Photosynthetic Light-Harvesting (Antenna) Complexes—Structures and Functions

Total Page:16

File Type:pdf, Size:1020Kb

Photosynthetic Light-Harvesting (Antenna) Complexes—Structures and Functions molecules Review Photosynthetic Light-Harvesting (Antenna) Complexes—Structures and Functions Heiko Lokstein 1,* , Gernot Renger 2,† and Jan P. Götze 3 1 Department of Chemical Physics and Optics, Charles University, Ke Karlovu 3, 12116 Prague, Czech Republic 2 Max-Volmer-Laboratorium, Technische Universität Berlin, Straße des 17. Juni 135, D-10623 Berlin, Germany 3 Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, D-14195 Berlin, Germany; [email protected] * Correspondence: [email protected] † Sadly, Professor Dr. Gernot Renger passed away on 12 January 2013. This article is dedicated to commemorate the outstanding contributions of Gernot Renger to oxygenic photosynthesis research. Abstract: Chlorophylls and bacteriochlorophylls, together with carotenoids, serve, noncovalently bound to specific apoproteins, as principal light-harvesting and energy-transforming pigments in photosynthetic organisms. In recent years, enormous progress has been achieved in the elucidation of structures and functions of light-harvesting (antenna) complexes, photosynthetic reaction centers and even entire photosystems. It is becoming increasingly clear that light-harvesting complexes not only serve to enlarge the absorption cross sections of the respective reaction centers but are vitally important in short- and long-term adaptation of the photosynthetic apparatus and regulation of the energy-transforming processes in response to external and internal conditions. Thus, the wide variety of structural diversity in photosynthetic antenna “designs” becomes conceivable. It is, however, common for LHCs to form trimeric (or multiples thereof) structures. We propose a simple, tentative explanation of the trimer issue, based on the 2D world created by photosynthetic membrane systems. Citation: Lokstein, H.; Renger, G.; Götze, J.P. Photosynthetic Keywords: bacteriochlorophylls; chlorophylls; carotenoids; excitation energy transfer; light-harvesting Light-Harvesting (Antenna) complexes; photosynthesis; pigment-protein complexes; photosystems; photoprotection Complexes—Structures and Functions. Molecules 2021, 26, 3378. https://doi.org/10.3390/ molecules26113378 1. Introduction Academic Editor: Leszek Fiedor (Bacterio)chlorophylls, (B)Chls, being noncovalently bound to specific apoproteins, are the major chromophores of most light-harvesting (antenna) complexes (LHCs). More- Received: 27 January 2021 over, together with metal-free (bacterio)pheophytins, (B)Pheo, (B)Chls are the principle Accepted: 28 May 2021 photochemically active pigments in photosynthetic organisms. Excitation arriving at the Published: 3 June 2021 lowest singlet excited state (S1) of special (B)Chls in the photochemical reaction centers (RCs) eventually leads to primary charge separation, thus converting light energy into Publisher’s Note: MDPI stays neutral electrochemical energy, ultimately providing the driving force for all processes in photo- with regard to jurisdictional claims in synthetic (and also heterotrophic) organisms [1]. The vast majority of (B)Chls, however, published maps and institutional affil- act as (accessory) light-harvesting pigments, increasing the optical cross sections of the iations. photochemical RCs by about two orders of magnitude and more [2]. (B)Chls are essential constituents of the RCs and account for the majority of the antenna pigments in nonoxygen-evolving (anoxygenic) photosynthetic bacteria. In all oxygen-evolving photosynthetic organisms, Chls a functions as a primary electron donor in Copyright: © 2021 by the authors. the RCs of both photosystems I and II (PSI and PSII). Moreover, a Chl a is also the primary Licensee MDPI, Basel, Switzerland. electron acceptor in PSI. An exception may be the cyanobacterium Acaryochloris (A.) marina, This article is an open access article in which Chl d also appears to be involved in electron transfer [3]. In higher plants and distributed under the terms and green algae, Chls a and b serve as the major antenna pigments in the LHCs. Chl b is found conditions of the Creative Commons only in the LHCs of higher plants and green algae, with most Chl b bound to the main light- Attribution (CC BY) license (https:// harvesting complex (LHCII). Chls a and b, and in some species also divinyl-Chls a and b, are creativecommons.org/licenses/by/ bound to the “prochlorophyte” (certain clades of the cyanobacterial radiation now better 4.0/). Molecules 2021, 26, 3378. https://doi.org/10.3390/molecules26113378 https://www.mdpi.com/journal/molecules Molecules 2021, 26, x FOR PEER REVIEW 2 of 25 marina, in which Chl d also appears to be involved in electron transfer [3]. In higher plants and green algae, Chls a and b serve as the major antenna pigments in the LHCs. Chl b is found only in the LHCs of higher plants and green algae, with most Chl b bound to the Molecules 2021, 26, 3378 main light-harvesting complex (LHCII). Chls a and b, and in some species also 2divi- of 24 nyl-Chls a and b, are bound to the “prochlorophyte” (certain clades of the cyanobacterial radiation now better termed oxychlorobacteria) Chl-binding antenna complexes (Pcbs) termed[4]. Chls oxychlorobacteria) c are found in LHCs Chl-binding of different antenna algal clades complexes [5]. Chl (Pcbs) d and [4]. the Chls recentlyc are found discov- in LHCsered Chl of differentf [6] are found algal clades only in [5 ].certain Chl d andcyanobacteria. the recently Chl discovered d is the dominant Chl f [6] are pigment found onlyin A. inmarina certain [7,8] cyanobacteria.. The considerably Chl d is redshifted the dominant-absorbing pigment Chl in A. f marinawas first[7, 8discovered]. The considerably in stro- redshifted-absorbingmatolite-forming cyanobacteria Chl f was first [6]. discoveredThe synthesis in stromatolite-forming of Chl f and alternative cyanobacteria Chl-binding [6]. Theproteins synthesis seems of to Chl bef anda specific alternative response Chl-binding of certain proteins cyanobacteria seems to to be grow a specific under response far-red oflight certain conditions cyanobacteria [9]. Whether to grow Chl under f is also far-red involved light in conditions electron transfer, [9]. Whether or only Chl servesf is also as involvedan accessory in electron light-harvesting transfer, orpigment only serves, is currently as an accessory debated (e.g., light-harvesting [10,11]). pigment, is currentlyIn add debatedition to (e.g., (B)Chls, [10,11 most]). photosynthetic LHCs also bind carotenoids. In plants and Inalgae, addition LHCs to exclusively (B)Chls, most bind photosynthetic xanthophylls LHCs (oxygen also-containing bind carotenoids. derivatives In plants of caro- and algae,tenes). LHCs Bacterial exclusively LHCs and bind cyanobacterial, xanthophylls (oxygen-containing algal and plant core derivatives-antenna complexes of carotenes). of Bacterialboth PSI LHCsand II and can cyanobacterial, contain both carotenes algal and plantand their core-antenna oxygen derivatives. complexes of The both functions PSI and IIand can photophysics contain both carotenesof carotenoids and their (also oxygen when derivatives.bound to LHCs) The functions have been and covered photophysics exten- ofsively carotenoids in a previous (also when review bound [12]. toCarotenoids LHCs) have have been unique covered photophysical extensively infeatures a previous that reviewrender [their12]. Carotenoids spectroscopic have investigation, unique photophysical in particular features in LHCs, that render rather theirdifficult. spectroscopic Conven- investigation,tionally, carotenoid in particular excited in states LHCs, are rather assigned difficult. due Conventionally,to an assumed carotenoidC2h symmetry excited (in statesanalogy are to assigned linear polyenes). due to an However, assumed very C2h recent symmetry studies (in analogyhave suggested to linear that polyenes). the un- However,derlying ass veryumptions recent studiesmay not have apply suggested to carotenoids, that the in underlying particular to assumptions the optically may “dark” not applyfirst excited to carotenoids, singlet state in particular (S1) [13]. to the optically “dark” first excited singlet state (S1)[13]. StructuresStructures ofof ChlChl aa andand violaxanthinviolaxanthin (as(as representativesrepresentatives ofof theirtheir moleculemolecule classes),classes), asas wellwell asas thethe correspondingcorresponding absorptionabsorption spectraspectra andand energyenergy levels,levels, areare shownshown inin FigureFigure1 .1. In In spitespite ofof thethe vastvast taxonomictaxonomic diversitydiversity ofof photosyntheticphotosynthetic organisms,organisms, thethe mechanismsmechanisms ofof thethe primaryprimary photochemicalphotochemical reactions reactions performed performed by by (B)Chls (B)Chls and and the the other other associated associated cofactors cofac- intors the in RCs the areRCs very are very similar, similar, while—in while marked—in mar contrast—bothked contrast—both the structures the structures of LHCs of LHCs and theand bound the bound pigments pigments exhibit exhibit a remarkable a remarkable variety. variety. FigureFigure 1.1.Molecular Molecular structures structures and and absorption absorption spectra spectra of of chlorophyll chlorophylla ( lefta (left) and) and the the carotenoid carotenoid (xanthophyll) (xanthophyll) violaxanthin violaxan- (thinright ()right as representatives) as representatives of their of respectivetheir respective molecule molecule classes, classes as well, as aswell the as corresponding the corresponding energy energy level schemes.level
Recommended publications
  • Femtosecond Visible Transient Absorption Spectroscopy of Chlorophyll-F-Containing Photosystem II
    Femtosecond visible transient absorption spectroscopy of chlorophyll-f-containing photosystem II Noura Zamzama, Rafal Rakowskia, Marius Kaucikasa, Gabriel Dorlhiaca,1, Sefania Violaa, Dennis J. Nürnberga,b, Andrea Fantuzzia, A. William Rutherforda, and Jasper J. van Thora,2 aDepartment of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom; and bInstitute of Experimental Physics, Freie Universität Berlin, 14195 Berlin, Germany Edited by Donald R. Ort, University of Illinois at Urbana–Champaign, Urbana, IL, and approved July 27, 2020 (received for review March 31, 2020) +• −• The recently discovered, chlorophyll-f-containing, far-red photo- some centers and PD1 ChlD1 in others (13, 14). However, the view +• −• system II (FR-PSII) supports far-red light photosynthesis. Participa- that RP1 in PSII is PD1 ChlD1 in all of the centers is still advo- tion and kinetics of spectrally shifted far-red pigments are directly cated (15). This model was originally based on the photochemistry in observable and separated from that of bulk chlorophyll-a.Wepre- the well-characterized purple bacterial reaction center, where RP1 is − sent an ultrafast transient absorption study of FR-PSII, investigating P+B , P is a special pair of (bacterio)chlorophylls over which the energy transfer and charge separation processes. Results show a cation is shared and B is a monomeric (bacterio)chlorophyll (16). rapid subpicosecond energy transfer from chlorophyll-a to the Irrespective of the identity of RP1, the secondary radical pair (RP2) f/d +• −• long-wavelength chlorophylls- . The data demonstrate the decay in PSII is thought to be PD1 PheoD1 . The electron transfer from of an ∼720-nm negative feature on the picosecond-to-nanosecond −• +• −• PheoD1 to QA, leads to formation of PD1 QA , RP3 (2–4, 9, 15).
    [Show full text]
  • Chromatic Acclimation and Population Dynamics of Green Sulfur Bacteria Grown with Spectrally Tailored Light
    Chromatic acclimation and population dynamics of green sulfur bacteria grown with spectrally tailored light Semion K. Saikin,a,† Yadana Khin,b Joonsuk Huh,a Moataz Hannout,c Yaya Wang,b Farrokh Zare,b Alán Aspuru-Guzik,a Joseph Kuo-Hsiang Tangb,* a Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138 USA; b School of Chemistry and Biochemistry, Clark University, Worcester, MA 01610-1477 USA, c Department of Physics, Clark University, Worcester, MA 01610-1477 USA To whom correspondence should be addressed: †E-mail: [email protected], Tel: 1-617-496-8221, Fax: 1-617-496-9411 *E-mail: [email protected],Tel: 1-614-316-7886, Fax: 1-508-793-8861 Keywords: photosynthesis, chromatic acclimation, energy transfer, light-harvesting complex, chlorosome, green sulfur bacteria Living organisms have to adjust to their surrounding in order to survive in stressful conditions. We study this mechanism in one of most primitive creatures – photosynthetic green sulfur bacteria. These bacteria absorb photons very efficiently using the chlorosome antenna complexes and perform photosynthesis in extreme low-light environments. How the chlorosomes in green sulfur bacteria are acclimated to the stressful light conditions, for instance, if the spectrum of light is not optimal for absorption, is unknown. Studying Chlorobaculum tepidum cultures with far-red to near-infrared light-emitting diodes, we found that these bacteria react to changes in energy flow by regulating the amount of light- absorbing pigments and the size of the chlorosomes. Surprisingly, our results indicate that the bacteria can survive in near-infrared lights capturing low-frequency photons by the intermediate units of the light-harvesting complex.
    [Show full text]
  • Miami1132247140.Pdf (3.72
    MIAMI UNIVERSITY The Graduate School CERTIFICATE FOR APPROVING THE DISSERTATION We hereby approve the Dissertation Of Brian Junior Henson Candidate for the Degree: Doctor of Philosophy Advisor ______________________ (Susan R. Barnum) Advisor ______________________ (Linda E. Watson) Reader ______________________ (David A. Francko) Reader ______________________ (John Z. Kiss) Grad School Representative ______________________ (Luis A. Actis) Abstract EVOLUTION, VARIATION, AND EXCISION OF DEVELOPMENTALLY REGULATED DNA ELEMENTS IN THE HETEROCYSTOUS CYANOBACTERIA by Brian Junior Henson In some cyanobacteria, heterocyst differentiation is accompanied by developmentally regulated DNA rearrangements that occur within the nifD, fdxN, and hupL genes, referred to as the nifD, fdxN, and hupL elements. These elements are excised from the genome by site-specific recombination during the latter stages of heterocyst differentiation. In this dissertation, two major questions are addressed: 1) what is the evolutionary history of the nifD and hupL elements and 2) how is the nifD element excised? To answer the first question, full length nifD and hupL element sequences were characterized and compared; and xisA and xisC sequences (which encode the recombinases that excise the nifD and hupL elements, respectively) were phylogenetically analyzed. Results indicated extensive structural and compositional variation within the nifD and hupL elements. The data suggests that the nifD and hupL elements are of viral origin and that they have variable patterns of evolution in the cyanobacteria. To answer the second question, a recombination system was devised where the ability of XisA to excise or recombine variants of the nifD element (substrate plasmids) was tested. Using PCR directed mutagenesis, specific nucleotides within the flanking regions of the nifD element were altered and the effects on recombination determined.
    [Show full text]
  • Chapter 3 the Title and Subtitle of This Chapter Convey a Dual Meaning
    3.1. Introduction Chapter 3 The title and subtitle of this chapter convey a dual meaning. At first reading, the subtitle Photosynthetic Reaction might seem to indicate that the topic of the structure, function and organization of Centers: photosynthetic reaction centers is So little time, so much to do exceedingly complex and that there is simply insufficient time or space in this brief article to cover the details. While this is John H. Golbeck certainly the case, the subtitle is Department of Biochemistry additionally meant to convey the idea that there is precious little time after the and absorption of a photon to accomplish the Molecular Biology task of preserving the energy in the form of The Pennsylvania State University stable charge separation. University Park, PA 16802 USA The difficulty is there exists a fundamental physical limitation in the amount of time available so that a photochemically induced excited state can be utilized before the energy is invariably wasted. Indeed, the entire design philosophy of biological reaction centers is centered on overcoming this physical, rather than chemical or biological, limitation. In this chapter, I will outline the problem of conserving the free energy of light-induced charge separation by focusing on the following topics: 3.2. Definition of the problem: the need to stabilize a charge-separated state. 3.3. The bacterial reaction center: how the cofactors and proteins cope with this problem in a model system. 3.4. Review of Marcus theory: what governs the rate of electron transfer in proteins? 3.5. Photosystem II: a variation on a theme of the bacterial reaction center.
    [Show full text]
  • 1.1-Billion-Year-Old Porphyrins Establish a Marine Ecosystem Dominated by Bacterial Primary Producers
    1.1-billion-year-old porphyrins establish a marine ecosystem dominated by bacterial primary producers N. Guenelia,1, A. M. McKennab, N. Ohkouchic, C. J. Borehamd, J. Beghine, E. J. Javauxe, and J. J. Brocksa,1 aResearch School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia; bNational High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310-4005; cDepartment of Biogeochemistry, Japan Agency for Marine–Earth Science and Technology, 237-0061 Kanagawa Prefecture, Yokosuka, Natsushimacho, Japan; dGeoscience Australia, Symonston, ACT 2609, Australia; and eDepartment of Geology, Unité de Recherche Geology, University of Liège, 4000 Liege, Belgium Edited by Andrew H. Knoll, Harvard University, Cambridge, MA, and approved June 8, 2018 (received for review March 6, 2018) The average cell size of marine phytoplankton is critical for the the molecular fossils of biological lipids, can provide comple- flow of energy and nutrients from the base of the food web to mentary information about primary producers. For example, higher trophic levels. Thus, the evolutionary succession of primary hydrocarbon fossils of carotenoid pigments extracted from sed- producers through Earth’s history is important for our understand- imentary rocks have been used to detect phototrophic green ing of the radiation of modern protists ∼800 million years ago and (Chlorobiaceae) and purple sulfur bacteria (PSB) (Chromatia- ∼ the emergence of eumetazoan animals 200 million years later. ceae) in 1,640-My-old marine ecosystems (4, 5), while the con- Currently, it is difficult to establish connections between primary centration of eukaryotic steranes, relative to bacterial hopanes, production and the proliferation of large and complex organisms may provide basic information about the ecological relevance of because the mid-Proterozoic (∼1,800–800 million years ago) rock Precambrian algae (6).
    [Show full text]
  • 1 Temperature and Carbon Assimilation Regulate The
    Temperature and Carbon Assimilation Regulate the Chlorosome Biogenesis in Green Sulfur Bacteria Joseph Kuo-Hsiang Tang1,*, Semion K. Saikin2, Sai Venkatesh Pingali3, Miriam M. Enriquez4, Joonsuk Huh2, Harry A. Frank4, Volker S. Urban3, Alán Aspuru-Guzik2 1School of Chemistry and Biochemistry, Clark University, Worcester, MA 01610 USA, 2Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138 USA, 3Center for Structural Molecular Biology, Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA, 4Department of Chemistry, University of Connecticut, Storrs, CT 06269 USA Running title: Metabolic regulation of chlorosome *To whom correspondence should be addressed: Tel: 1-614-316-7886, Fax: 1-508-793-8861, E-mail: [email protected] Abstract Green photosynthetic bacteria adjust the structure and functionality of the chlorosome – the light absorbing antenna complex – in response to environmental stress factors. The chlorosome is a natural self-assembled aggregate of bacteriochlorophyll (BChl) molecules. In this study we report the regulation of the biogenesis of the Chlorobaculum tepidum chlorosome by carbon assimilation in conjunction with temperature changes. Our studies indicate that the carbon source and thermal stress culture of Cba. tepidum grows slower and incorporates less BChl c in the chlorosome. Compared with the chlorosome from other cultural conditions we investigated, the chlorosome from the carbon source and thermal stress culture displays: (a) smaller cross- sectional radius and overall size; (b) simplified BChl c homologues with smaller side chains; (c) blue-shifted Qy absorption maxima and (d) a sigmoid-shaped circular dichroism (CD) spectra. Using a theoretical model we analyze how the observed spectral modifications can be associated with structural changes of BChl aggregates inside the chlorosome.
    [Show full text]
  • Non-Destructive in Situ Measurement of Aquaponic Lettuce Leaf Photosynthetic Pigments and Nutrient Concentration Using Hybrid Genetic Programming Ronnie S
    589 AGRIVITA Journal of Agricultural Science. 2021. 43(3): 589-610 AGRIVITA Journal of Agricultural Science www.agrivita.ub.ac.id Non-destructive in Situ Measurement of Aquaponic Lettuce Leaf Photosynthetic Pigments and Nutrient Concentration Using Hybrid Genetic Programming Ronnie S. Concepcion II1*), Elmer P. Dadios1) and Joel Cuello2) 1) De La Salle University, Manila, Philippines 2) University of Arizona, Tucson, USA ARTICLE INFO ABSTRACT Keywords: Phytopigment and nutrient concentration determination normally rely Computer vision on laboratory chemical analysis. However, non-destructive and onsite Leaf nutrient level prediction measurements are necessary for intelligent closed environment Leaf pigment prediction agricultural systems. In this study, the impact of photosynthetic light Lettuce treatments on aquaponic lettuce leaf canopy (Lactuca sativa var. Machine learning Altima) was evaluated using UV-Vis spectrophotometry (300-800 nm), fourier transform infrared spectroscopy (4000-500 per cm), and Article History: the integrated computer vision and computational intelligence. Hybrid Received: March 6, 2021 decision tree and multigene symbolic regression genetic programming Accepted: August 16, 2021 (DT-MSRGP) exhibited the highest predictive accuracies of 80.9%, 89.9%, 83.5%, 85.5%, 81.3%, and 83.4% for chlorophylls a and b, *) Corresponding author: β-carotene, anthocyanin, lutein, and vitamin C concentrations present E-mail: [email protected]. in lettuce leaf canopy based on spectro-textural-morphological ph signatures. An increase in β-carotene and anthocyanin concentrations verified that these molecular pigments act as a natural sunscreen to protect lettuce from light stress and an increase in chlorophylls a and b ratio in the white light treatment corresponds to reduced emphasis on photon energy absorbance in chloroplast photosystem II.
    [Show full text]
  • Scholarworks@UNO
    University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses Summer 8-4-2011 Identification and characterization of enzymes involved in the biosynthesis of different phycobiliproteins in cyanobacteria Avijit Biswas University of New Orleans, [email protected] Follow this and additional works at: https://scholarworks.uno.edu/td Part of the Biochemistry, Biophysics, and Structural Biology Commons Recommended Citation Biswas, Avijit, "Identification and characterization of enzymes involved in the biosynthesis of different phycobiliproteins in cyanobacteria" (2011). University of New Orleans Theses and Dissertations. 446. https://scholarworks.uno.edu/td/446 This Dissertation-Restricted is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Dissertation-Restricted in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Dissertation-Restricted has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. Identification and characterization of enzymes involved in biosynthesis of different phycobiliproteins in cyanobacteria A Thesis Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Chemistry (Biochemistry) By Avijit Biswas B.S.
    [Show full text]
  • Validation of the Generic Name Gloeobacter Rippka Et Al. 1974, Cyanophyceae
    Cryptogamie, Algologie, 2013, 34 (3): 255-262 © 2013 Adac. Tous droits réservés Validation of the generic name Gloeobacter Rippka et al. 1974, Cyanophyceae Jan MARE≤ a,b*, Ji÷í KOMÁREK a,b, Pierre COMPÈRE c & Aharon OREN d a University of South Bohemia, Faculty of Science, Brani≠ovká 31, CZ-37005 Ωeské Bud{jovice, Czech Republic b Czech Academy of Sciences, Institute of Botany, Dukelská 135, CZ-37982 T÷ebo≈, Czech Republic c National Botanic Garden of Belgium, Domein van Bouchout, B-1860 Meise, Belgium d Department of Plant and Environmental Sciences, the Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel Abstract – The genus name Gloeobacter with the single (= type) species Gloeobacter violaceus (Cyanophyta, Cyanoprokaryota, Cyanobacteria) was described by Rippka, Water- bury et Cohen-Bazire (Arch. Microbiol. 100: 419-436, 1974). However, this is not a validly published name and so it currently has no standing under the botanical International Code of Nomenclature (ICN, Mc Neil et al. 2012) or the International Code of Nomenclature of Prokaryotes (ICNB/ICNP, Lapage et al. 1992). The lack of valid publication of the genus name causes many problems in the taxonomy of this phylogenetically and experimentally important cyanophyte/cyanobacterium. The lack of thylakoids, a feature unique among all known cyanobacteria, as well as the phylogenetic position of the representative of this genus, warrant valid publication of this generic name. The type strain was deposited in the collection PCC in Paris under the number PCC 7421 and later introduced into numerous other strain collections; however, the dried specimens were not yet conserved.
    [Show full text]
  • Phototrophic Pigment Production with Microalgae
    Phototrophic pigment production with microalgae Kim J. M. Mulders Thesis committee Promotor Prof. Dr R.H. Wijffels Professor of Bioprocess Engineering Wageningen University Co-promotors Dr D.E. Martens Assistant professor, Bioprocess Engineering Group Wageningen University Dr P.P. Lamers Assistant professor, Bioprocess Engineering Group Wageningen University Other members Prof. Dr H. van Amerongen, Wageningen University Prof. Dr M.J.E.C. van der Maarel, University of Groningen Prof. Dr C. Vilchez Lobato, University of Huelva, Spain Dr S. Verseck, BASF Personal Care and Nutrition GmbH, Düsseldorf, Germany This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). Phototrophic pigment production with microalgae Kim J. M. Mulders Thesis submitted in fulfilment of the requirement for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 5 December 2014 at 11 p.m. in the Aula. K. J. M. Mulders Phototrophic pigment production with microalgae, 192 pages. PhD thesis, Wageningen University, Wageningen, NL (2014) With propositions, references and summaries in Dutch and English ISBN 978-94-6257-145-7 Abstract Microalgal pigments are regarded as natural alternatives for food colourants. To facilitate optimization of microalgae-based pigment production, this thesis aimed to obtain key insights in the pigment metabolism of phototrophic microalgae, with the main focus on secondary carotenoids. Different microalgal groups each possess their own set of primary pigments. Besides, a selected group of green algae (Chlorophytes) accumulate secondary pigments (secondary carotenoids) when exposed to oversaturating light conditions.
    [Show full text]
  • Modifications of Protoporphyrin IX Fluorescence During ALA-Based
    ARTICLE IN PRESS Medical Laser Application 21 (2006) 291–297 www.elsevier.de/mla Modifications of protoporphyrin IX fluorescence during ALA-based photodynamic therapy of endometriosis Karsten Ko¨niga,Ã, Marie-Therese Wyss-Desserichb, Yona Tadirc, Urs Hallerb, Bruce Trombergc, Michael W. Bernsc, P. Wyssb aFraunhofer Institute of Biomedical Technology (IBMT), Ensheimer Straße 48, 66386 St. Ingbert, Germany bDepartment of Obstetrics and Gynecology, Clinic of Gynecology, Frauenklinikstr. 10, University Hospital Zu¨rich, 8091 Zu¨rich, Switzerland cBeckman Laser Institute and Medical Clinic, University of California, 1002 Health Sciences Road Irvine, Irvine, CA 92612, USA Received 20 June 2006; accepted 31 July 2006 Abstract Modifications of the porphyrin fluorescence during photodynamic treatment of ovarian cells, endometrial adenocarcinoma cells and rat uterus after administration of the porphyrin precursor d-aminolevulinic acid and exposure with 630 nm laser radiation have been studied. The intracellular and intratissue fluorescence was excited with 407 nm radiation of a krypton ion laser and detected by spectral microscopic imaging using a modified microscope equipped with a slow-scan cooled camera and a liquid crystal filter. In particular, singlet oxygen induced effects due to photobleaching as well as formation of chlorin-type fluorescent photoproducts were detected at around 500, 630 and 670 nm. The photodynamically induced fluorescence modifications were found to vary between cell types. The major fluorescence peak of PP IX was photobleached 63% by a phototoxic fluence of about 20–40 J/cm2 in cells and within rat endometrium. Higher fluences were required to bleach the fluorescence at around 670 nm due to the formation of fluorescent photoproducts.
    [Show full text]
  • The Impact of Light Irradiance, Chlorophyll Concentration And
    THE IMPACT OF LIGHT IRRADIANCE, CHLOROPHYLL CONCENTRATION AND SOLVENT ON CHLOROPHYLL ABSORBANCE SPECTRUM Vidya Sagar Kuncham Department of Bioresource Engineering McGill University Montreal, Quebec, Canada A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master of Science April 2021 © Vidya Sagar Kuncham, 2021 1 ABSTRACT The plant pigment chlorophyll (Chl) is considered as obligatory pigment in photosynthesis as it is used in the light harvesting process. Chl absorbs light energy predominately in the blue and red region of the visible spectrum with defined peaks at 433 nm and 665 nm for Chl a and at 458 nm and 646 nm for Chl b. Our first study was used to determine the impact that light irradiance had on Chl. Chl a and Chl b absorbance was measured under dark and after treating with different light intensities. It was identified that both Chl a and Chl b were sensitive to the light and the absorbance capacity (absorbance spectrum) of the chlorophyll changed based on the light intensity by which the chlorophyll pigments were treated. Chl a and Chl b absorbance level was inversely proportional to the light intensity supplied to the pigments. The Chl a absorbed significantly more light in the green region (between 500 nm and 530 nm) after treatment with higher light irradiance. Chl b absorbed more light in green region with distinct peaks at 518 nm and 570 nm after light treatments. The ability of Chl to return to a baseline absorbance based on a no light (dark) treatment was tested by storing Chl a and Chl b under dark conditions, however no significant recovery in absorbance was measured.
    [Show full text]