A 07/03 274 150621.33 383808.64 12 2A 12/02 307 150638.90 383805.99 29.5 1A 07/03 275 150612.51 383803.03 19.8 2A 12/02 308 150638.82 383805.90 29.2 1A 07/03 276 150612.63 383803.13 19.8 2A 12/02 309 150638.82 383805.83 29.1 1A 07/03 277 150626.12 383802.86 10.6 2A 12/02 310 150636.08 383802.88 5.9 1A 07/03 311 150641.10 383808.78 27.2 1A 07/03 EC 2B 12/02 No. Long Lat Depth Class Date 312 150636.97 383811.80 11.5 1A 07/03 313 150636.84 383811.80 11.5 1A 07/03 278 150638.74 383810.57 13 2B 12/02 314 150636.76 383811.77 11.5 1A 07/03 279 150638.56 383827.47 21.8 2B 12/02 315 150636.84 383811.80 11.4 1A 07/03 280 150620.44 383824.92 26.2 2B 12/02 316 150636.84 383811.87 11.4 1A 07/03 281 150617.60 383809.09 13.6 2B 12/02 317 150637.01 383811.77 11.6 1A 07/03 282 150617.36 383809.09 13.6 2B 12/02 318 150636.80 383811.77 11.6 1A 07/03 283 150612.80 383803.32 18.7 2B 12/02 319 150641.77 383814.07 8.6 1A 07/03 284 150612.76 383803.26 18.9 2B 12/02 285 150620.50 383809.51 12.5 2B 12/02 320 150641.81 383814.10 9 1A 07/03 286 150606.81 383811.70 18.2 2B 12/02 321 150631.68 383815.67 11.6 1A 07/03 322 150632.67 383815.31 11 1A 07/03 EC 0A 07/03 323 150627.92 383822.94 16.6 1A 07/03 No. Long Lat Depth Class Date 324 150626.77 383823.17 18.5 1A 07/03 287 150632.63 383815.41 11.2 0A 07/03 325 150626.10 383820.51 16.3 1A 07/03 288 150634.39 383814.30 13.1 0A 07/03 326 150626.10 383820.60 16.1 1A 07/03 327 150626.10 383820.64 16.4 1A 07/03 EC 0B 07/03 328 150623.78 383817.72 17.1 1A 07/03 No. Long Lat Depth Class Date 329 150623.57 383817.78 16.3 1A 07/03 289 150641.06 383808.59 27.4 0B 07/03 330 150624.77 383818.01 17.3 1A 07/03

916 The high resolution bathymetric map of the exhalative area of Panarea (Aeolian Islands, Italy)

331 150624.82 383818.01 18 1A 07/03 378 150636.66 383824.65 13.8 1A 07/03 332 150624.28 383818.14 17.4 1A 07/03 379 150635.58 383825.20 17.4 1A 07/03 333 150623.45 383818.40 21.1 1A 07/03 380 150635.33 383825.49 16.6 1A 07/03 334 150624.58 383823.72 21.3 1A 07/03 381 150638.23 383826.56 17.8 1A 07/03 335 150624.04 383823.72 21.8 1A 07/03 382 150638.07 383826.85 19.2 1A 07/03 336 150624.37 383823.88 22.5 1A 07/03 383 150635.41 383823.58 15 1A 07/03 337 150634.63 383823.58 16.2 1A 07/03 384 150635.25 383823.55 15.1 1A 07/03 338 150634.63 383823.55 16 1A 07/03 385 150634.96 383823.58 15.5 1A 07/03 339 150634.21 383823.45 14.6 1A 07/03 386 150635.21 383823.48 15.1 1A 07/03 340 150633.80 383823.32 13.2 1A 07/03 387 150638.11 383826.89 19.1 1A 07/03 341 150633.80 383823.32 13 1A 07/03 388 150637.90 383827.24 20 1A 07/03 342 150634.25 383823.16 13.7 1A 07/03 398 150617.37 383821.58 25.2 1A 07/03 343 150634.21 383823.00 13.1 1A 07/03 399 150616.34 383821.39 25 1A 07/03 344 150634.38 383822.93 12.6 1A 07/03 400 150615.43 383820.87 24 1A 07/03 345 150634.38 383822.93 12.7 1A 07/03 401 150636.58 383824.50 13.7 1A 07/03 346 150634.83 383822.87 12.5 1A 07/03 402 150634.93 383833.83 33.5 1A 07/03 347 150634.87 383822.83 12.4 1A 07/03 403 150634.85 383833.90 33.6 1A 07/03 348 150634.58 383822.80 12.4 1A 07/03 404 150620.75 383809.51 12.5 1A 07/03 349 150634.67 383822.80 12.5 1A 07/03 405 150620.71 383809.51 12.5 1A 07/03 350 150634.58 383822.80 12.4 1A 07/03 EC 1B 07/03 351 150634.25 383822.12 11.1 1A 07/03 No. Long Lat Depth Class Date 352 150634.54 383823.68 16 1A 07/03 353 150634.88 383823.71 16.1 1A 07/03 406 150638.99 383806.25 29.6 1B 07/03 354 150634.92 383823.77 16.2 1A 07/03 407 150638.98 383806.09 30.4 1B 07/03 355 150634.09 383823.87 13.7 1A 07/03 408 150638.78 383806.06 26.8 1B 07/03 356 150634.09 383823.87 13.6 1A 07/03 409 150638.86 383806.02 29.2 1B 07/03 357 150634.88 383823.90 16.7 1A 07/03 410 150638.82 383805.93 28 1B 07/03 358 150634.88 383823.94 16.8 1A 07/03 411 150638.82 383805.93 29.2 1B 07/03 359 150634.79 383823.97 17.2 1A 07/03 412 150638.90 383805.80 29 1B 07/03 360 150634.13 383823.97 12.9 1A 07/03 413 150636.13 383802.85 6.2 1B 07/03 361 150634.63 383824.42 15.4 1A 07/03 414 150636.00 383802.82 6.6 1B 07/03 362 150634.59 383824.42 15.4 1A 07/03 415 150636.04 383802.36 6.2 1B 07/03 363 150636.45 383823.74 12.9 1A 07/03 416 150635.92 383802.43 6.3 1B 07/03 364 150636.32 383823.87 13.6 1A 07/03 417 150641.14 383808.59 27.2 1B 07/03 365 150636.32 383823.90 13.6 1A 07/03 418 150636.84 383811.87 11.3 1B 07/03 366 150636.32 383823.90 14.4 1A 07/03 419 150642.10 383814.46 10.5 1B 07/03 367 150636.20 383824.00 12.5 1A 07/03 420 150642.31 383814.07 11.3 1B 07/03 368 150636.32 383824.07 14.3 1A 07/03 421 150641.81 383814.13 8.9 1B 07/03 369 150636.32 383824.13 14.8 1A 07/03 422 150631.72 383815.83 11.6 1B 07/03 370 150636.65 383824.16 12.7 1A 07/03 423 150631.93 383815.83 11.9 1B 07/03 371 150636.32 383824.13 14.6 1A 07/03 424 150632.17 383815.50 11.6 1B 07/03 372 150636.28 383824.20 15 1A 07/03 425 150632.67 383815.28 11 1B 07/03 373 150636.57 383824.32 13.3 1A 07/03 426 150627.34 383822.26 17.6 1B 07/03 374 150636.20 383824.33 14.9 1A 07/03 427 150627.59 383822.39 17.5 1B 07/03 375 150636.57 383824.42 13.6 1A 07/03 428 150627.43 383822.52 15.7 1B 07/03 376 150636.20 383824.33 15.1 1A 07/03 429 150626.10 383820.44 16.6 1B 07/03 377 150636.57 383824.49 13.7 1A 07/03 430 150626.56 383821.32 16.6 1B 07/03

917 Marco Anzidei, Alessandra Esposito, Giovanni Bortoluzzi and Francesco De Giosa

431 150626.27 383821.77 16.4 1B 07/03 475 150627.14 383822.39 18.2 1C 07/03 432 150623.08 383817.85 16.3 1B 07/03 476 150628.71 383822.42 14.5 1C 07/03 433 150623.37 383818.17 17.1 1B 07/03 477 150627.59 383822.42 17.4 1C 07/03 434 150623.45 383818.17 17.5 1B 07/03 478 150628.71 383822.42 14.4 1C 07/03 435 150623.41 383818.40 21 1B 07/03 479 150627.97 383822.52 16.5 1C 07/03 436 150624.58 383823.72 21.2 1B 07/03 480 150627.47 383822.65 16.7 1C 07/03 437 150634.63 383823.45 15.5 1B 07/03 481 150626.06 383820.86 17.2 1C 07/03 438 150634.09 383823.42 14 1B 07/03 482 150626.02 383821.97 17.2 1C 07/03 439 150634.25 383823.35 14 1B 07/03 483 150623.08 383817.98 16.5 1C 07/03 440 150634.25 383823.29 13.6 1B 07/03 484 150624.11 383818.14 17.6 1C 07/03 441 150634.38 383823.06 13.6 1B 07/03 485 150624.08 383823.72 22.2 1C 07/03 442 150634.92 383823.81 16.2 1B 07/03 486 150624.12 383823.88 21.8 1C 07/03 443 150634.88 383823.87 16.2 1B 07/03 487 150634.88 383823.58 15.7 1C 07/03 444 150634.59 383823.81 17.2 1B 07/03 488 150634.09 383823.35 13.8 1C 07/03 445 150634.92 383823.87 16.2 1B 07/03 489 150632.77 383823.26 12.6 1C 07/03 446 150634.88 383823.90 16.5 1B 07/03 490 150634.83 383823.13 13.8 1C 07/03 447 150636.32 383823.77 13.1 1B 07/03 491 150634.75 383823.09 13.5 1C 07/03 448 150636.61 383823.94 12.2 1B 07/03 492 150634.75 383823.06 13 1C 07/03 449 150636.57 383824.23 12.2 1B 07/03 493 150634.21 383823.00 13 1C 07/03 450 150635.99 383824.33 14.5 1B 07/03 494 150634.21 383821.83 10.9 1C 07/03 451 150635.50 383823.29 14.2 1B 07/03 495 150634.63 383823.74 16.7 1C 07/03 452 150638.44 383827.08 20.3 1B 07/03 496 150632.52 383823.84 13.9 1C 07/03 453 150637.08 383832.66 31.6 1B 07/03 497 150632.68 383824.00 14.3 1C 07/03 454 150637.08 383832.63 31.7 1B 07/03 498 150635.58 383823.68 14.9 1C 07/03 455 150617.78 383814.06 22.6 1B 07/03 499 150636.20 383823.94 14.2 1C 07/03 456 150618.19 383814.32 23 1B 07/03 500 150635.83 383824.00 15.3 1C 07/03 457 150617.03 383814.22 20.1 1B 07/03 501 150635.83 383824.00 15.3 1C 07/03 458 150636.61 383823.90 18.8 1B 07/03 502 150635.79 383824.07 15 1C 07/03 459 150620.91 383809.45 12.4 1B 07/03 503 150635.70 383824.13 15.1 1C 07/03 460 150620.83 383809.61 12.4 1B 07/03 504 150636.03 383824.26 13.8 1C 07/03 461 150614.83 383810.13 15.2 1B 07/03 505 150635.95 383824.46 14.7 1C 07/03 506 150635.71 383825.33 17.9 1C 07/03 C 1C 07/03 No. Long Lat Depth Class Date 507 150635.42 383825.36 16.9 1C 07/03 508 150635.62 383825.49 17.9 1C 07/03 462 150638.74 383806.06 26.9 1C 07/03 509 150634.96 383823.45 15.2 1C 07/03 463 150638.94 383805.77 29 1C 07/03 510 150638.44 383827.11 20.2 1C 07/03 464 150636.00 383802.82 6.6 1C 07/03 511 150638.56 383827.28 21 1C 07/03 465 150636.00 383802.78 6 1C 07/03 512 150638.36 383827.24 20.5 1C 07/03 466 150641.18 383808.36 27.4 1C 07/03 513 150638.11 383827.02 19.2 1C 07/03 467 150641.18 383808.85 27.4 1C 07/03 514 150639.69 383832.40 32.7 1C 07/03 468 150642.18 383814.23 11 1C 07/03 515 150616.91 383814.32 20.1 1C 07/03 469 150642.31 383814.36 11.2 1C 07/03 516 150621.00 383809.42 12.3 1C 07/03 470 150642.89 383814.36 11.2 1C 07/03 C 2C 07/03 471 150631.72 383815.76 11.7 1C 07/03 No. Long Lat Depth Class Date 472 150632.09 383815.57 11.9 1C 07/03 473 150632.26 383815.41 11.2 1C 07/03 517 150638.78 383805.73 29 2B 07/03 474 150627.34 383822.29 17.5 1C 07/03 518 150636.08 383802.72 5.9 2B 07/03

918 The high resolution bathymetric map of the exhalative area of Panarea (Aeolian Islands, Italy)

519 150636.04 383800.41 24.6 2B 07/03 561 150634.09 383823.35 13.8 1B 12/03 520 150636.41 383802.33 7 2B 07/03 562 150634.09 383823.45 13.9 1B 12/03 521 150619.61 383825.22 27 2B 07/03 563 150634.59 383823.81 16.8 1B 12/03 522 150620.81 383823.98 25.9 2B 07/03 564 150634.09 383824.00 11.7 1B 12/03 523 150636.04 383800.41 24.6 2B 07/03 565 150634.88 383825.27 14.9 1B 12/03 524 150636.41 383802.33 7 2B 07/03 566 150636.70 383824.71 14 1B 12/03 525 150619.61 383825.22 27 2B 07/03 567 150636.70 383824.68 13.9 1B 12/03 526 150620.81 383823.98 25.9 2B 07/03 568 150636.57 383824.49 13.7 1B 12/03 569 150636.28 383824.10 14.4 1B 12/03 EC 1A 12/03 No. Long Lat Depth Class Date 570 150635.04 383824.00 16.5 1B 12/03 571 150636.16 383823.94 14.4 1B 12/03 528 150634.58 383822.83 12.4 1A 12/03 572 150636.16 383823.94 14.4 1B 12/03 529 150634.67 383822.80 12.4 1A 12/03 573 150635.04 383823.16 13.5 1B 12/03 530 150634.79 383822.87 12.5 1A 12/03 574 150634.96 383822.83 12.8 1B 12/03 531 150634.34 383822.90 12.2 1A 12/03 575 150638.23 383826.53 17.9 1B 12/03 532 150634.83 383822.87 12.1 1A 12/03 576 150638.07 383826.85 19.2 1B 12/03 533 150634.38 383823.06 13.1 1A 12/03 577 150639.80 383827.66 22.8 1B 12/03 534 150633.80 383823.32 13 1A 12/03 1C 12/03 535 150634.63 383823.52 15.7 1A 12/03 No. Long Lat Depth Class Date 536 150634.13 383824.00 13.1 1A 12/03 537 150636.66 383824.68 14 1A 12/03 578 150634.71 383823.09 12.7 1C 12/03 538 150636.53 383824.45 14.1 1A 12/03 579 150635.58 383825.27 17.3 1C 12/03 539 150636.49 383824.42 13.6 1A 12/03 580 150635.99 383824.33 15.1 1C 12/03 540 150636.53 383824.36 13.6 1A 12/03 581 150635.99 383824.33 14.8 1C 12/03 541 150636.16 383824.33 15.1 1A 12/03 582 150636.61 383824.16 12.9 1C 12/03 542 150636.53 383824.29 13.3 1A 12/03 583 150635.83 383824.00 15 1C 12/03 543 150636.16 383824.33 15.1 1A 12/03 584 150636.28 383823.81 13.7 1C 12/03 544 150636.24 383824.07 14.2 1A 12/03 585 150639.64 383826.76 19.4 1C 12/03 545 150636.28 383823.90 14.1 1A 12/03 586 150638.07 383826.85 19.2 1C 12/03 546 150636.24 383823.94 14.1 1A 12/03 587 150638.11 383826.95 19.3 1C 12/03 547 150634.88 383823.81 16.2 1A 12/03 588 150638.11 383827.02 19.4 1C 12/03 548 150634.88 383823.78 16 1A 12/03 589 150638.48 383827.11 20 1C 12/03 549 150634.96 383823.61 15.6 1A 12/03 590 150637.98 383827.24 20.1 1C 12/03 550 150635.29 383823.55 14.9 1A 12/03 591 150638.44 383827.28 20.5 1C 12/03 551 150635.24 383823.54 14.8 1A 12/03 592 150640.01 383827.53 21.9 1C 12/03 552 150635.26 383823.52 14.7 1A 12/03 593 150634.92 383825.27 14.5 1C 12/03 553 150634.83 383822.87 12.7 1A 12/03 A 12/03 554 150635.16 383822.90 12.2 1A 12/03 No. Long Lat Depth Class Date 555 150638.23 383826.53 17.7 1A 12/03 556 150637.94 383826.63 18.6 1A 12/03 594 150634.25 383823.29 13.3 2A 12/03 557 150640.80 383826.66 19.3 1A 12/03 595 150634.09 383823.87 13.6 2A 12/03 558 150639.64 383826.72 19.6 1A 12/03 596 150634.63 383824.46 15.2 2A 12/03 597 150635.22 383823.81 15.4 2A 12/03 1B 12/03 No. Long Lat Depth Class Date 598 150635.29 383823.85 15.5 2A 12/03 599 150635.37 383823.71 15.2 2A 12/03 559 150634.75 383822.74 12.6 1B 12/03 600 150635.08 383823.71 15.6 2A 12/03 560 150634.17 383823.00 12.7 1B 12/03 601 150636.98 383821.53 8.8 2A 12/03

919 Marco Anzidei, Alessandra Esposito, Giovanni Bortoluzzi and Francesco De Giosa

12/03 603 150632.48 383823.84 13.9 2B 12/03 No. Long Lat Depth Class Date 604 150632.68 383824.00 13.8 2B 12/03 605 150636.78 383825.56 16 2B 12/03 602 150631.65 383823.84 14.8 2B 12/03 606 150635.12 383823.74 15.7 2B 12/03

REFERENCES new view of Italian seismicity using 20 years of instru- mental seismicity, Tectonophysics, 395, 251-268. ANZIDEI, M. (2000): Rapid bathymetric surveys in marine D’AGOSTINO, N. and G. SELVAGGI (2004): Crustal motion volcano areas: a case study in Panarea aera, Phys. along the Eurasia-Nubia plate boundary in the Calabria Chem. Earth A, 25 (1), 77-80. Arc and Sicily and active extension in the ANZIDEI, M., P. BALDI, G. CASULA, F. RIGUZZI and L. Straits from GPS measurements, J. Geophys. Res., 109 SURACE (1995): La rete TyrGeoNet, Boll. Geod. Sci. (B11402), doi: 10.1029/2004JB002998. Affini, LIV (2), pp. 120. DE ASTIS, G., G. VENTURA and G. VILARDO (2003): Geody- ANZIDEI, M., A. ESPOSITO, G. GIORDANO and A. BENINI namic significance of the Aeolian volcanism (Southern (2003): Diving in the Panarea volcanic complex (Aeo- Tyrrhenian Sea, Italy) in light of structural, seismologi- lian Islands, Italy), in Cities on Volcanoes 3, July 14- cal and geochemical data, Tectonics, 22 (4), 1040, doi: 18, 2003, Hilo, Hawaii. 10.1029/2003TC001506. ANZIDEI, M., A. ESPOSITO, A. PESCI and E. SERPELLONI DOLOMIEU, D. (1783): Voyage aux Iles de Lipari Fait en (2004a): The 2002-2003 crisis of the Panarea volcanic 1781 ou Notice sur les Iles Aeoliennes, Paris, pp. 208. complex (Aeolian Islands, Italy): new volcanologgical, DUMAS, A. (1860): Dove il Vento Suona. Viaggio nelle Isole geodetic and bathymetric data, in GNV General Assem- Eolie (Ed. Pungitopo, Marina di Patti, Messina). bly, 20-22 December, Napoli, Italy (abstract). ESPOSITO, A., G. GIORDANO and M. ANZIDEI (2005): The ANZIDEI, M., M.L. CARAPEZZA, R. CIONI, A. ESPOSITO, G. 2002-2003 submarine gas eruption at Panarea Island GIORDANO, M. GUIDI, M. LELLI and C. PICCIONE (Aeolian Archipelago, Italy): structure and volcanolo- (2004b): Indagini geologiche e geochimiche nella zona gy of the seafloor and implications for hazard evalua- ad est di Panarea sede delle emissioni anomale di gas tion, Mar. Geol. (submitted). del Novembre 2002, in GNV General Assembly, 20-22 FALSAPERLA, S., G. LANZAFAME, V. LONGO and S. SPAMPINA- December, Napoli, Italy (abstract). TO (1999): Regional stress field in the area of Stromboli CALANCHI, N., B. CAPACCIONI, M. MARTINI, F. TASSI and L. (Italy): insights into structural data and crustal tectonic VALENTINI (1995): Submarine gas-emission from earthquakes, J. Volcanol. Geotherm. Res., 88, 147-166. Panarea Island Aeolian Archipelago: distribution of in- FERRARA, F. (1810): Campi Flegrei della e delle organic and organic compounds and inferences about Isole che le sono intorno (Messina), pp. 424. source conditions, Acta Vulcanol., 7 (1), 43-48. GABBIANELLI, G., P.Y. GILLOT, G. LANZAFAME, C. ROMAG- CALANCHI, N., C.A. TRANNE, F. LUCCHINI, P.L. ROSSI and NOLI and P.L. ROSSI (1990): Tectonic and volcanic evo- I.M. VILLA (1999): Explanatory notes to the geological lution of Panarea (Aaeolian Island, Italy), Mar. Geol., map (1:10000) of Panarea and Basiluzzo islands (Aeo- 92, 312-326. lian Arc, Italy), Acta Vulcanol., 11 (2), 223-243. GABBIANELLI, G., C. ROMAGNOLI, P.L. ROSSI and N. CALANCHI, N., A. PECCERILLO, C.A.TRANNE, F. LUCCHINI, P.L. CALANCHE (1993): Marine of Panarea-Strom- ROSSI, P. KEMPTON, M. BARBIERI and T.W. WU (2002): boli area, Aeolian Archipelago, Southeastern Tyrrhen- Petrology and geochemistry of volcanic rocks from the ian Sea, Acta Vulcanol., 3, 11-20. Island of Panarea: implications for mantle evolution be- GAMBERI, F., P.M. MARANI and C. SAVELLI (1997): Tectonic neath the Aeolian Island Arc (Southern Tyrrhenian Sea), volcanic and hydrothermal features of submarine por- J. Volcanol. Geotherm. Res., 115, 367-395. tion of Aeolian arc (Tyrrhenian Sea), Mar. Geol., 140, CALIRO, S., A. CARACAUSI, G. CHIODINI, M. DITTA, F. ITAL- 167-181. IANO, M. LONGO, C. MINOPOLI, P.M. NUCCIO, A. PAONI- HOLLESTEIN, CH., H.G. KAHLE, A. GEIGER, S. JENNY, S. TA and A. RIZZO (2004): Evidence of a new magmatic GOES and D. GIARDINI (2003): New GPS constraints on input to the quiescent volcanic edifice of Panarea, Ae- the Africa-Eurasia plate boundary zone in Southern Ita- olian Islands, Italy, Geophys. Res. Lett., 31, L07619, ly, Geophys. Res. Lett., 30 (18), 1935, doi: 10.1029/ doi: 10.1029/2003GL019359 /2003GL017554. CARACAUSI, A., M. DITTA, F. ITALIANO, M. LONGO, P.M. HOUEL, L. (1782): Voyage Pittoressque des Isles de Sicilie, NUCCIO and A. PAONITA (2005): Massive submarine de Malte et de Lipari ect., Paris. gas output during the volcanic unrest off Panarea Is- ITALIANO, F. and P.M. NUCCIO (1991): Geochemical inves- land (Aeolian arc, Italy): inferences for explosive con- tigations of submarine volcanic exhalations to the eat ditions, Geochem. J. (in press). Panarea, Aeolian Islands, Italy, J. Volcanol. Geotherm. CARIS (2000): CARIS-HIPS (Hydrographic Information Res., 46, 125-141. Processing System) and SIPS Professional v. 5.2 Soft- LUCCHI, F., C.A. TRANNE, N. CALANCHI, J. KELLER and P.L. ware User Guide: MA-HIPS-UG-02-02 (on line ROSSI (2003): Geological Map of Panarea and Minor http://www.caris.com/). Islets (Aaeolian Islands), (Università di Bologna, IN- CHIARABBA, C., L. JOVANE and R. DI STEFANO (2005): A GV, LAC Firenze).

920 The high resolution bathymetric map of the exhalative area of Panarea (Aeolian Islands, Italy)

LUIGI SALVATORE D’AUSTRIA (1895): Die Liparischen, In- analysis of permanent and non-permanent GPS net- seln vierter Heft: Panaris (new edition by P. PAINO, Li- works, Geophys. J. Int. (in press). pari (ME), 1977). SPALLANZANI, L. (1825): Viaggi alle Due Sicilie e in Alcune MERCALLI, G. (1883): Vulcani e fenomeni Vulcanici, in Ge- Parti dell’Appennino (Milano), tomo I. ologia d’Italia, edited by G. NEGRI, A. STOPPANI and G. SGA (STORIA GEOFISICA E AMBIENTE) (1996): Fenomeni vul- MERCALLI (Milano), 3rd part, pp. 374. canici nell’Arcipelago delle Eolie dall’antichità al XX ROMANO, R. (1973): Le isole di Panarea e Basiluzzo, Riv. secolo, Studio di Fattibilità RPT 156,96 (Bologna, Italy). Miner. Siciliana, 139-141, 49-86. TALLARICO, A., M. DRAGONI, M. ANZIDEI and A. ESPOSITO SACCAROTTI, G., D. GALLUZZO, M. LA ROCCA, E. DEL PEZZO (2003): Modeling long-term ground deformation due and D. PATANÈ (2003): Monitoraggio dell’attività sismica to the cooling of a chamber: case of Basiluzzo a Panarea, in GNV General Assembly, 9-11 June, Roma, Island, Aeolian Islands, Italy, J. Geophys. Res., 108 (B Italy. 12), 2568, doi: 10.1029/2002JB002376. SERPELLONI, E., M. ANZIDEI, P. BALDI, G. CASULA and A. GALVANI (2005): Crustal velocity and strain-rate fields (received January 13, 2005; in Italy and surrounding regions: new results from the accepted June 21, 2005)

921