Constraining the Interpretation of 2-Methylhopanoids Through Genetic and Phylogenetic Methods

Total Page:16

File Type:pdf, Size:1020Kb

Constraining the Interpretation of 2-Methylhopanoids Through Genetic and Phylogenetic Methods Constraining the interpretation of 2-methylhopanoids through genetic and phylogenetic methods Thesis by Jessica Nicole Ricci In Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2015 (Defended May 21, 2015) ii © 2015 Jessica Nicole Ricci All Rights Reserved iii ACKNOWLEDGEMENTS There are many people I would like to thank for their support during my time as a graduate student. Firstly, I am grateful to my Ph.D. advisor Dianne Newman for allowing me to join her lab and for her helpful advice over the last five years. I have interacted with many wonderful people in the Newman lab who have helped me with my research enormously, especially Gargi, Chia, Dave, Caj, Alice, Megan, Suzanne, Nick, and Elise. I would also like to thank my committee members Paul Sternberg, Alex Sessions, Sarkis Mazmanian, and Jared Leadbetter for their useful advice and suggestions. A special thanks goes to Woodward Fischer, Victoria Orphan, and members of their labs for many valuable and stimulating discussions. My experience at Caltech has been enriched by a number of teaching-related activities. Thank you to Cassandra, Tina, Noelle, and Daniel. I have appreciated the countless seminars, workshops, and events you have organized that have without a doubt made me a better teacher. I am particularly grateful to Ryan Skophammer, who showed me that teaching K-12 is not a scary as I thought it would be. Lastly, I would like to thank my family for always encouraging me to pursue my interests. Mom, Dad, and John Paul, thank you for supporting me during my graduate career and beyond. To my partner, Alan, without your unwavering encouragement this would not have been possible. Thank you to my cat, Oscar, who I can always count on to greet me with lots of purring after a long day. iv ABSTRACT Hopanoids are a class of sterol-like lipids produced by select bacteria. Their preservation in the rock record for billions of years as fossilized hopanes lends them geological significance. Much of the structural diversity present in this class of molecules, which likely underpins important biological functions, is lost during fossilization. Yet, one type of modification that persists during preservation is methylation at C-2. The resulting 2-methylhopanoids are prominent molecular fossils and have an intriguing pattern over time, exhibiting increases in abundance associated with Ocean Anoxic Events during the Phanerozoic. This thesis uses diverse methods to address what the presence of 2- methylhopanes tells us about the microbial life and environmental conditions of their ancient depositional settings. Through an environmental survey of hpnP, the gene encoding the C-2 hopanoid methylase, we found that many different taxa are capable of producing 2- methylhopanoids in more diverse modern environments than expected. This study also revealed that hpnP is significantly overrepresented in organisms that are plant symbionts, in environments associated with plants, and with metabolisms that support plant-microbe interactions; collectively, these correlations provide a clue about the biological importance of 2-methylhopanoids. Phylogenetic reconstruction of the evolutionary history of hpnP revealed that 2-methylhopanoid production arose in the Alphaproteobacteria, indicating that the origin of these molecules is younger than originally thought. Additionally, we took genetic approach to understand the role of 2- methylhopanoids in Cyanobacteria using the filamentous symbiotic Nostoc punctiforme. We found that hopanoids likely aid in rigidifying the cell membrane but do not appear to provide resistance to osmotic or outer membrane stressors, as has been shown in other organisms. The work presented in this thesis supports previous findings that 2-methylhopanoids are not biomarkers for oxygenic photosynthesis and provides new insights by defining their distribution in modern environments, identifying their evolutionary origin, and investigating their role in Cyanobacteria. These efforts in modern settings aid the formation of a robust interpretation of 2-methylhopanes in the rock record. v TABLE OF CONTENTS Acknowledgements ........................................................................................................ iii Abstract ........................................................................................................................... iv Table of Contents ............................................................................................................ v List of Figures ................................................................................................................ vi List of Tables ................................................................................................................. vii Preface: Overview of Chapters ....................................................................................... 1 Chapter I: Interpreting hopanoids as molecular fossils .................................................. 3 Fossil types ............................................................................................................... 3 Introduction to hopanoids and 2-methylhopanoids ................................................. 5 Proposed interpretations of hopanoids and 2-methyhopanoids ............................... 7 Questions addressed in this thesis .......................................................................... 13 References .............................................................................................................. 14 Chapter II: Diverse capacity for 2-methylhopanoid production correlates with a specific ecological niche ............................................................................................... 22 Abstract ................................................................................................................... 22 Introduction ............................................................................................................ 23 Methods .................................................................................................................. 25 Results and Discussion ........................................................................................... 32 Acknowledgements ................................................................................................ 42 References .............................................................................................................. 44 Chapter III: Phylogenetic analysis of HpnP reveals the origin of 2-methylhopanoid production in Alphaproteobacteria ............................................................................... 51 Abstract ................................................................................................................... 51 Introduction ............................................................................................................ 52 Methods .................................................................................................................. 54 Results ..................................................................................................................... 60 Discussion ............................................................................................................... 69 Acknowledgements ................................................................................................ 74 References .............................................................................................................. 75 Chapter IV: The role of hopanoids and 2-methylhopanoids in Nostoc punctiforme ... 81 Introduction ............................................................................................................ 81 Methods .................................................................................................................. 84 Results and Discussion ........................................................................................... 87 Acknowledgements .............................................................................................. 101 References ............................................................................................................ 102 Chapter V: Conclusions and Future Directions .......................................................... 107 Conclusions .......................................................................................................... 107 Future Directions .................................................................................................. 108 Appendix A: Datasets from Chapter II ....................................................................... 112 Appendix B: Dataset from Chapter III ....................................................................... 145 vi LIST OF FIGURES Chapter I Figure 1.1 | Timeline of select geological events and oldest biomarker fossils discussed in the text ............................................................................................ 4 Figure 1.2 | Structures of select hopanoids found in extant organisms, modern environments, and ancient sedimentary depositions ......................................... 6 Figure 1.3 | Quantification of 2-methylhopanoids in specific membranes of N. punctiforme ................................................................................................. 12 Chapter II Figure 2.1 | Distribution of hpnP in cyanobacteria ...............................................
Recommended publications
  • Miami1132247140.Pdf (3.72
    MIAMI UNIVERSITY The Graduate School CERTIFICATE FOR APPROVING THE DISSERTATION We hereby approve the Dissertation Of Brian Junior Henson Candidate for the Degree: Doctor of Philosophy Advisor ______________________ (Susan R. Barnum) Advisor ______________________ (Linda E. Watson) Reader ______________________ (David A. Francko) Reader ______________________ (John Z. Kiss) Grad School Representative ______________________ (Luis A. Actis) Abstract EVOLUTION, VARIATION, AND EXCISION OF DEVELOPMENTALLY REGULATED DNA ELEMENTS IN THE HETEROCYSTOUS CYANOBACTERIA by Brian Junior Henson In some cyanobacteria, heterocyst differentiation is accompanied by developmentally regulated DNA rearrangements that occur within the nifD, fdxN, and hupL genes, referred to as the nifD, fdxN, and hupL elements. These elements are excised from the genome by site-specific recombination during the latter stages of heterocyst differentiation. In this dissertation, two major questions are addressed: 1) what is the evolutionary history of the nifD and hupL elements and 2) how is the nifD element excised? To answer the first question, full length nifD and hupL element sequences were characterized and compared; and xisA and xisC sequences (which encode the recombinases that excise the nifD and hupL elements, respectively) were phylogenetically analyzed. Results indicated extensive structural and compositional variation within the nifD and hupL elements. The data suggests that the nifD and hupL elements are of viral origin and that they have variable patterns of evolution in the cyanobacteria. To answer the second question, a recombination system was devised where the ability of XisA to excise or recombine variants of the nifD element (substrate plasmids) was tested. Using PCR directed mutagenesis, specific nucleotides within the flanking regions of the nifD element were altered and the effects on recombination determined.
    [Show full text]
  • Identification of Active Methylotroph Populations in an Acidic Forest Soil
    Microbiology (2002), 148, 2331–2342 Printed in Great Britain Identification of active methylotroph populations in an acidic forest soil by stable- isotope probing Stefan Radajewski,1 Gordon Webster,2† David S. Reay,3‡ Samantha A. Morris,1 Philip Ineson,4 David B. Nedwell,3 James I. Prosser2 and J. Colin Murrell1 Author for correspondence: J. Colin Murrell. Tel: j44 24 7652 2553. Fax: j44 24 7652 3568. e-mail: cmurrell!bio.warwick.ac.uk 1 Department of Biological Stable-isotope probing (SIP) is a culture-independent technique that enables Sciences, University of the isolation of DNA from micro-organisms that are actively involved in a Warwick, Coventry CV4 7AL, UK specific metabolic process. In this study, SIP was used to characterize the active methylotroph populations in forest soil (pH 35) microcosms that were exposed 2 Department of Molecular 13 13 13 13 and Cell Biology, to CH3OH or CH4. Distinct C-labelled DNA ( C-DNA) fractions were resolved University of Aberdeen, from total community DNA by CsCl density-gradient centrifugation. Analysis of Institute of Medical 16S rDNA sequences amplified from the 13C-DNA revealed that bacteria related Sciences, Foresterhill, Aberdeen AB25 2ZD, UK to the genera Methylocella, Methylocapsa, Methylocystis and Rhodoblastus had assimilated the 13C-labelled substrates, which suggested that moderately 3 Department of Biological Sciences, University of acidophilic methylotroph populations were active in the microcosms. Essex, Wivenhoe Park, Enrichments targeted towards the active proteobacterial CH3OH utilizers were Colchester, Essex CO4 3SQ, successful, although none of these bacteria were isolated into pure culture. A UK parallel analysis of genes encoding the key enzymes methanol dehydrogenase 4 Department of Biology, and particulate methane monooxygenase reflected the 16S rDNA analysis, but University of York, PO Box 373, YO10 5YW, UK unexpectedly revealed sequences related to the ammonia monooxygenase of ammonia-oxidizing bacteria (AOB) from the β-subclass of the Proteobacteria.
    [Show full text]
  • Validation of the Generic Name Gloeobacter Rippka Et Al. 1974, Cyanophyceae
    Cryptogamie, Algologie, 2013, 34 (3): 255-262 © 2013 Adac. Tous droits réservés Validation of the generic name Gloeobacter Rippka et al. 1974, Cyanophyceae Jan MARE≤ a,b*, Ji÷í KOMÁREK a,b, Pierre COMPÈRE c & Aharon OREN d a University of South Bohemia, Faculty of Science, Brani≠ovká 31, CZ-37005 Ωeské Bud{jovice, Czech Republic b Czech Academy of Sciences, Institute of Botany, Dukelská 135, CZ-37982 T÷ebo≈, Czech Republic c National Botanic Garden of Belgium, Domein van Bouchout, B-1860 Meise, Belgium d Department of Plant and Environmental Sciences, the Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel Abstract – The genus name Gloeobacter with the single (= type) species Gloeobacter violaceus (Cyanophyta, Cyanoprokaryota, Cyanobacteria) was described by Rippka, Water- bury et Cohen-Bazire (Arch. Microbiol. 100: 419-436, 1974). However, this is not a validly published name and so it currently has no standing under the botanical International Code of Nomenclature (ICN, Mc Neil et al. 2012) or the International Code of Nomenclature of Prokaryotes (ICNB/ICNP, Lapage et al. 1992). The lack of valid publication of the genus name causes many problems in the taxonomy of this phylogenetically and experimentally important cyanophyte/cyanobacterium. The lack of thylakoids, a feature unique among all known cyanobacteria, as well as the phylogenetic position of the representative of this genus, warrant valid publication of this generic name. The type strain was deposited in the collection PCC in Paris under the number PCC 7421 and later introduced into numerous other strain collections; however, the dried specimens were not yet conserved.
    [Show full text]
  • Supplementary Material 16S Rrna Clone Library
    Kip et al. Biogeosciences (bg-2011-334) Supplementary Material 16S rRNA clone library To investigate the total bacterial community a clone library based on the 16S rRNA gene was performed of the pool Sphagnum mosses from Andorra peat, next to S. magellanicum some S. falcatulum was present in this pool and both these species were analysed. Both 16S clone libraries showed the presence of Alphaproteobacteria (17%), Verrucomicrobia (13%) and Gammaproteobacteria (2%) and since the distribution of bacterial genera among the two species was comparable an average was made. In total a 180 clones were sequenced and analyzed for the phylogenetic trees see Fig. A1 and A2 The 16S clone libraries showed a very diverse set of bacteria to be present inside or on Sphagnum mosses. Compared to other studies the microbial community in Sphagnum peat soils (Dedysh et al., 2006; Kulichevskaya et al., 2007a; Opelt and Berg, 2004) is comparable to the microbial community found here, inside and attached on the Sphagnum mosses of the Patagonian peatlands. Most of the clones showed sequence similarity to isolates or environmental samples originating from peat ecosystems, of which most of them originate from Siberian acidic peat bogs. This indicated that similar bacterial communities can be found in peatlands in the Northern and Southern hemisphere implying there is no big geographical difference in microbial diversity in peat bogs. Four out of five classes of Proteobacteria were present in the 16S rRNA clone library; Alfa-, Beta-, Gamma and Deltaproteobacteria. 42 % of the clones belonging to the Alphaproteobacteria showed a 96-97% to Acidophaera rubrifaciens, a member of the Rhodospirullales an acidophilic bacteriochlorophyll-producing bacterium isolated from acidic hotsprings and mine drainage (Hiraishi et al., 2000).
    [Show full text]
  • Widespread Soil Bacterium That Oxidizes Atmospheric Methane
    Widespread soil bacterium that oxidizes atmospheric methane Alexander T. Tveita,1, Anne Grethe Hestnesa,1, Serina L. Robinsona, Arno Schintlmeisterb, Svetlana N. Dedyshc, Nico Jehmlichd, Martin von Bergend,e, Craig Herboldb, Michael Wagnerb, Andreas Richterf, and Mette M. Svenninga,2 aDepartment of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economics, UiT The Arctic University of Norway, 9037 Tromsoe, Norway; bCenter of Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, 1090 Vienna, Austria; cWinogradsky Institute of Microbiology, Research Center of Biotechnology of Russian Academy of Sciences, 117312 Moscow, Russia; dDepartment of Molecular Systems Biology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany; eFaculty of Life Sciences, Institute of Biochemistry, University of Leipzig, 04109 Leipzig, Germany; and fCenter of Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, 1090 Vienna, Austria Edited by Mary E. Lidstrom, University of Washington, Seattle, WA, and approved March 7, 2019 (received for review October 22, 2018) The global atmospheric level of methane (CH4), the second most as-yet-uncultured clades within the Alpha- and Gammaproteobacteria important greenhouse gas, is currently increasing by ∼10 million (16–18) which were designated as upland soil clusters α and γ tons per year. Microbial oxidation in unsaturated soils is the only (USCα and USCγ, respectively). Interest in soil atmMOB has known biological process that removes CH4 from the atmosphere, increased significantly since then because they are responsible but so far, bacteria that can grow on atmospheric CH4 have eluded for the only known biological removal of atmospheric CH4 all cultivation efforts.
    [Show full text]
  • Across Bacterial Phyla, Distantly-Related Genomes with Similar Genomic GC Content Have Similar Patterns of Amino Acid Usage
    University of South Carolina Scholar Commons Faculty Publications Biological Sciences, Department of 3-10-2011 Across Bacterial Phyla, Distantly-Related Genomes with Similar Genomic GC Content Have Similar Patterns of Amino Acid Usage John Lightfield Noah R. Fram Bert Ely University of South Carolina - Columbia, [email protected] Follow this and additional works at: https://scholarcommons.sc.edu/biol_facpub Part of the Biology Commons Publication Info Published in PLoS ONE, Volume 6, Issue 3, 2011, pages e17677-. © 2011 Lightfield et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. This Article is brought to you by the Biological Sciences, Department of at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Across Bacterial Phyla, Distantly-Related Genomes with Similar Genomic GC Content Have Similar Patterns of Amino Acid Usage John Lightfield¤a, Noah R. Fram¤b, Bert Ely* Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America Abstract The GC content of bacterial genomes ranges from 16% to 75% and wide ranges of genomic GC content are observed within many bacterial phyla, including both Gram negative and Gram positive phyla. Thus, divergent genomic GC content has evolved repeatedly in widely separated bacterial taxa. Since genomic GC content influences codon usage, we examined codon usage patterns and predicted protein amino acid content as a function of genomic GC content within eight different phyla or classes of bacteria.
    [Show full text]
  • Oxygenic Photosynthesis
    JWBS121-c02 JWBS121-Razeghifard Printer: Yet to Come July 30, 2013 8:16 Trim: 6.125in × 9.25in CHAPTER 2 Oxygenic Photosynthesis DMITRIY SHEVELA, LARS OLOF BJORN,¨ and GOVINDJEE 2.1 INTRODUCTION 2.1.1 Importance of Photosynthesis: Why Study Photosynthesis? In a general sense the term photosynthesis is synthesis of chemical compounds by the use of light. In the more restricted sense, as we shall use it here, it stands for the process by which plants, algae, cyanobacteria, and phototrophic bacteria convert light energy to chemical forms of energy. Most photosynthesis is coupled to assimilation of carbon in the form of carbon dioxide or bicarbonate ions, but there exists also assimilation of CO2 that is not coupled to photosynthesis, as well as photosynthesis that is not coupled to assimilation of carbon. All life on Earth, with some exceptions, is completely dependent on photosynthe- sis. Most organisms that do not live directly by photosynthesis depend on the organic compounds formed by photosynthesis and, in many cases, also on the molecular oxy- gen formed by the most important type of photosynthesis, oxygenic photosynthesis. Even much of the energy fueling the ecosystems at deep-water hydrothermal vents depends on photosynthesis, since it is made available to organisms using molecular oxygen of photosynthetic origin. In addition, photosynthesis is biologically impor- tant in a number of more indirect ways. The stratospheric ozone layer protecting the biosphere from dangerous ultraviolet radiation from the sun is formed from photosynthesis-derived oxygen by a photochemical process. The photosynthetic as- similation of CO2, and associated processes such as formation of carbonate shells by aquatic organisms, has (so far) helped to maintain the climate of our planet in a life-sustainable state.
    [Show full text]
  • The Cyanobacterial Genome Core and the Origin of Photosynthesis
    The cyanobacterial genome core and the origin of photosynthesis Armen Y. Mulkidjanian*†‡, Eugene V. Koonin§, Kira S. Makarova§, Sergey L. Mekhedov§, Alexander Sorokin§, Yuri I. Wolf§, Alexis Dufresne¶, Fre´ de´ ric Partensky¶, Henry Burdʈ, Denis Kaznadzeyʈ, Robert Haselkorn†**, and Michael Y. Galperin†§ *School of Physics, University of Osnabru¨ck, D-49069 Osnabru¨ck, Germany; ‡A. N. Belozersky Institute of Physico–Chemical Biology, Moscow State University, Moscow 119899, Russia; §National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894; ¶Station Biologique, Unite´Mixte de Recherche 7144, Centre National de la Recherche Scientifique et Universite´Paris 6, BP74, F-29682 Roscoff Cedex, France; ʈIntegrated Genomics, Inc., Chicago, IL 60612; and **Department of Molecular Genetics and Cell Biology, University of Chicago, 920 East 58th Street, Chicago, IL 60637 Contributed by Robert Haselkorn, July 14, 2006 Comparative analysis of 15 complete cyanobacterial genome se- to trace the conservation of these genes among other taxa. We quences, including ‘‘near minimal’’ genomes of five strains of analyzed the phylogenetic affinities of genes in this set and Prochlorococcus spp., revealed 1,054 protein families [core cya- identified previously unrecognized candidate photosynthetic nobacterial clusters of orthologous groups of proteins (core Cy- genes. We further used this gene set to address the identity of the OGs)] encoded in at least 14 of them. The majority of the core first phototrophs, a subject of intense discussion in recent years CyOGs are involved in central cellular functions that are shared (8, 9, 12–33). We show that cyanobacteria and plants share with other bacteria; 50 core CyOGs are specific for cyanobacteria, numerous photosynthesis-related genes that are missing in ge- whereas 84 are exclusively shared by cyanobacteria and plants nomes of other phototrophs.
    [Show full text]
  • Photosynthetic Light-Harvesting (Antenna) Complexes—Structures and Functions
    molecules Review Photosynthetic Light-Harvesting (Antenna) Complexes—Structures and Functions Heiko Lokstein 1,* , Gernot Renger 2,† and Jan P. Götze 3 1 Department of Chemical Physics and Optics, Charles University, Ke Karlovu 3, 12116 Prague, Czech Republic 2 Max-Volmer-Laboratorium, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany 3 Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, D-14195 Berlin, Germany; [email protected] * Correspondence: [email protected] † Sadly, Professor Dr. Gernot Renger passed away on 12 January 2013. This article is dedicated to commemorate the outstanding contributions of Gernot Renger to oxygenic photosynthesis research. Abstract: Chlorophylls and bacteriochlorophylls, together with carotenoids, serve, noncovalently bound to specific apoproteins, as principal light-harvesting and energy-transforming pigments in photosynthetic organisms. In recent years, enormous progress has been achieved in the elucidation of structures and functions of light-harvesting (antenna) complexes, photosynthetic reaction centers and even entire photosystems. It is becoming increasingly clear that light-harvesting complexes not only serve to enlarge the absorption cross sections of the respective reaction centers but are vitally important in short- and long-term adaptation of the photosynthetic apparatus and regulation of the energy-transforming processes in response to external and internal conditions. Thus, the wide variety of structural diversity in photosynthetic antenna “designs” becomes conceivable. It is, however, common for LHCs to form trimeric (or multiples thereof) structures. We propose a simple, tentative explanation of the trimer issue, based on the 2D world created by photosynthetic membrane systems. Citation: Lokstein, H.; Renger, G.; Götze, J.P.
    [Show full text]
  • Diversity of Methane-Cycling Microorganisms in Soils and Their Relation to Oxygen
    Diversity of Methane-cycling Microorganisms in Soils and Their Relation to Oxygen Claudia Knief* Institute of Crop Science and Resource Conservation – Molecular Biology of the Rhizosphere, University of Bonn, Bonn, Germany. *Correspondence: [email protected] htps://doi.org/10.21775/cimb.033.023 Abstract Introduction Microorganisms are important players in the Methane cycling microorganisms are of interest global methane cycle. Anaerobic methanogenic for microbiologists since more than a century. archaea are largely responsible for methane pro- Research on these microorganisms was initially duction, while aerobic methanotrophic bacteria, largely driven by the curiosity to understand their as well as anaerobic methanotrophic bacteria particular physiology that leads to the production and archaea, are involved in methane oxidation. or consumption of methane. While this interest is In anoxic wetland soils, methanogens produce still a driver, the importance of methane as green- methane, while methanotrophs act as a flter house gas has become another important factor, and reduce methane emissions. In the predomi- promoting further research on methanogenic and nantly oxic upland soils, aerobic methanotrophs methanotrophic microorganisms. Tis leads to a oxidize atmospheric methane. Tis review gives continuously beter understanding of their physi- an overview of the diversity of methanogenic ology and ecology, and it becomes evident that and methanotrophic microorganisms, highlights the processes of microbial methane production recent discoveries and provides information and consumption are mediated by more com- concerning their occurrence in soils. Recent plex functional guilds than initially thought. Te fndings indicate that the methanogenic and improved understanding is not only due to the con- methanotrophic lifestyles are more widespread stantly increasing diversity of methanogenic and in microorganisms than previously thought, and methanotrophic microorganisms (e.g.
    [Show full text]
  • Evolution of Methanotrophy in the Beijerinckiaceae&Mdash
    The ISME Journal (2014) 8, 369–382 & 2014 International Society for Microbial Ecology All rights reserved 1751-7362/14 www.nature.com/ismej ORIGINAL ARTICLE The (d)evolution of methanotrophy in the Beijerinckiaceae—a comparative genomics analysis Ivica Tamas1, Angela V Smirnova1, Zhiguo He1,2 and Peter F Dunfield1 1Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada and 2Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China The alphaproteobacterial family Beijerinckiaceae contains generalists that grow on a wide range of substrates, and specialists that grow only on methane and methanol. We investigated the evolution of this family by comparing the genomes of the generalist organotroph Beijerinckia indica, the facultative methanotroph Methylocella silvestris and the obligate methanotroph Methylocapsa acidiphila. Highly resolved phylogenetic construction based on universally conserved genes demonstrated that the Beijerinckiaceae forms a monophyletic cluster with the Methylocystaceae, the only other family of alphaproteobacterial methanotrophs. Phylogenetic analyses also demonstrated a vertical inheritance pattern of methanotrophy and methylotrophy genes within these families. Conversely, many lateral gene transfer (LGT) events were detected for genes encoding carbohydrate transport and metabolism, energy production and conversion, and transcriptional regulation in the genome of B. indica, suggesting that it has recently acquired these genes. A key difference between the generalist B. indica and its specialist methanotrophic relatives was an abundance of transporter elements, particularly periplasmic-binding proteins and major facilitator transporters. The most parsimonious scenario for the evolution of methanotrophy in the Alphaproteobacteria is that it occurred only once, when a methylotroph acquired methane monooxygenases (MMOs) via LGT.
    [Show full text]
  • Revisiting the Early Evolution of Cyanobacteria with a New Thylakoid-Less and Deeply Diverged Isolate 2 from a Hornwort 3 4 Nasim Rahmatpour1, Duncan A
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.18.431691; this version posted February 18, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Revisiting the early evolution of Cyanobacteria with a new thylakoid-less and deeply diverged isolate 2 from a hornwort 3 4 Nasim Rahmatpour1, Duncan A. Hauser1, Jessica M. Nelson1, Pa Yu Chen2, Juan Carlos Villarreal A.3,4, 5 Ming-Yang Ho2,5, *, Fay-Wei Li1,6,* 6 7 1Boyce Thompson Institute, Ithaca, New York, USA 8 2Department of Life Science, National Taiwan University, Taipei, Taiwan 9 3Department of Biology, Laval University, Quebec City, Quebec, Canada 10 4Smithsonian Tropical Research Institute, Panama City, Panama 11 5Institute of Plant Biology, National Taiwan University, Taipei, Taiwan 12 6Plant Biology Section, Cornell University, Ithaca, New York, USA 13 *Authors of correspondence: Fay-Wei Li ([email protected]) and Ming-Yang Ho ([email protected]) 14 15 Summary 16 Cyanobacteria have played pivotal roles in Earth’s geological history especially during the rise of 17 atmospheric oxygen. However, our ability to infer the early transitions in Cyanobacteria evolution has 18 been limited by their extremely lopsided tree of life—the vast majority of extant diversity belongs to 19 Phycobacteria (or “crown Cyanobacteria”), while its sister lineage, Gloeobacteria, is depauperate and 20 contains only two closely related species of Gloeobacter and a metagenome-assembled genome. Here 21 we describe a new culturable member of Gloeobacteria, Anthocerobacter panamensis, isolated from a 22 tropical hornwort.
    [Show full text]