Nonlinear Features of Instabilities, Turbulence and Transport in Hot Plasmas Maxime Lesur
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Quest for a Fusion Energy Reactor This Page Intentionally Left Blank the Quest for a Fusion Energy Reactor
The Quest for a Fusion Energy Reactor This page intentionally left blank The Quest for a Fusion Energy Reactor An Insider’s Account of the INTOR Workshop Weston M. Stacey 1 2010 3 Oxford University Press, Inc., publishes works that further Oxford University’s objective of excellence in research, scholarship, and education. Oxford New York Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi New Delhi Shanghai Taipei Toronto With offi ces in Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam Copyright © 2010 by Oxford University Press, Inc. Published by Oxford University Press, Inc. 198 Madison Avenue, New York, New York 10016 www.oup.com Oxford is a registered trademark of Oxford University Press All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Oxford University Press. Library of Congress Cataloging-in-Publication Data Stacey, Weston M. The quest for a fusion energy reactor : an insider’s account of the INTOR Workshop / Weston M. Stacey. p. cm. Includes bibliographical references and index. ISBN 978-0-19-973384-2 1. Fusion reactors—Design and construction. 2. Engineering test reactors—Design and construction. 3. Tokamaks. 4. Fusion reactors— Research—International coorporation. 5. International Tokamak Reactor Workshop I. Title. TK9204.S62 2010 621.48’4—dc22 2009022620 987654321 Printed in the United States of America on acid-free paper To all of those who contributed to the INTOR Workshop. -
2005 Annual Report American Physical Society
1 2005 Annual Report American Physical Society APS 20052 APS OFFICERS 2006 APS OFFICERS PRESIDENT: PRESIDENT: Marvin L. Cohen John J. Hopfield University of California, Berkeley Princeton University PRESIDENT ELECT: PRESIDENT ELECT: John N. Bahcall Leo P. Kadanoff Institue for Advanced Study, Princeton University of Chicago VICE PRESIDENT: VICE PRESIDENT: John J. Hopfield Arthur Bienenstock Princeton University Stanford University PAST PRESIDENT: PAST PRESIDENT: Helen R. Quinn Marvin L. Cohen Stanford University, (SLAC) University of California, Berkeley EXECUTIVE OFFICER: EXECUTIVE OFFICER: Judy R. Franz Judy R. Franz University of Alabama, Huntsville University of Alabama, Huntsville TREASURER: TREASURER: Thomas McIlrath Thomas McIlrath University of Maryland (Emeritus) University of Maryland (Emeritus) EDITOR-IN-CHIEF: EDITOR-IN-CHIEF: Martin Blume Martin Blume Brookhaven National Laboratory (Emeritus) Brookhaven National Laboratory (Emeritus) PHOTO CREDITS: Cover (l-r): 1Diffraction patterns of a GaN quantum dot particle—UCLA; Spring-8/Riken, Japan; Stanford Synchrotron Radiation Lab, SLAC & UC Davis, Phys. Rev. Lett. 95 085503 (2005) 2TESLA 9-cell 1.3 GHz SRF cavities from ACCEL Corp. in Germany for ILC. (Courtesy Fermilab Visual Media Service 3G0 detector studying strange quarks in the proton—Jefferson Lab 4Sections of a resistive magnet (Florida-Bitter magnet) from NHMFL at Talahassee LETTER FROM THE PRESIDENT APS IN 2005 3 2005 was a very special year for the physics community and the American Physical Society. Declared the World Year of Physics by the United Nations, the year provided a unique opportunity for the international physics community to reach out to the general public while celebrating the centennial of Einstein’s “miraculous year.” The year started with an international Launching Conference in Paris, France that brought together more than 500 students from around the world to interact with leading physicists. -
Chair's Letter
American Nuclear Society Fusion Energy Division January 2019 Newsletter Letter from the Chair Lumsdaine News from Fusion Science and Technology Journal Winfrey Fusion Award Recipients • American Physical Society • DOE Early Career Awards • IEEE Nuclear and Plasma Sciences Society Duckworth • Fusion Power Associates • 2018 Chinese Government Friendship Award Call for Nominations: ANS-FED Awards Duckworth Ongoing Fusion Research & Development: TAE Technologies – Private Fusion Venture Ales Necas U.S. Launch Major Fusion Planning Effort Duckworth Calendar of Upcoming Conferences on Fusion Technology Duckworth Letter from FED Chair, Arnold Lumsdaine, Oak Ridge National Laboratory, Oak Ridge, TN The TOFE meeting has come and gone for the 23rd time – each one that I have attended has its own character, and the 2018 TOFE was no exception, not only because of the pleasant November weather in Orlando, FL. TOFE is the ANS Fusion Energy Division’s topical meeting on the Technology of Fusion Energy, and it meets every two years, alternating between being “stand alone” and being embedded in the larger, biannual ANS meeting. This year’s TOFE was embedded with the 2018 Winter ANS Meeting, which allowed us the opportunity to rub shoulders with the larger nuclear society and discuss issues that overlap between different parts of the society. For this meeting, a concerted effort led to new topics for sessions that we hadn’t tried before: • Privately funded fusion ventures (organized by Ales Necas of TAE Technologies); • Licensing and safety for advanced -
11 European Fusion Theory Conference
SCIENTIFIC PROGRAMME COMMITTEE F. Zonca(chair) ENEA, Italy D. Borba IST, Portugal M. Lisak VR, Sweden S. Cappello CNR, Italy V. Naulin Risø, Denmark F. Castejon CIEMAT, Spain M. Ottaviani CEA, France D. Van Eester TEC, Belgium O. Sauter CRPP, Switzerland th S. Günter IPP, Germany M. Tokar TEC, Germany 11 European J. Heikkinen Tekes, Finland M. Vlad INFLPR, Romania P. Helander UKAEA, UK Fusion Theory Conference Organised by: Association EURATOM-CEA and Université de Provence IMPORTANT DATES 30 April 2005 Deadline for submission of abstracts 15 June 2005 Information for contributors 30 June 2005 Deadline for registration and hotel reservation 26 -28 September 2005 11th EFTC LOCAL ORGANISING COMMITTEE M. Ottaviani (chairman) P. Beyer H. Capes A. Corso-Leclercq T. Hutter (scientific secretary) G. Huysmans (webmaster) R. Stamm Mailing Address: Mrs. A. Corso-Leclercq 11th EFTC Conference Secretariat 26 -28 September 2005 DRFC/SCCP/G2IC, bât. 513, Conference Centre CEA Cadarache, Aix-en-Provence, France 13108 St-Paul-lez-Durance, France Website : http://www-fusion-magnetique.cea.fr/eftc11/index.html E-mail : [email protected] Announcement and Call for Abstracts Photos by J-C Carbone SUBJECT MATTER A confirmation of receipt will be sent by e-mail within a week. Submissions printed on paper should be made only if severe problems The 11th European Fusion Theory Conference will be held in Aix-en- arise with electronic submission. The Scientific Committee will select the Provence in the south of France from the 26th to the 28th of September contributions on the basis of the submitted abstracts. Authors will be 2005. -
Frontiers in Plasma Physics Research: a Fifty-Year Perspective from 1958 to 2008-Ronald C
• At the Forefront of Plasma Physics Publishing for 50 Years - with the launch of Physics of Fluids in 1958, AlP has been publishing ar In« the finest research in plasma physics. By the early 1980s it had St t 5 become apparent that with the total number of plasma physics related articles published in the journal- afigure then approaching 5,000 - asecond editor would be needed to oversee contributions in this field. And indeed in 1982 Fred L. Ribe and Andreas Acrivos were tapped to replace the retiring Fran~ois Frenkiel, Physics of Fluids' founding editor. Dr. Ribe assumed the role of editor for the plasma physics component of the journal and Dr. Acrivos took on the fluid Editor Ronald C. Davidson dynamics papers. This was the beginning of an evolution that would see Physics of Fluids Resident Associate Editor split into Physics of Fluids A and B in 1989, and culminate in the launch of Physics of Stewart J. Zweben Plasmas in 1994. Assistant Editor Sandra L. Schmidt Today, Physics of Plasmas continues to deliver forefront research of the very Assistant to the Editor highest quality, with a breadth of coverage no other international journal can match. Pick Laura F. Wright up any issue and you'll discover authoritative coverage in areas including solar flares, thin Board of Associate Editors, 2008 film growth, magnetically and inertially confined plasmas, and so many more. Roderick W. Boswell, Australian National University Now, to commemorate the publication of some of the most authoritative and Jack W. Connor, Culham Laboratory Michael P. Desjarlais, Sandia National groundbreaking papers in plasma physics over the past 50 years, AlP has put together Laboratory this booklet listing many of these noteworthy articles. -
Plasma Physics and Controlled Fusion Research During Half a Century Bo Lehnert
SE0100262 TRITA-A Report ISSN 1102-2051 VETENSKAP OCH ISRN KTH/ALF/--01/4--SE IONST KTH Plasma Physics and Controlled Fusion Research During Half a Century Bo Lehnert Research and Training programme on CONTROLLED THERMONUCLEAR FUSION AND PLASMA PHYSICS (Association EURATOM/NFR) FUSION PLASMA PHYSICS ALFV N LABORATORY ROYAL INSTITUTE OF TECHNOLOGY SE-100 44 STOCKHOLM SWEDEN PLEASE BE AWARE THAT ALL OF THE MISSING PAGES IN THIS DOCUMENT WERE ORIGINALLY BLANK TRITA-ALF-2001-04 ISRN KTH/ALF/--01/4--SE Plasma Physics and Controlled Fusion Research During Half a Century Bo Lehnert VETENSKAP OCH KONST Stockholm, June 2001 The Alfven Laboratory Division of Fusion Plasma Physics Royal Institute of Technology SE-100 44 Stockholm, Sweden (Association EURATOM/NFR) Printed by Alfven Laboratory Fusion Plasma Physics Division Royal Institute of Technology SE-100 44 Stockholm PLASMA PHYSICS AND CONTROLLED FUSION RESEARCH DURING HALF A CENTURY Bo Lehnert Alfven Laboratory, Royal Institute of Technology S-100 44 Stockholm, Sweden ABSTRACT A review is given on the historical development of research on plasma physics and controlled fusion. The potentialities are outlined for fusion of light atomic nuclei, with respect to the available energy resources and the environmental properties. Various approaches in the research on controlled fusion are further described, as well as the present state of investigation and future perspectives, being based on the use of a hot plasma in a fusion reactor. Special reference is given to the part of this work which has been conducted in Sweden, merely to identify its place within the general historical development. Considerable progress has been made in fusion research during the last decades. -
Toshiki Tajima List of Publications (4/02/2018) the Search for Citation Numbers of the Publications Has Been Done Using Google Scholar and Web of Science
Toshiki Tajima List of Publications (4/02/2018) The search for citation numbers of the publications has been done using Google Scholar and Web of Science. Because of the search engines do slightly differently as well as the choice of key words chosen are slightly different, we find that though they show some general agrément with each other, tehre sometimes miss particular article citations all together. Thus, we should be aware that some of the publications are still unaccounted for by both of the search engines. (Google Scholar Citations are shown starting with Gxxx at the end of the publications that were counted based on search with the key words of ‘plasma physics’, ‘accelerators’, and ‘lasers’. The total number of citations: 23346; h-index: 71; i10-index 276 (as of 12/20/2017 Google Scholar). For those papers that missed with these key words, shown are by a diferent Google Scholar search on 5/16/11 with #yyy. (The numbers of citations are stopped written in below 20 or so). (Web of Science Citations are shown starting with Wxxx at the end of the publications that were counted based on search from “All Databases” with search parameters: {AU=(tajima, Toshiki OR tajima, T.) AND TS=physics) OR (AU=(tajima, Toshiki OR tajima, T.) AND TS=plasma*) OR (AU=(tajima, Toshiki OR tajima, T.) AND TS=laser*) OR (AU=(tajima, Toshiki OR tajima, T.) AND TS=accelerator*), Timespan=All years}. The total number of citations: 16853; h-index: 57; average citations per item: 21.61 (as of 03/05/2018 through Web of Science). -
Role of Convective Cells in Nonlinear Interaction of Kinetic Alfven Waves
UC Irvine UC Irvine Electronic Theses and Dissertations Title Role of Convective Cells in Nonlinear Interaction of Kinetic Alfven Waves Permalink https://escholarship.org/uc/item/2564t5t9 Author Luk, Onnie On-Ying Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE Role of Convective Cells in Nonlinear Interaction of Kinetic Alfv´enWaves DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Physics by Onnie Luk Dissertation Committee: Professor Zhihong Lin, Chair Professor William Heidbrink Professor Toshiki Tajima 2015 c 2015 Onnie Luk DEDICATION To my family... ii TABLE OF CONTENTS Page LIST OF FIGURES vi LIST OF TABLES viii ACKNOWLEDGMENTS ix CURRICULUM VITAE xi ABSTRACT OF THE DISSERTATION xii 1 Introduction 1 1.1 Background . .1 1.1.1 Alfv´enturbulence . .1 1.1.2 Convective cell . .4 1.2 Objective of this Research Project . .7 1.3 Thesis Outline . .9 2 Gyrokinetic Theory and Code Formulation 10 2.1 Gyrokinetic Theory . 11 2.2 Linear Dispersion Relation . 14 2.3 Nonlinear δf Method . 16 2.4 Electron Model . 16 2.5 Ion Equations . 18 2.6 Zonal Fields . 19 2.6.1 Zonal potential . 20 2.6.2 Zonal vector potential . 20 2.6.3 Incorporation of zonal fields with non-zonal fields . 21 2.7 Units and Normalization . 22 2.8 Code Formulation . 24 3 Linear and Nonlinear Benchmark 27 3.1 Linear Convergence and Benchmark . 28 3.1.1 Time step . 29 3.1.2 Perpendicular grid numbers . -
On the Lives and Legacies of Norman Rostoker and Sherry Rowland
UC Irvine UC Irvine Previously Published Works Title The unexpected confluence of plasma physics and climate science: On the lives and legacies of Norman Rostoker and Sherry Rowland Permalink https://escholarship.org/uc/item/8z58f17q Journal AIP Conference Proceedings, 1721(1) ISSN 0094-243X Author Mackey, KRM Publication Date 2016-03-25 DOI 10.1063/1.4944027 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California The unexpected confluence of plasma physics and climate science: On the lives and legacies of Norman Rostoker and Sherry Rowland Katherine RM Mackey Clare Boothe Luce Assistant Professor Department of Earth System Science University of California Irvine Irvine 3204 Croul Hall Irvine, CA 92697 [email protected] The Norman Rostoker Memorial Symposium brought together approximately 150 attendees to share their recent work and to reflect on the contributions of Norman Rostoker to the field of plasma physics and the advancement of fusion as a source of renewable clean energy. The field has changed considerably in a few short decades, with theoretical advances and technological innovations evolving in lock step. Over those same decades, our understanding of human induced climate change has also evolved; measurable changes in Earth's physical, chemical, and biological processes have already been observed, and these will likely intensify in the coming decades. Never before has the need for clean energy been more pronounced, or the need for transformative solutions more pressing. As scientists work with legislators, journalists, and the public to take actions to address the threat of climate change, there is much to be learned from the legacies of innovators like Norman Rostoker, who have tackled complex problems with scientific insight and determination even when the odds were stacked against them. -
— - !979 Sherwood (Deet Ing — A§Pect$ Ef Centyotted Ch€Ymeahc!Ea.Y Q)Ovat #Ecem#$ #Ean$G!¥Ania
— - !979 Sherwood (Deet ing — A§pect$ ef Centyotted Ch€ymeaHc!ea.y Q)ovat #ecem#$ #ean$g!¥ania A p r -i! 18 ^ §0, 1 9 7 9 ',-''-j'...':,r !''r B Y ' . ' j, L.ABOr^':*OH Y PROCEEDINGS OF THE SHERWOOD MEETING THEORETICAL ASPECTS OF CONTROLLED THERMONUCLEAR FUSION April 18 - 20, 1979 Pocono Manor, Mt. Pocono, Pennsylvania Sponsored by Plasma Physics Laboratory, Princeton University Princeton, New Jersey 08544 EXECUTIVE PROGRAM LOCAL ARRANGEMENTS COMMITTEE COMMITTEE COMMITTEE H. Weitzner, Ch. A. H. Boozer, Ch. J. L. Johnson, Ch 1. Bernstein D. Barnes A. H. Boozer C. K. Chu H. L. Berk R. Donald J. M. Dawson W. Grossmann A. H. Glasser G. Guest J. Hogan P. H. Rutherford A. Kaufman N. Krall K. E. Weimer H. R. Lewis R. Lovelace M. Weissenburger D. Nelson R. E. Price L. D. Pearlstein A. Ware D. Ross P. H. Rutherford W. L. Sadowski A. Simon (,P General Information All sessions will be held at the Pocono Manor. The morning oral sessions will be in the Terrace Ballroom; the afternoon (or evening) poster sessions will be in the Plymouth Meeting Center. Coffee and other refreshments will be available during both the oral and poster sessions. There will be two consecutive poster sessions on Wednesday afternoon and Thursday evening and one on Friday afternoon. Thursday afternoon is free. A Cocktail Hour will be held in the Horizon Lounge Wednesday at 5:30. Two drinks are included in the registration fee. The Registration and Travel desks are in the Fountain Room. If you need assistance in planning transportation out, check with Travel early. -
Cover-Relevance of Advanced Nuclear Fusion Research
"Relevance of Advanced Nuclear Fusion Research: Breakthroughs and Obstructions" Bruno Coppi Massachusetts Institute of Technology Norman Rostoker Memorial Symposium University of California, Irvine, 24-25 August 2015 1 Fusion Reactions to be Exploited (with existing technologies in order to produce basic knowledge of high energy plasmas and to attempt realizing a net energy generation system) D-T D-D D-3He p-11B 2 Advancements in nuclear fusion research are rated in terms of criteria (but not all) to be met in order to achieve DT ignition conditions. D + T → 4 He + n simplified ignition condition Te ! Ti nD + nT = ne 3.5 MeV εα ! 4 Example of Illusions (emerged at the time of the AEC to ERDA to DOE Transitions) • To produce an energy generating system skipping the basic plasma physics research that a good scientific tradition would suggest • To underestimate the consequences of not valuing an adequate understanding of high energy plasmas and the benefits of advanced technology developments (e.g. high magnetic fields) spurred by fusion research 3 Scalings 2 σ v F ∝Ti in the range of temperature of interest nTτ E ≡ PM (parameter of merit) 8 n T T 2 π ⎣⎡ ( e + i )⎦⎤ nTe ! β p Bpc1 β p = 2 Bp α1 α2 τ e ! n B I pc2 A combination of high poloidal fields (Bp) and total plasma current (Ip) is the indicated prescription. Note that the reactivity scales as 5 On the other hand besides avoiding these illusions, a relatively wide spectrum of approaches and, consequently of constructed and operated machines, should be developed (rather than suppressed). -
Abstract Magnetic Islands Produced By
ABSTRACT Title of dissertation: MAGNETIC ISLANDS PRODUCED BY RECONNECTION IN LARGE CURRENT LAYERS: A STATISTICAL APPROACH TO MODELING AT GLOBAL SCALES Raymond Luis Lachica Fermo, Doctor of Philosophy, 2011 Dissertation directed by: Professor James F. Drake Department of Physics Magnetic reconnection is a process responsible for the conversion of magnetic energy into plasma flows in laboratory, space, and astrophysical plasmas. A prod- uct of reconnection, magnetic islands have been observed in long current layers for various space plasmas, including the magnetopause, the magnetotail, and the solar corona. In this thesis, a statistical model is developed for the dynamics of magnetic islands in very large current layers, for which conventional plasma simulations prove inadequate. An island distribution function f characterizes islands by the flux they contain and the area they enclose A. An integro-differential evolution equation for f describes their creation at small scales, growth due to quasi-steady reconnection, convection along the current sheet, and their coalescence with one another. The steady-state solution of the evolution equation predicts a distribution of islands in which the signature of island merging is an asymmetry in − r phase space. A Hall MHD (magnetohydrodynamic) simulation of a very long current sheet with large numbers of magnetic islands is used to explore their dynamics, specifically their growth via two distinct mechanisms: quasi-steady reconnection and merging. The results of the simulation enable validation of the statistical model and benchmarking of its parameters. A PIC (particle-in-cell) simulation investigates how secondary is- lands form in guide field reconnection, revealing that they are born at electron skin depth scales not as islands from the tearing instability but as vortices from a flow instability.