Marquette University e-Publications@Marquette Biological Sciences Faculty Research and Publications Biological Sciences, Department of 2013 The Structure of Allophanate Hydrolase from Granulibacter bethesdensis Provides Insights into Substrate Specificity in the Amidase Signature Family Yi Lin Marquette University,
[email protected] Martin St. Maurice Marquette University,
[email protected] Follow this and additional works at: https://epublications.marquette.edu/bio_fac Part of the Biochemistry, Biophysics, and Structural Biology Commons Recommended Citation Lin, Yi and St. Maurice, Martin, "The Structure of Allophanate Hydrolase from Granulibacter bethesdensis Provides Insights into Substrate Specificity in the Amidase Signature Family" (2013). Biological Sciences Faculty Research and Publications. 138. https://epublications.marquette.edu/bio_fac/138 Marquette University e-Publications@Marquette Biological Sciences Faculty Research and Publications/College of Arts and Sciences This paper is NOT THE PUBLISHED VERSION; but the author’s final, peer-reviewed manuscript. The published version may be accessed by following the link in the citation below. Biochemistry, Vol. 54, No. 4 (January 29, 2013): 690-700. DOI. This article is © American Chemical Society Publications and permission has been granted for this version to appear in e- Publications@Marquette. American Chemical Society Publications does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from American Chemical Society Publications. The Structure of Allophanate Hydrolase from Granulibacter bethesdensis Provides Insights into Substrate Specificity in the Amidase Signature Family Yi Lin Department of Biological Sciences, Marquette University, Milwaukee, WI Martin St. Maurice Department of Biological Sciences, Marquette University, Milwaukee, WI Abstract Allophanate hydrolase (AH) catalyzes the hydrolysis of allophanate, an intermediate in atrazine degradation and urea catabolism pathways, to NH3 and CO2.