ABSTRACT ZHANG, SHAOFEI. Synthesis Of

Total Page:16

File Type:pdf, Size:1020Kb

ABSTRACT ZHANG, SHAOFEI. Synthesis Of ABSTRACT ZHANG, SHAOFEI. Synthesis of Bacteriochlorins and the Full Skeleton of Bacteriochlorophylls. (Under the direction of Professor Jonathan S. Lindsey.) Bacteriochlorins, the core macrocycle ring of natural bacteriochlorophylls, are characterized by their ability to absorb near infrared light (700 – 900 nm), which makes them attractive candidates in variety of photophysical studies and applications. The previously established de novo synthesis, which relies on the acid-catalyzed self-condensation of dihydrodipyrrin–acetal, provides access towards diverse bacteriochlorins, but has its limitations. This dissertation describes the development of new strategies for bacteriochlorin synthesis. Firstly, a route towards previously unknown tetra-alkyl bacteriochlorins (e.g., alkyl = Me, or –CH2CO2Me) is established (Ch. 2). Secondly, explorations of synthetic approaches to unsymmetrically substituted bacteriochlorins through electrocyclic reactions of linear tetrapyrrole intermediates are described. Four new unsymmetrically substituted bacteriochlorins and one new tetradehydrocorrin were produced, albeit in low yields (Ch. 3). Thirdly, a new method to construct bacteriochlorin macrocycle with concomitant Nazarov cyclization to form the annulated isocyclic ring, is established. Five new bacteriochlorins, which are closely anlogues of bacteriochlorophyll a, bearing various substituents (alkyl/alkyl, aryl, and alkyl/ester) at positions 2 and 3 and 132 carboalkoxy groups (R = Me or Et) were constructed in 37−61% yield from the bilin analogues (Ch. 4). Taken together, these studies expand the scope of available bacteriochlorins for fundamental studies and applications, and provide the synthetic pathway to full skeleton of bacteriochlorophylls. © Copyright 2017 by Shaofei Zhang All Rights Reserved Synthesis of Bacteriochlorins and the Full Skeleton of Bacteriochlorophylls by Shaofei Zhang A dissertation submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Chemistry Raleigh, North Carolina 2017 APPROVED BY: _____________________________ _____________________________ Jonathan S. Lindsey David Shultz Chair of Committee _____________________________ _____________________________ Reza A. Ghiladi Joshua G. Pierce DEDICATION To my wife Kaimeng and my son Jason ii BIOGRAPHY Shaofei Zhang was born in Baoji, China in 1988. He received his B.Sc. degree in chemistry from Peking University, in 2011, after conduction research under the guidance of Professor Yuguo Ma and Jianbin Huang. Upon entering North Carolina State University in 2011 as a graduate student in chemistry, he joined the laboratory of Professor Jonathan S. Lindsey where he has been working on synthesis of tetrapyrrole macrocycles. iii ACKNOWLEDGMENTS The heart and beauty of synthesis chemistry lies in its creative nature. The request to the designed molecule is a long-term adventure filled with challenges, frustration, joys and opportunities. Luckily, I am not alone in this journey. First, I would like to thank my advisor and mentor, Dr. Jonathan Lindsey, for his guidance, encouragement and support. Besides, I would like to thank every faculty and staffs that I worked with in our chemistry department, for their teaching, assistance and collaboration. Also, I am grateful to work with all past and present members in our lab. I will treasure our friendship forever. At last, there are no words to express how grateful I am and how much I love for my family. iv TABLE OF CONTENTS LIST OF TABLES………………………………………………………………………....viii LIST OF FIGURES………………………………………………………………………ix LIST OF SCHEMES…………………………………………………………….........……xii CHAPTER I General Introduction of Bacteriochlorins Bacteriochlorophylls and Bacteriochlorins………………………………………......1 Synthesis of Bacteriochlorins………………………………………………………...9 Summary and Overview……………………………………………………………..17 References……………………………………………………………………………20 CHAPTER II Synthesis and Photophysical Characteristics of 2,3,12,13- Tetraalkylbacteriochlorins Introduction………………………………………………………………………….27 Results and Discussion………………………………………………………………31 (1) Synthesis…………………………………………………………………31 (2) Photophysical Characterization………………………………………….44 Conclusion………………………………………………………………………...…55 Experimental Section…………………………………………………………….…..56 Reference...……………………………………………………………………....…..70 CHAPTER III Synthetic Approaches Towards Unsymmetrically Substituted Bacteriochlorins Introduction……………………………………………………………............…….75 v Result…………………………………………………………………......………….81 (1) Retrosynthesis Analysis……………………………………….........……81 (2) Synthesis of Hydrodipyrrins………………………………………..........83 (3) Exploration of Bacteriochlorin Formation…………………………........87 (4) Characterization………………………………………………….......…..97 Discussion………………………………………………………………….......….104 (1) Joining of the Eastern Half and the Western Half ……………............104 (2) Ring Closure…………………………………………………...........…..106 (3) Leaving Group and Methylthio shift……………………………............109 Conclusion………………………………………………………………….............111 Experimental Section……………………………………………………............….113 Reference…………………………………………………………………...............131 CHAPTER IV Construction of the Bacteriochlorin Macrocycle with Concomitant Nazarov Cyclization to Form the Annulated Isocyclic Ring – Analogues of Bacteriochlorophyll a Introduction………………………………………………………………...........….136 Results………………………………………………………………………............141 (1) Reconnaissance…………………………………………………............141 (2) Synthesis…………………………………………………......................145 (3) Characterization…………………………………………………...........157 Discussion………………………………………………….....................................163 (1) Installation of the Isocyclic Ring………………………….................…163 (2) Features of the Nazarov Cyclization………………………................…165 (3) Comparison of Routes…………………………………….................…166 (4) Synthetic Attributes…………………………………….................……168 vi Experimental Section……………………………………………….................…..171 References……….………………………………………………….......................188 vii LIST OF TABLES Table 2.1. Acid survey for the self-condensation of dihydrodipyrrin carboxaldehydes...39 Table 2.2. Spectral characteristics of bacteriochlorins in toluene ....................................47 Table 2.3. Photophysical properties of bacteriochlorins...................................................52 Table 3.1. Survey of conditions to prepare bacteriochlorin In-BC-1...............................88 Table 3.2. Spectral properties of bacteriochlorins..........................................................103 Table 4.1. Conditions for bacteriochlorin (BC-T) formation from 12-T ......................154 Table 4.2. Investigation of the scope of bacteriochlorin formation..............................156 Table 4.3. Spectral characteristics of bacteriochlorins .................................................162 viii LIST OF FIGURES Figure 1.1. Pigments of life................................................................................................2 Figure 1.2. Absorption spectra of magnesium octaethylporphyrin (blue line), chlorophyll a (green) and b (dashed green), and bacteriochlorophyll a (red)....................3 Figure 1.3. Structures of natural bacteriochlorophylls......................................................5 Figure 1.4. Natural hydroporphyrins with geminal dialkyl motif ...................................6 Figure 1.5. Core structure of synthetic bacteriochlorins...................................................7 Figure 1.6. Typical derivatives of BChl a. .......................................................................10 Figure 1.7. Symmetrically and unsymmetrically substituted bacteriochlorin .................19 Figure 2.1. Natural bacteriochlorophylls .........................................................................28 Figure 2.2. Progression of structural complexity along the path to a free base derivative of BChl a.............................................................................................................31 Figure 2.3. Dihydrodipyrrins used in chlorin syntheses. ..................................................34 Figure 2.4. ORTEP drawing of BC-MM. Ellipsoids are at the 50% probability level and hydrogen atoms (except N–H) are omitted for clarity...................................42 Figure 2.5. New and benchmark bacteriochlorins. ...........................................................45 Figure 2.6. Absorption (solid) and fluorescence (dashed) spectra of bacteriochlorins in toluene............................................................................................................46 Figure 2.7. Low- and mid-frequency regions of the Qy-excitation RR spectra of CuBC0 (ex = 730 nm; CH2Cl2 solution) and CuBC-MM (ex = 737 nm; benzene solution)..........................................................................................................50 Figure 2.8. Integrated intensity of Qy absorption manifold [Qy(0,0) and Qy(1,0)] versus that of the total spectrum (300–900 nm) when plotted in wavenumbers (vertical axis) versus the radiative rate constant kf obtained from the s and f ix values (x-axis). The overall linear relationship reflects the consistency of the measurements and analysis.............................................................................55 Figure 3.1. Hydrodipyrrins for studies of bacteriochlorin formation ..............................82 Figure 3.2. Absorption spectrum of TDC-1 (top) and Ni-TDC-2 (bottom)
Recommended publications
  • Urobiliverdin, a New Bile Pigment Deriving from Uroporphyrin Eva Benedikt and Hans-Peter Köst Botanisches Institut, Universität München, Menzingerstr
    Urobiliverdin, a New Bile Pigment Deriving from Uroporphyrin Eva Benedikt and Hans-Peter Köst Botanisches Institut, Universität München, Menzingerstr. 67, D-8000 München 19, Bundesrepublik Deutschland Z. Naturforsch. 38 c, 753-757 (1983); received May 4, 1983 Semisynthetic Bile Pigments, Urobiliverdin III, Coprobiliverdin III, Biliverdin IX, Uroporphyrin III 5-Aminolevulinic acid is incubated with a crude enzyme extract from Rhodopseudomonas spheroides, mutant R 26. The formed porphyrins (main product: uroporphyrin III) are isolated. Incorporation of iron, ring-splitting by coupled oxydation and subsequent iron removal leads to a mixture of pigments, from which urobiliverdin, a new bile pigment with eight carboxylic acid side chains, is isolated. It is characterized by its chromatographic behaviour, chromic acid degra­ dation and UV-vis spectroscopy. Introduction the photosynthetic bacteria, Rhodopseudomonas spheroides, mutant R26 was a gift from Prof. Naturally occurring open chained tetrapyrrolic H. Scheer, Munich. Marker porphyrins were pur­ systems (bile pigments) usually bear two carboxylic chased from Porphyrin products (Logan, USA). acid side chains, namely propionic acid side chains. Chromic acid degradation was performed accord­ Examples are phycocyanobilin [1-5], phycoerythro- ing to the procedure developed by Rüdiger [21]; the bilin [5, 6], phytochromobilin [7, 8], the biliar pig­ degradation products were separated on silicagel 60 ment bilirubin ([9], here older literature) and sterco- coated HPTLC plates (E. Merck, Darmstadt, FRG) bilin [9] which is encountered in the faeces. using the solvent system chloroform-ethyl acetate- All of these pigments probably derive from proto­ cyclohexane = 6:3:1. The imides formed were heme as has been shown experimentally in a identified by comparison with authentic standards.
    [Show full text]
  • PDF File Includes: Main Text Figures 1 to 4 Supplemental Text Supplemental Figures S1 to S8 Supplemental Tables
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.08.414581; this version posted December 9, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Structural basis of the protochromic green/red photocycle of the chromatic acclimation sensor RcaE Takayuki Nagaea, Masashi Unnob, Taiki Koizumic, Yohei Miyanoirid, Tomotsumi Fujisawab, Kento Masuif, Takanari Kamof, Kei Wadae, Toshihiko Ekif, Yutaka ItoC, Yuu Hirosef and Masaki Mishimac aSynchrotron Radiation Research Center, Nagoya University, Chikusa, Nagoya 464-8603, Japan; bDepartment of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan; cDepartment of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji 192-0397, Japan; dInstitute for Protein Research , Osaka University , 3-2 Yamadaoka , Suita , Osaka 565-0871 , Japan; eDepartment of Medical Sciences, University of Miyazaki, Miyazaki 889-1692, Japan; fDepartment of Environmental and Life Sciences, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan 1To whom correspondence should be addressed 1Masaki Mishima Email: [email protected] 1Yuu Hirose Email: [email protected] 1 Masashi Unno Email: [email protected] Takayuki Nagae: 0000-0001-7016-5183 Tomotsumi Fujisawa: 0000-0002-3282-6814 Masashi Unno: 0000-0002-5016-6274 Yohei Miyanoiri: 0000-0001-6889-5160 Yuu Hirose: 0000-0003-1116-8979 Kei Wada: 0000-0001-7631-4151 Yutaka Ito: 0000-0002-1030-4660 Masaki Mishima: 0000-0001-7626-7287 Classification Biological Sciences Keywords cyanobacteriochrome, phytochrome, bilin, NMR, crystallography Author Contributions MM, YH, and MU designed the research and wrote the manuscript.
    [Show full text]
  • Significance and Implications of Vitamin B-12 Reaction Shema- ETH ZURICH VARIANT: Mechanisms and Insights
    Taylor University Pillars at Taylor University Student Scholarship: Chemistry Chemistry and Biochemistry Fall 2019 Significance and Implications of Vitamin B-12 Reaction Shema- ETH ZURICH VARIANT: Mechanisms and Insights David Joshua Ferguson Follow this and additional works at: https://pillars.taylor.edu/chemistry-student Part of the Analytical Chemistry Commons, Inorganic Chemistry Commons, Organic Chemistry Commons, Other Chemistry Commons, and the Physical Chemistry Commons CHEMISTRY THESIS SIGNIFICANCE AND IMPLICATIONS OF VITAMIN B-12 REACTION SCHEMA- ETH ZURICH VARIANT: MECHANISMS AND INSIGHTS DAVID JOSHUA FERGUSON 2019 2 Table of Contents: Chapter 1 6 Chapter 2 17 Chapter 3 40 Chapter 4 59 Chapter 5 82 Chapter 6 118 Chapter 7 122 Appendix References 3 Chapter 1 A. INTRODUCTION. Vitamin B-12 otherwise known as cyanocobalamin is a compound with synthetic elegance. Considering how it is composed of an aromatic macrocyclic corrin there are key features of this molecule that are observed either in its synthesis of in the biochemical reactions it plays a role in whether they be isomerization reactions or transfer reactions. In this paper the focus for the discussion will be on the history, chemical significance and total synthesis of vitamin B12. Even more so the paper will be concentrated one of the two variants of the vitamin B-12 synthesis, namely the ETH Zurich variant spearheaded by Albert Eschenmoser.Examining the structure as a whole it is observed that a large portion of the vitamin B12 is a corrin structure with a cobalt ion in the center of the macrocyclic part, and that same cobalt ion has cyanide ligands.
    [Show full text]
  • 1.1-Billion-Year-Old Porphyrins Establish a Marine Ecosystem Dominated by Bacterial Primary Producers
    1.1-billion-year-old porphyrins establish a marine ecosystem dominated by bacterial primary producers N. Guenelia,1, A. M. McKennab, N. Ohkouchic, C. J. Borehamd, J. Beghine, E. J. Javauxe, and J. J. Brocksa,1 aResearch School of Earth Sciences, Australian National University, Canberra, ACT 2601, Australia; bNational High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310-4005; cDepartment of Biogeochemistry, Japan Agency for Marine–Earth Science and Technology, 237-0061 Kanagawa Prefecture, Yokosuka, Natsushimacho, Japan; dGeoscience Australia, Symonston, ACT 2609, Australia; and eDepartment of Geology, Unité de Recherche Geology, University of Liège, 4000 Liege, Belgium Edited by Andrew H. Knoll, Harvard University, Cambridge, MA, and approved June 8, 2018 (received for review March 6, 2018) The average cell size of marine phytoplankton is critical for the the molecular fossils of biological lipids, can provide comple- flow of energy and nutrients from the base of the food web to mentary information about primary producers. For example, higher trophic levels. Thus, the evolutionary succession of primary hydrocarbon fossils of carotenoid pigments extracted from sed- producers through Earth’s history is important for our understand- imentary rocks have been used to detect phototrophic green ing of the radiation of modern protists ∼800 million years ago and (Chlorobiaceae) and purple sulfur bacteria (PSB) (Chromatia- ∼ the emergence of eumetazoan animals 200 million years later. ceae) in 1,640-My-old marine ecosystems (4, 5), while the con- Currently, it is difficult to establish connections between primary centration of eukaryotic steranes, relative to bacterial hopanes, production and the proliferation of large and complex organisms may provide basic information about the ecological relevance of because the mid-Proterozoic (∼1,800–800 million years ago) rock Precambrian algae (6).
    [Show full text]
  • Phototrophic Pigment Production with Microalgae
    Phototrophic pigment production with microalgae Kim J. M. Mulders Thesis committee Promotor Prof. Dr R.H. Wijffels Professor of Bioprocess Engineering Wageningen University Co-promotors Dr D.E. Martens Assistant professor, Bioprocess Engineering Group Wageningen University Dr P.P. Lamers Assistant professor, Bioprocess Engineering Group Wageningen University Other members Prof. Dr H. van Amerongen, Wageningen University Prof. Dr M.J.E.C. van der Maarel, University of Groningen Prof. Dr C. Vilchez Lobato, University of Huelva, Spain Dr S. Verseck, BASF Personal Care and Nutrition GmbH, Düsseldorf, Germany This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences). Phototrophic pigment production with microalgae Kim J. M. Mulders Thesis submitted in fulfilment of the requirement for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday 5 December 2014 at 11 p.m. in the Aula. K. J. M. Mulders Phototrophic pigment production with microalgae, 192 pages. PhD thesis, Wageningen University, Wageningen, NL (2014) With propositions, references and summaries in Dutch and English ISBN 978-94-6257-145-7 Abstract Microalgal pigments are regarded as natural alternatives for food colourants. To facilitate optimization of microalgae-based pigment production, this thesis aimed to obtain key insights in the pigment metabolism of phototrophic microalgae, with the main focus on secondary carotenoids. Different microalgal groups each possess their own set of primary pigments. Besides, a selected group of green algae (Chlorophytes) accumulate secondary pigments (secondary carotenoids) when exposed to oversaturating light conditions.
    [Show full text]
  • Retrograde Bilin Signaling Enables Chlamydomonas Greening and Phototrophic Survival
    Retrograde bilin signaling enables Chlamydomonas greening and phototrophic survival Deqiang Duanmua, David Caserob,c, Rachel M. Dentd, Sean Gallahere, Wenqiang Yangf, Nathan C. Rockwella, Shelley S. Martina, Matteo Pellegrinib,c, Krishna K. Niyogid,g,h, Sabeeha S. Merchantb,e, Arthur R. Grossmanf, and J. Clark Lagariasa,1 aDepartment of Molecular and Cellular Biology, University of California, Davis, CA 95616; bInstitute for Genomics and Proteomics, cDepartment of Molecular, Cell and Developmental Biology, and eDepartment of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095; dDepartment of Plant and Microbial Biology, gHoward Hughes Medical Institute, and hPhysical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720; and fDepartment of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305 Contributed by J. Clark Lagarias, December 20, 2012 (sent for review October 30, 2012) The maintenance of functional chloroplasts in photosynthetic share similar mechanisms for light sensing and retrograde sig- eukaryotes requires real-time coordination of the nuclear and naling. However, many chlorophyte genomes lack phytochromes plastid genomes. Tetrapyrroles play a significant role in plastid-to- (21–24), a deficiency offset by a larger complement of flavin- and nucleus retrograde signaling in plants to ensure that nuclear gene retinal-based sensors (25–30). expression is attuned to the needs of the chloroplast. Well-known Despite the absence of phytochromes, all known chlorophyte sites of synthesis of chlorophyll for photosynthesis, plant chlor- genomes retain cyanobacterial-derived genes for the two key oplasts also export heme and heme-derived linear tetrapyrroles enzymes required for bilin biosynthesis (Fig. 1A): a heme oxygen- (bilins), two critical metabolites respectively required for essential ase (HMOX1) and a ferredoxin-dependent bilin reductase (PCYA).
    [Show full text]
  • Magnesium-Protoporphyrin Chelatase of Rhodobacter
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 1941-1944, March 1995 Biochemistry Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: Reconstitution of activity by combining the products of the bchH, -I, and -D genes expressed in Escherichia coli (protoporphyrin IX/tetrapyrrole/chlorophyll/bacteriochlorophyll/photosynthesis) LUCIEN C. D. GIBSON*, ROBERT D. WILLOWSt, C. GAMINI KANNANGARAt, DITER VON WETTSTEINt, AND C. NEIL HUNTER* *Krebs Institute for Biomolecular Research and Robert Hill Institute for Photosynthesis, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, United Kingdom; and tCarlsberg Laboratory, Department of Physiology, Gamle Carlsberg Vej 10, DK-2500 Copenhagen Valby, Denmark Contributed by Diter von Wettstein, November 14, 1994 ABSTRACT Magnesium-protoporphyrin chelatase lies at Escherichia coli and demonstrate that the extracts of the E. coli the branch point of the heme and (bacterio)chlorophyll bio- transformants can convert Mg-protoporphyrin IX to Mg- synthetic pathways. In this work, the photosynthetic bacte- protoporphyrin monomethyl ester (20, 21). Apart from posi- rium Rhodobacter sphaeroides has been used as a model system tively identifying bchM as the gene encoding the Mg- for the study of this reaction. The bchH and the bchI and -D protoporphyrin methyltransferase, this work opens up the genes from R. sphaeroides were expressed in Escherichia coli. possibility of extending this approach to other parts of the When cell-free extracts from strains expressing BchH, BchI, pathway. In this paper, we report the expression of the genes and BchD were combined, the mixture was able to catalyze the bchH, -I, and -D from R. sphaeroides in E. coli: extracts from insertion of Mg into protoporphyrin IX in an ATP-dependent these transformants, when combined in vitro, are highly active manner.
    [Show full text]
  • Modifications of Protoporphyrin IX Fluorescence During ALA-Based
    ARTICLE IN PRESS Medical Laser Application 21 (2006) 291–297 www.elsevier.de/mla Modifications of protoporphyrin IX fluorescence during ALA-based photodynamic therapy of endometriosis Karsten Ko¨niga,Ã, Marie-Therese Wyss-Desserichb, Yona Tadirc, Urs Hallerb, Bruce Trombergc, Michael W. Bernsc, P. Wyssb aFraunhofer Institute of Biomedical Technology (IBMT), Ensheimer Straße 48, 66386 St. Ingbert, Germany bDepartment of Obstetrics and Gynecology, Clinic of Gynecology, Frauenklinikstr. 10, University Hospital Zu¨rich, 8091 Zu¨rich, Switzerland cBeckman Laser Institute and Medical Clinic, University of California, 1002 Health Sciences Road Irvine, Irvine, CA 92612, USA Received 20 June 2006; accepted 31 July 2006 Abstract Modifications of the porphyrin fluorescence during photodynamic treatment of ovarian cells, endometrial adenocarcinoma cells and rat uterus after administration of the porphyrin precursor d-aminolevulinic acid and exposure with 630 nm laser radiation have been studied. The intracellular and intratissue fluorescence was excited with 407 nm radiation of a krypton ion laser and detected by spectral microscopic imaging using a modified microscope equipped with a slow-scan cooled camera and a liquid crystal filter. In particular, singlet oxygen induced effects due to photobleaching as well as formation of chlorin-type fluorescent photoproducts were detected at around 500, 630 and 670 nm. The photodynamically induced fluorescence modifications were found to vary between cell types. The major fluorescence peak of PP IX was photobleached 63% by a phototoxic fluence of about 20–40 J/cm2 in cells and within rat endometrium. Higher fluences were required to bleach the fluorescence at around 670 nm due to the formation of fluorescent photoproducts.
    [Show full text]
  • I Topic - Algal Pigments and Algal Classification(ALGAE) Prepared by –Prof.(Dr.)Jainendra Kumar Coordinated By: Prof.(Dr) Shyam Nandan Prasad
    Course- M.Sc. Botany Part -I Paper -I Topic - Algal Pigments and algal Classification(ALGAE) Prepared by –Prof.(Dr.)Jainendra Kumar Coordinated by: Prof.(Dr) Shyam Nandan Prasad The algae were broadly divided by F.F.Fritsch (1935) into eleven classes according to their colour - 1. Chlorophyceae or green algae 2. Xanthophyceae or yellow-green algae 3. Chrysophyceae 4. Bacillariophyceae or golden-brown algae 5. Cryptophyceae 6. Dinophyceae 7. Chloromonadineae 8. Eugleninae 9. Phaeophyceae or brown algae 10. Rhodophyceae or red algae, and 11. Myxophyceae or blue-green algae Normally, classification of algae is based on - 1. Nuclear Organization 2. Nature of Cell Wall Components 3. Pigmentation and Photosynthetic Apparatus The pigment is one of the most important criteria used in differentiation of classes in algae. The pigments in algae can be chlorophylls, carotenoids and biloproteins. These pigments are present in sac like structures called thylakoids. The thylakoids are arranged in stacks in the granum of the chloroplasts. Different groups of algae have different types of pigments and organization of thylakoids in chloroplast. The chlorophylls in algae are chlorophyll a, b, c, d and e types. Chlorophyll a is present in all classes of algae. Chlorophyll b is primary pigment of Chlorophyceae and Euglenineae. Chlorophyll c is found in Phaeophyceae and Cryptophyceae. Chlorophyll d is found in Rhodophyceae. Chlorophyll e is confined to Tribonema of Xanthophyceae. Pigments are chemical compounds which reflect only certain wavelengths of visible light. This makes them appear colourful. More important than their reflection of light is the ability of pigments to absorb certain wavelengths. Since each pigment reacts with only a narrow range of the spectrum, it is important for algae to produce pigments of different colours to capture more of the sun's energy.
    [Show full text]
  • Expanding the Eggshell Colour Gamut: Uroerythrin and Bilirubin from Tinamou (Tinamidae) Eggshells Randy Hamchand1, Daniel Hanley2, Richard O
    www.nature.com/scientificreports OPEN Expanding the eggshell colour gamut: uroerythrin and bilirubin from tinamou (Tinamidae) eggshells Randy Hamchand1, Daniel Hanley2, Richard O. Prum3 & Christian Brückner1* To date, only two pigments have been identifed in avian eggshells: rusty-brown protoporphyrin IX and blue-green biliverdin IXα. Most avian eggshell colours can be produced by a mixture of these two tetrapyrrolic pigments. However, tinamou (Tinamidae) eggshells display colours not easily rationalised by combination of these two pigments alone, suggesting the presence of other pigments. Here, through extraction, derivatization, spectroscopy, chromatography, and mass spectrometry, we identify two novel eggshell pigments: yellow–brown tetrapyrrolic bilirubin from the guacamole- green eggshells of Eudromia elegans, and red–orange tripyrrolic uroerythrin from the purplish-brown eggshells of Nothura maculosa. Both pigments are known porphyrin catabolites and are found in the eggshells in conjunction with biliverdin IXα. A colour mixing model using the new pigments and biliverdin reproduces the respective eggshell colours. These discoveries expand our understanding of how eggshell colour diversity is achieved. We suggest that the ability of these pigments to photo- degrade may have an adaptive value for the tinamous. Birds’ eggs are found in an expansive variety of shapes, sizes, and colourings 1. Te diverse array of appearances found across Aves is achieved—in large part—through a combination of structural features, solid or patterned colorations, the use of two diferent dyes, and diferential pigment deposition. Eggshell pigments are embedded within the white calcium carbonate matrix of the egg and within a thin outer proteinaceous layer called the cuticle2–4. Tese pigments are believed to play a key role in crypsis5,6, although other, possibly dynamic 7,8, roles in inter- and intra-species signalling5,9–12 are also possible.
    [Show full text]
  • 1 INTRODUCTION Corroles Are Tetrapyrrolic Molecules, Maintaining
    1 Chapter 1 INTRODUCTION Corroles are tetrapyrrolic molecules, maintaining the skeletal structure of corrin, with its three meso carbon positions and one direct pyrrole-pyrrole linkage, and possessing the aromaticity of porphyrins (see figure 1.1). First reported by Johnson and Kay in 1965[1], corroles were the end product of a many step synthetic scheme, finally being formed by the photocyclization of a,c-biladienes. While this last step was simple, with 20-60% yields, the route to a,c-biladienes was far from easy. Indeed, the overall reaction from readily available starting materials to corrole was a multi-step synthesis, with poor yields in many of the reactions. Thus, while corroles have been known for more than 40 years, research in the field was slow to progress. It wasn’t until the discovery of new synthetic methods for corroles developed in 1999 by different groups working independently that research in this area really started to expand[2]. This is not to say, however, that the field of corrole research was non-existent prior to the development of the new methodologies. While it was slow growing after the initial publication, it was far from stagnant, and many of the interesting properties of corroles were investigated by different groups. Among these properties is their ability to stabilize unusually high formal oxidation states of metal ions, such as iron(IV), cobalt(IV), and cobalt(V)[3, 4]. In fact, one particular corrole available through a method developed by Zeev 2 N N H N N H H N N N N a b N N H H H N N c Figure 1.1.
    [Show full text]
  • Phyllobilins – the Abundant Bilin-Type Tetrapyrrolic Catabolites Of
    Chemical Society Reviews Phyllobilins – the Abundant Bilin -Type Tetrapyrrolic Catabolites of the Green Plant Pigment Chlorophyll Journal: Chemical Society Reviews Manuscript ID: CS-TRV-02-2014-000079.R1 Article Type: Tutorial Review Date Submitted by the Author: 02-May-2014 Complete List of Authors: Krautler, Bernhard; University of Innsbruck, Institute of Organic Chemistry Page 1 of 30 Chemical Society Reviews Phyllobilins-TutRev-BKräutler 2-May-14 1 Phyllobilins – the Abundant Bilin-type Tetrapyrrolic Catabolites of the Green Plant Pigment Chlorophyll Bernhard Kräutler Institute of Organic Chemistry and Centre of Molecular Biosciences, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria E-mail: [email protected] Abstract . The seasonal disappearance of the green plant pigment chlorophyll in the leaves of deciduous trees has long been a fascinating biological puzzle. In the course of the last two and a half decades, important aspects of the previously enigmatic breakdown of chlorophyll in higher plants were elucidated. Crucial advances in this field were achieved by the discovery and structure elucidation of tetrapyrrolic chlorophyll catabolites, as well as by complementary biochemical and plant biological studies. Phyllobilins, tetrapyrrolic, bilin-type chlorophyll degradation products, are abundant chlorophyll catabolites, which occur in fall leaves and in ripe fruit. This tutorial review outlines ‘how’ chlorophyll is degraded in higher plants, and gives suggestions as to ‘why’ the plants dispose of their valuable green pigments during senescence and ripening. Insights into chlorophyll breakdown help satisfy basic human curiosity and enlighten school teaching. They contribute to fundamental questions in plant biology and may have practical consequences in agriculture and horticulture.
    [Show full text]