A Phylogenetically Novel Cyanobacterium Most Closely Related to Gloeobacter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Miami1132247140.Pdf (3.72
MIAMI UNIVERSITY The Graduate School CERTIFICATE FOR APPROVING THE DISSERTATION We hereby approve the Dissertation Of Brian Junior Henson Candidate for the Degree: Doctor of Philosophy Advisor ______________________ (Susan R. Barnum) Advisor ______________________ (Linda E. Watson) Reader ______________________ (David A. Francko) Reader ______________________ (John Z. Kiss) Grad School Representative ______________________ (Luis A. Actis) Abstract EVOLUTION, VARIATION, AND EXCISION OF DEVELOPMENTALLY REGULATED DNA ELEMENTS IN THE HETEROCYSTOUS CYANOBACTERIA by Brian Junior Henson In some cyanobacteria, heterocyst differentiation is accompanied by developmentally regulated DNA rearrangements that occur within the nifD, fdxN, and hupL genes, referred to as the nifD, fdxN, and hupL elements. These elements are excised from the genome by site-specific recombination during the latter stages of heterocyst differentiation. In this dissertation, two major questions are addressed: 1) what is the evolutionary history of the nifD and hupL elements and 2) how is the nifD element excised? To answer the first question, full length nifD and hupL element sequences were characterized and compared; and xisA and xisC sequences (which encode the recombinases that excise the nifD and hupL elements, respectively) were phylogenetically analyzed. Results indicated extensive structural and compositional variation within the nifD and hupL elements. The data suggests that the nifD and hupL elements are of viral origin and that they have variable patterns of evolution in the cyanobacteria. To answer the second question, a recombination system was devised where the ability of XisA to excise or recombine variants of the nifD element (substrate plasmids) was tested. Using PCR directed mutagenesis, specific nucleotides within the flanking regions of the nifD element were altered and the effects on recombination determined. -
A Gene Required for the Regulation of Photosynthetic Light Harvesting in the Cyanobacterium Synechocystis PCC6803
A gene required for the regulation of photosyuthetic light harvesting in the cyanobacterium Synechocystis PCC6803 A thesis submitted for the degree of Doctor of Philosophy by Daniel Emlyn-Jones B.Sc. (Hons) Department of Biology University College London ProQuest Number: 10013938 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest. ProQuest 10013938 Published by ProQuest LLC(2016). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. Microform Edition © ProQuest LLC. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 THESIS ABSTRACT In cyanobacteria, state transitions serve to regulate the distribution of excitation energy delivered to the two photosystem reaction centres from the accessory light harvesting system, the phycobilisome. The trigger for state transitions is the redox state of the cytochrome b f complex/plastoquinone pool. The signal transduction events that connect this redox signal to changes in light harvesting are unknown. In order to identify signal transduction factors required for the state transition, random cartridge mutagenesis was employed in the cyanobacterium Synechocystis PCC6803 to generate a library of random, genetically tagged mutants. The state transition in cyanobacteria is accompanied by a change in fluorescence emission from PS2. By using a fluorescence video imaging system to observe this fluorescence change in mutant colonies it was possible to isolate mutants unable to perform state transitions. -
Phylogenetic Rooting Using Minimal Ancestor Deviation
Phylogenetic rooting using minimal ancestor deviation Fernando D. K. Tria1, Giddy Landan1*, Tal Dagan Genomic Microbiology Group, Institute of General Microbiology, Kiel University, Kiel, Germany 1 Equally contributed. * Corresponding author: [email protected] This preprint PDF is the revised manuscript as submitted to Nature Ecology & Evolution on 30-Mar-2017. It includes both the main text and the supplementary information. The final version published in Nature Ecology & Evolution on 19-Jun-2017 (and submitted on 08-May-2017), is here: https://www.nature.com/articles/s41559-017-0193 Readers without subscription to NatE&E can see a read-only (no save or print) version here: http://rdcu.be/tywU The main difference between the versions is that the ‘Detailed Algorithm’ section is part of the main text 'Methods' section in the NatE&E final version, but is part of the supplementary information of this preprint version. Be sure to page beyond the references to see it. 1 Abstract Ancestor-descendent relations play a cardinal role in evolutionary theory. Those relatio ns are determined by rooting phylogenetic trees. Existing rooting methods are hampered by evolutionary rate heterogeneity or the unavailability of auxiliary phylogenetic information. We present a novel rooting approach, the minimal ancestor deviation (MAD) method, which embraces heterotachy by utilizing all pairwise topological and metric information in unrooted trees. We demonstrate the method in comparison to existing rooting methods by the analysis of phylogenies from eukaryotes and prokaryotes. MAD correctly recovers the kno wn root of eukaryotes and uncovers evidence for cyanobacteria origins in the ocean. MAD is more robust and co nsistent than existing methods, provides measures of the root inference quality, and is applicable to any tree with branch lengths. -
Contrasting Environmental Preferences of Photosynthetic and Non-Photosynthetic Soil Cyanobacteria Across the Globe
Received: 31 October 2019 | Revised: 8 July 2020 | Accepted: 20 July 2020 DOI: 10.1111/geb.13173 RESEARCH PAPER Contrasting environmental preferences of photosynthetic and non-photosynthetic soil cyanobacteria across the globe Concha Cano-Díaz1 | Fernando T. Maestre2,3 | David J. Eldridge4 | Brajesh K. Singh5,6 | Richard D. Bardgett7 | Noah Fierer8,9 | Manuel Delgado-Baquerizo10 1Departamento de Biología, Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, 28933, Spain 2Instituto Multidisciplinar para el Estudio del Medio “Ramón Margalef”, Universidad de Alicante, Edificio Nuevos Institutos, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, 03690, Spain 3Departamento de Ecología, Universidad de Alicante, Carretera de San Vicente del Raspeig s/n, San Vicente del Raspeig, 03690, Spain 4Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia 5Global Centre for Land-Based Innovation, University of Western Sydney, Penrith, New South Wales, Australia 6Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, New South Wales, Australia 7Department of Earth and Environmental Sciences, The University of Manchester, Manchester, UK 8Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA 9Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado, USA 10Departamento de Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Sevilla, 41013, Spain Correspondence Concha Cano-Díaz, Departamento de Abstract Biología, Geología, Física y Química Aim: Cyanobacteria have shaped the history of life on Earth and continue to play Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad important roles as carbon and nitrogen fixers in terrestrial ecosystems. -
Mcmurdo Dry Valleys, Southern Victoria Land
Measure 1 (2004) Annex Management Plan for Antarctic Specially Managed Area No. 2 MCMURDO DRY VALLEYS, SOUTHERN VICTORIA LAND 1. Description of values to be protected and activities to be managed The McMurdo Dry Valleys are characterized as the largest relatively ice-free region in Antarctica with approximately thirty percent of the ground surface largely free of snow and ice. The region encompasses a cold desert ecosystem, whose climate is not only cold and extremely arid (in the Wright Valley the mean annual temperature is –19.8°C and annual precipitation is less than 100 mm water equivalent), but also windy. The landscape of the Area contains glaciers, mountain ranges, ice-covered lakes, meltwater streams, arid patterned soils and permafrost, sand dunes, and interconnected watershed systems. These watersheds have a regional influence on the McMurdo Sound marine ecosystem. The Area’s location, where large-scale seasonal shifts in the water phase occur, is of great importance to the study of climate change. Through shifts in the ice-water balance over time, resulting in contraction and expansion of hydrological features and the accumulations of trace gases in ancient snow, the McMurdo Dry Valley terrain also contains records of past climate change. The extreme climate of the region serves as an important analogue for the conditions of ancient Earth and contemporary Mars, where such climate may have dominated the evolution of landscape and biota. The Area is characterized by unique ecosystems of low biodiversity and reduced food web complexity. However, as the largest ice-free region in Antarctica, the McMurdo Dry Valleys also contain relatively diverse habitats compared with other ice-free areas. -
Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae -
Validation of the Generic Name Gloeobacter Rippka Et Al. 1974, Cyanophyceae
Cryptogamie, Algologie, 2013, 34 (3): 255-262 © 2013 Adac. Tous droits réservés Validation of the generic name Gloeobacter Rippka et al. 1974, Cyanophyceae Jan MARE≤ a,b*, Ji÷í KOMÁREK a,b, Pierre COMPÈRE c & Aharon OREN d a University of South Bohemia, Faculty of Science, Brani≠ovká 31, CZ-37005 Ωeské Bud{jovice, Czech Republic b Czech Academy of Sciences, Institute of Botany, Dukelská 135, CZ-37982 T÷ebo≈, Czech Republic c National Botanic Garden of Belgium, Domein van Bouchout, B-1860 Meise, Belgium d Department of Plant and Environmental Sciences, the Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel Abstract – The genus name Gloeobacter with the single (= type) species Gloeobacter violaceus (Cyanophyta, Cyanoprokaryota, Cyanobacteria) was described by Rippka, Water- bury et Cohen-Bazire (Arch. Microbiol. 100: 419-436, 1974). However, this is not a validly published name and so it currently has no standing under the botanical International Code of Nomenclature (ICN, Mc Neil et al. 2012) or the International Code of Nomenclature of Prokaryotes (ICNB/ICNP, Lapage et al. 1992). The lack of valid publication of the genus name causes many problems in the taxonomy of this phylogenetically and experimentally important cyanophyte/cyanobacterium. The lack of thylakoids, a feature unique among all known cyanobacteria, as well as the phylogenetic position of the representative of this genus, warrant valid publication of this generic name. The type strain was deposited in the collection PCC in Paris under the number PCC 7421 and later introduced into numerous other strain collections; however, the dried specimens were not yet conserved. -
Journal of Bacteriology
JOURNAL OF BACTERIOLOGY Volume 169 June 1987 No. 6 STRUCTURE AND FUNCTION Assembly of a Chemically Synthesized Peptide of Escherichia coli Type 1 Fimbriae into Fimbria-Like Antigenic Structures. Soman N. Abraham and Edwin H. Beachey ....... 2460-2465 Structure of the Staphylococcus aureus Cell Wall Determined by the Freeze- Substitution Method. Akiko Umeda, Yuji Ueki, and Kazunobu Amako ... 2482-2487 Labeling of Binding Sites for 02-Microglobulin (02m) on Nonfibrillar Surface Structures of Mutans Streptococci by Immunogold and I21m-Gold Electron Microscopy. Dan Ericson, Richard P. Ellen, and Ilze Buivids ........... 2507-2515 Bicarbonate and Potassium Regulation of the Shape of Streptococcus mutans NCTC 10449S. Lin Tao, Jason M. Tanzer, and T. J. MacAlister......... 2543-2547 Periodic Synthesis of Phospholipids during the Caulobacter crescentus Cell Cycle. Edward A. O'Neill and Robert A. Bender.............................. 2618-2623 Association of Thioredeoxin with the Inner Membrane and Adhesion Sites in Escherichia coli. M. E. Bayer, M. H. Bayer, C. A. Lunn, and V. Pigiet 2659-2666 Cell Wall and Lipid Composition of Isosphaera pallida, a Budding Eubacterium from Hot Springs. S. J. Giovannoni, Walter Godchaux III, E. Schabtach, and R. W. Castenholz.............................................. 2702-2707 Charge Distribution on the S Layer of Bacillus stearothermophilus NRS 1536/3c and Importance of Charged Groups for Morphogenesis and Function. Margit Saira and Uwe B. Sleytr ....................................... 2804-2809 PLANT MICROBIOLOGY Rhizobium meliloti ntrA (rpoN) Gene Is Required for Diverse Metabolic Functions. Clive W. Ronson, B. Tracy Nixon, Lisa M. Albright, and Frederick M. Ausubel............................................... 2424-2431 Bradyrhizobium japonicum Mutants Defective in Nitrogen Fixation and Molybde- num Metabolism. Robert J. -
Within-Arctic Horizontal Gene Transfer As a Driver of Convergent Evolution in Distantly Related 1 Microalgae 2 Richard G. Do
bioRxiv preprint doi: https://doi.org/10.1101/2021.07.31.454568; this version posted August 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Within-Arctic horizontal gene transfer as a driver of convergent evolution in distantly related 2 microalgae 3 Richard G. Dorrell*+1,2, Alan Kuo3*, Zoltan Füssy4, Elisabeth Richardson5,6, Asaf Salamov3, Nikola 4 Zarevski,1,2,7 Nastasia J. Freyria8, Federico M. Ibarbalz1,2,9, Jerry Jenkins3,10, Juan Jose Pierella 5 Karlusich1,2, Andrei Stecca Steindorff3, Robyn E. Edgar8, Lori Handley10, Kathleen Lail3, Anna Lipzen3, 6 Vincent Lombard11, John McFarlane5, Charlotte Nef1,2, Anna M.G. Novák Vanclová1,2, Yi Peng3, Chris 7 Plott10, Marianne Potvin8, Fabio Rocha Jimenez Vieira1,2, Kerrie Barry3, Joel B. Dacks5, Colomban de 8 Vargas2,12, Bernard Henrissat11,13, Eric Pelletier2,14, Jeremy Schmutz3,10, Patrick Wincker2,14, Chris 9 Bowler1,2, Igor V. Grigoriev3,15, and Connie Lovejoy+8 10 11 1 Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, 12 INSERM, Université PSL, 75005 Paris, France 13 2CNRS Research Federation for the study of Global Ocean Systems Ecology and Evolution, 14 FR2022/Tara Oceans GOSEE, 3 rue Michel-Ange, 75016 Paris, France 15 3 US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, 1 16 Cyclotron Road, Berkeley, -
Draft ASMA Plan for Dry Valleys
Measure 18 (2015) Management Plan for Antarctic Specially Managed Area No. 2 MCMURDO DRY VALLEYS, SOUTHERN VICTORIA LAND Introduction The McMurdo Dry Valleys are the largest relatively ice-free region in Antarctica with approximately thirty percent of the ground surface largely free of snow and ice. The region encompasses a cold desert ecosystem, whose climate is not only cold and extremely arid (in the Wright Valley the mean annual temperature is –19.8°C and annual precipitation is less than 100 mm water equivalent), but also windy. The landscape of the Area contains mountain ranges, nunataks, glaciers, ice-free valleys, coastline, ice-covered lakes, ponds, meltwater streams, arid patterned soils and permafrost, sand dunes, and interconnected watershed systems. These watersheds have a regional influence on the McMurdo Sound marine ecosystem. The Area’s location, where large-scale seasonal shifts in the water phase occur, is of great importance to the study of climate change. Through shifts in the ice-water balance over time, resulting in contraction and expansion of hydrological features and the accumulations of trace gases in ancient snow, the McMurdo Dry Valley terrain also contains records of past climate change. The extreme climate of the region serves as an important analogue for the conditions of ancient Earth and contemporary Mars, where such climate may have dominated the evolution of landscape and biota. The Area was jointly proposed by the United States and New Zealand and adopted through Measure 1 (2004). This Management Plan aims to ensure the long-term protection of this unique environment, and to safeguard its values for the conduct of scientific research, education, and more general forms of appreciation. -
Characterization of Cyanobacterial Phycobilisomes in Zwitterionic
Proc. Natl. Acad. Sci. USA Vol. 76, No. 12, pp. 6162-6166, December 1979 Biochemistry Characterization of cyanobacterial phycobilisomes in zwitterionic detergents (Synechococcus/photosynthetic accessory pigments/sedimentation/electron microscopy/aggregation) ALEXANDER N. GLAZER*, ROBLEY C. WILLIAMSt, GREGORY YAMANAKA*, AND H. K. SCHACHMANt *Department of Microbiology and Immunology, and tDepartment of Molecular Biology, University of California, Berkeley, California 94720 Contributed by Robley C. Williams, September 10, 1979 ABSTRACT Properties of cyanobacterial phycobilisomes preparations of nearly uniform-sized phycobilisomes were (from Synechococcus spp. 6301 and 6312 and Synechocystis sp. obtained. Ultrastructural studies of the particles prepared in 6701) prepared in the presence of two different zwitterionic detergents were compared to those of phycobilisomes detached zwitterionic detergents were facilitated by the marked decrease from membranes with the nonionic detergent Triton X-100 and in aggregation. Such studies show that phycobilisomes from then freed from Triton by sedimentation through high-salt su- different organisms have certain characteristics in common, crose density gradients. The absorption spectra, polypeptide as concluded by others (1, 7, 8), but also exhibit distinctive composition, and ultrastructure of phycobilisomes were inde- structural features. pendent of the detergent used during the preparation. Phyco- bilisomes from certain cyanobacteria aggregated in the absence MATERIALS AND METHODS of detergent. Such -
Photobiology of Bacteria
UvA-DARE (Digital Academic Repository) Photobiology of bacteria Hellingwerf, K.J.; Crielaard, W.; Hoff, W.D.; Matthijs, H.C.P.; Mur, L.R.; van Rotterdam, B.J. DOI 10.1007/BF00872217 Publication date 1994 Published in Antonie van Leeuwenhoek Link to publication Citation for published version (APA): Hellingwerf, K. J., Crielaard, W., Hoff, W. D., Matthijs, H. C. P., Mur, L. R., & van Rotterdam, B. J. (1994). Photobiology of bacteria. Antonie van Leeuwenhoek, 65, 331-347. https://doi.org/10.1007/BF00872217 General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:02 Oct 2021 Antonie van Leeuwenhoek 65:331-347, 1994. 331 @ 1994 Kluwer Academic Publishers. Printed in the Netherlands. Photobiology of Bacteria K.J. Hellingwerf a, W.