bioRxiv preprint doi: https://doi.org/10.1101/2021.02.18.431691; this version posted February 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Revisiting the early evolution of Cyanobacteria with a new thylakoid-less and deeply diverged isolate 2 from a hornwort 3 4 Nasim Rahmatpour1, Duncan A. Hauser1, Jessica M. Nelson1, Pa Yu Chen2, Juan Carlos Villarreal A.3,4, 5 Ming-Yang Ho2,5, *, Fay-Wei Li1,6,* 6 7 1Boyce Thompson Institute, Ithaca, New York, USA 8 2Department of Life Science, National Taiwan University, Taipei, Taiwan 9 3Department of Biology, Laval University, Quebec City, Quebec, Canada 10 4Smithsonian Tropical Research Institute, Panama City, Panama 11 5Institute of Plant Biology, National Taiwan University, Taipei, Taiwan 12 6Plant Biology Section, Cornell University, Ithaca, New York, USA 13 *Authors of correspondence: Fay-Wei Li (
[email protected]) and Ming-Yang Ho (
[email protected]) 14 15 Summary 16 Cyanobacteria have played pivotal roles in Earth’s geological history especially during the rise of 17 atmospheric oxygen. However, our ability to infer the early transitions in Cyanobacteria evolution has 18 been limited by their extremely lopsided tree of life—the vast majority of extant diversity belongs to 19 Phycobacteria (or “crown Cyanobacteria”), while its sister lineage, Gloeobacteria, is depauperate and 20 contains only two closely related species of Gloeobacter and a metagenome-assembled genome. Here 21 we describe a new culturable member of Gloeobacteria, Anthocerobacter panamensis, isolated from a 22 tropical hornwort.