This PDF File Is Subject to the Following Conditions and Restrictions

Total Page:16

File Type:pdf, Size:1020Kb

This PDF File Is Subject to the Following Conditions and Restrictions Geological Society of America 3300 Penrose Place P.O. Box 9140 Boulder, CO 80301 (303) 447-2020 • fax 303-357-1073 www.geosociety.org This PDF file is subject to the following conditions and restrictions: Copyright © 2002, The Geological Society of America, Inc. (GSA). All rights reserved. Copyright not claimed on content prepared wholly by U.S. government employees within scope of their employment. Individual scientists are hereby granted permission, without fees or further requests to GSA, to use a single figure, a single table, and/or a brief paragraph of text in other subsequent works and to make unlimited copies for noncommercial use in classrooms to further education and science. For any other use, contact Copyright Permissions, GSA, P.O. Box 9140, Boulder, CO 80301-9140, USA, fax 303-357-1073, [email protected]. GSA provides this and other forums for the presentation of diverse opinions and positions by scientists worldwide, regardless of their race, citizenship, gender, religion, or political viewpoint. Opinions presented in this publication do not reflect official positions of the Society. Geological Society of America Special Paper 356 2002 Impact lethality and risks in today’s world: Lessons for interpreting Earth history Clark R. Chapman* Southwest Research Institute, Suite 426, 1050 Walnut Street Boulder, Colorado 80302, USA ABSTRACT There is a modern-day hazard, threatening the existence of civilization, from impacts of comets and asteroids larger than ϳ1.5 km diameter. The average annual world fatality rate is similar to that due to significant accidents (e.g., airplane crashes) and natural disasters (e.g., floods), although impact events are much more rare and the deaths per impact event are much greater. (Smaller, more frequent impacts can cause regional catastrophes from tsunamis of unprecedented scale at intervals similar to the duration of recorded human history.) As the telescopic Spaceguard Survey census of Near Earth Asteroids advances, numerical simulations of the dynamic and collisional evolution of asteroids and comets have become robust, defining unambig- uously past rates of impacts of larger, more dangerous cosmic bodies on Earth. What are very tiny risks for impacts during a human lifetime become certainties on geologic time scales. Widely reported errors in predictions of possible impacts during the next century have no bearing on the certainty that enormous impacts have happened in the past. The magnitudes and qualitative features of environmental consequences of impacts of objects of various sizes are increasingly well understood. Prime attributes of impacts, not duplicated by any other natural processes, are (1) extreme suddenness, providing little opportunity for escape and no chance for adaptation, (2) globally pervasive, and (3) unlimited potential (for Cretaceous-Tertiary [K-T] boundary-scale impacts and larger) for overwhelming destruction of the life-sustaining characteristics of the fragile ecosphere, notwithstanding the rather puny evidence for impacts in the geologic record. A civilization-ending impact would be an environmental and human catastrophe of unprecedented proportions. The K-T-scale impacts, of which there must have been at least several during the Phanerozoic (past 0.5 b.y.), are 1000 times more destructive. No other plausible, known natural (or human) processes can ap- proach such catastrophic potential. The largest impacts must have caused mass ex- tinctions in the fossil record; other natural processes could not have done so. Per- spectives concerning both the potential modern-day destructive potential of impacts and conceivable, almost miraculous refugia in our own world provide a new gestalt for thinking about past cataclysms. *E-mail: [email protected] Chapman, C. R., 2002, Impact lethality and risks in today’s world: Lessons for interpreting Earth history, in Koeberl, C., and MacLeod, K.G., eds., Catastrophic Events and Mass Extinctions: Impacts and Beyond: Boulder, Colorado, Geological Society of America Special Paper 356, p. 7–19. 7 8 C.R. Chapman INTRODUCTION onstrate that they have no bearing on the certainty that impacts with unparalleled ecological consequences happened in the The idea that cosmic impacts on the Earth have played a past. I then discuss the implications for the role of impacts in significant, or even dominant, role in mass extinctions (and sub- Earth history from lessons learned in the study of the impact sequent explosive radiation of new species) has evolved from hazard. widespread skepticism to substantial acceptance during the two The following assertions about past mass extinctions are decades since publication of the Alvarez et al. (1980a) hypoth- justified later herein. esis concerning the Cretaceous-Tertiary (K-T) boundary. How- It is virtually certain that several other impacts have oc- ever, there remain pockets of nonacceptance as well as a wide curred during the Phanerozoic (past 0.5 b.y.) that had at least spectrum of opinions about the degree to which impacts have the energy and potential ecological consequences of the Chi- influenced evolution. Even among those who fully accept a role cxulub K-T boundary impact, and that many other impacts have for impact in the K-T boundary extinctions, views range all the occurred with potential global consequences nearly as great. way from belief that the only substantiated case of an impact This is not a hypothesis: it is an inescapable fact derived from playing a role in mass extinction was the Chicxulub impact 65 robust knowledge of asteroids and comets. Ma, which is viewed as just hastening the demise of already There is no other plausible, known kind of natural calamity stressed populations, to the hypothesis of Raup (1991), that all that can possibly approach asteroid and/or comet impact in mass extinctions, large and small, could have been caused by terms of the suddenness of the onset of devastating global con- sudden environmental changes due to impacts. sequences. (I exclude human devastations such as nuclear war, As the Alvarez hypothesis was researched, awareness grew as well as other conceivable but unlikely disasters; e.g., a among scientists and the public of the modern-day risk to civ- nearby supernova.) I assert that this suddenness, ranging from ilization from cosmic impacts. Once the purview of science minutes to months, greatly magnifies the devastation compared fiction, it has become widely accepted (e.g., the report of an with any other equally profound geologic, oceanic, or meteor- independent Task Force set up by the British Government; At- ological catastrophe. kinson, 2000) that the threat of a calamitous impact ranks The largest impacts during the Phanerozoic must have among other hazards meriting national and international atten- caused mass extinctions and, conversely, no other known plau- tion and consideration of preventative measures. While the sible mechanism can approach the magnitude of consequences chances of impact with an asteroid larger than 1.5 km diameter of such impacts. Therefore, the largest mass extinctions must (deemed sufficient to threaten modern civilization; Chapman have been caused by impact. (Only if required evidence of such and Morrison, 1994) are very small, about one chance in several impacts is missing from the geologic record must one then turn hundred thousand per year, the potential consequences are so to the unlikely alternative explanations, e.g., a nearby super- enormous (perhaps the deaths of a quarter of the world’s popu- nova or explosion of an unexpectedly stupendous super- lation) that the annualized fatality rate is similar to fatality rates volcano.) associated with other natural hazards, such as floods and earth- What is commonly accepted among impact hazard re- quakes (Fig. 1). searchers as the threshold size of asteroid that could terminate Research on the impact hazard, especially during the civilization as we know it (1.5 km diameter) is more energetic 1990s, has yielded a voluminous literature on the numbers and than the explosive force of the world’s combined arsenals of physical traits of the impactors, on the physical and environ- nuclear weapons by a factor of ϳ20. Yet the magnitude of the mental effects of impacts, and even on the potential response K-T boundary impactor (10–15 km diameter), and each of the of human society to an imminent impact or to the aftermath of several other equivalent or larger impacts that must have oc- one. With the perspective from modern research on the impact curred since the Phanerozoic, is equivalent to a thousand hazard, the issues faced by historical geologists trying to un- civilization-ending impacts, all occurring simultaneously. The derstand the role of impacts during Earth history can be viewed miracle is that anything survived. Perhaps the best way to vi- from a new gestalt. sualize mass extinctions is to try to imagine the refugia that However, the modern-day impact hazard is not well un- might exist for us, and for various species of animals and plants, derstood by the public, by policy makers, and even by most in our modern world after it has been utterly devastated by an scientists. Both the extremely low probabilities and the ex- unimaginably colossal holocaust. tremely great consequences of impact tax our intuition and common sense, because they are so far beyond the realm of our THE POPULATION OF IMPACTORS personal, or even historical, experience. Therefore, before ap- plying insights from studies of the modern impact hazard to the Geologists have traditionally invoked the uniformitarian historical record (the subject of a following section), I first in- concept that continuous geologic processes observable today troduce the impactor population and what is known about the can account for what is observed in the geologic record of the consequences of impacts. I then discuss the issues of risk per- past. In recent decades, a reasonable balance has been achieved ception and uncertainties in impact prediction in order to dem- between this two-century-old tradition and the important role Impact lethality and risks in today’s world: Lessons for interpreting Earth history 9 Figure 1.
Recommended publications
  • Asteroid Impact, Not Volcanism, Caused the End-Cretaceous Dinosaur Extinction
    Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction Alfio Alessandro Chiarenzaa,b,1,2, Alexander Farnsworthc,1, Philip D. Mannionb, Daniel J. Luntc, Paul J. Valdesc, Joanna V. Morgana, and Peter A. Allisona aDepartment of Earth Science and Engineering, Imperial College London, South Kensington, SW7 2AZ London, United Kingdom; bDepartment of Earth Sciences, University College London, WC1E 6BT London, United Kingdom; and cSchool of Geographical Sciences, University of Bristol, BS8 1TH Bristol, United Kingdom Edited by Nils Chr. Stenseth, University of Oslo, Oslo, Norway, and approved May 21, 2020 (received for review April 1, 2020) The Cretaceous/Paleogene mass extinction, 66 Ma, included the (17). However, the timing and size of each eruptive event are demise of non-avian dinosaurs. Intense debate has focused on the highly contentious in relation to the mass extinction event (8–10). relative roles of Deccan volcanism and the Chicxulub asteroid im- An asteroid, ∼10 km in diameter, impacted at Chicxulub, in pact as kill mechanisms for this event. Here, we combine fossil- the present-day Gulf of Mexico, 66 Ma (4, 18, 19), leaving a crater occurrence data with paleoclimate and habitat suitability models ∼180 to 200 km in diameter (Fig. 1A). This impactor struck car- to evaluate dinosaur habitability in the wake of various asteroid bonate and sulfate-rich sediments, leading to the ejection and impact and Deccan volcanism scenarios. Asteroid impact models global dispersal of large quantities of dust, ash, sulfur, and other generate a prolonged cold winter that suppresses potential global aerosols into the atmosphere (4, 18–20). These atmospheric dinosaur habitats.
    [Show full text]
  • Introduction
    Introduction Introduction Doing Science Science & Society Our Environmental Heritage The Science of Global Change Summary The materials of science are the material of life itself. Science is part of the reality of living; it is the what, the how, and the why of everything in our experience. It is impossible to understand man without understanding his environment and the forces that have molded him physically and mentally. The aim of science is to discover and illuminate truth. Rachel Carson Whatever knowledge is attainable, must be obtained by scientific methods, and what science cannot discover, mankind cannot know. Bertrand Russell Introduction • Earth science, geology and environmental geology involve the study of the Earth and the processes that shape its surface but have different emphases. • The Earth System is composed of four principal components: atmosphere, hydrosphere, biosphere, and the solid Earth. • The science of Earth becomes relevant to society when we examine the interaction between human beings and the planet we share. The Good Earth represents an attempt to introduce students to Earth Science with an emphasis on our interaction with our environment. Consequently, this text includes components from two common undergraduate courses, Earth Science and Environmental Geology. These courses have more elements in common than they have differences. • Geology is the study of the Earth. That includes how the planet was formed, what it is made from, and how it has changed over time. Geologists study the processes that occur on Earth's surface and others taking place within the planet's interior. • Environmental geology views geology through the prism of the human experience.
    [Show full text]
  • Impact Structures and Events – a Nordic Perspective
    107 by Henning Dypvik1, Jüri Plado2, Claus Heinberg3, Eckart Håkansson4, Lauri J. Pesonen5, Birger Schmitz6, and Selen Raiskila5 Impact structures and events – a Nordic perspective 1 Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, NO 0316 Oslo, Norway. E-mail: [email protected] 2 Department of Geology, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia. 3 Department of Environmental, Social and Spatial Change, Roskilde University, P.O. Box 260, DK-4000 Roskilde, Denmark. 4 Department of Geography and Geology, University of Copenhagen, Øster Voldgade 10, DK-1350 Copenhagen, Denmark. 5 Division of Geophysics, University of Helsinki, P.O. Box 64, FIN-00014 Helsinki, Finland. 6 Department of Geology, University of Lund, Sölvegatan 12, SE-22362 Lund, Sweden. Impact cratering is one of the fundamental processes in are the main reason that the Nordic countries are generally well- the formation of the Earth and our planetary system, as mapped. reflected, for example in the surfaces of Mars and the Impact craters came into the focus about 20 years ago and the interest among the Nordic communities has increased during recent Moon. The Earth has been covered by a comparable years. The small Kaalijärv structure of Estonia was the first impact number of impact scars, but due to active geological structure to be confirmed in northern Europe (Table 1; Figures 1 and processes, weathering, sea floor spreading etc, the num- 7). First described in 1794 (Rauch), the meteorite origin of the crater ber of preserved and recognized impact craters on the field (presently 9 craters) was proposed much later in 1919 (Kalju- Earth are limited.
    [Show full text]
  • Global Catastrophes in Earth History
    GLOBAL CATASTROPHES IN EARTH HISTORY An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality Snowbird, Utah October 20-23, 1988 N89-2 12E7 --?HEW- Sponsored by The Lunar and Planetary Institute and The National Academy of Sciences Abstracts Presented to the Topical Conference Global Catastrophes in Earth History: An Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality Snowbird, Utah October 20 - 23,1988 Sponsored by Lunar and Planetary Institute and The National Academy of Sciences LPI Contribution No. 673 Compiled in 1988 Lunar and Planetary Institute Material in this volume may be copied without restraint for library, abstract service, educational, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as appropriate acknowledgment of this publication. PREFACE This volume contains abstracts that have been accepted for presentation at the topical conference Global Catastrophes in Earth History: An Interdisciplinary Conference on Impacts, Volcanism and Mass Mortality. The Organizing Committee consisted of Robert Ginsburg, Chairman, University of Miami; Kevin Burke, Lunar and Planetary Institute; Lee M. Hunt, National Research Council; Digby McLaren, University of Ottawa; Thomas Simkin, National Museum of Natural History; Starley L. Thompson, National Center for Atmospheric Research; Karl K. Turekian, Yale University; George W. Wetherill, Carnegie Institution of Washington. Logistics and administrative support were provided by the Projects Ofice at the Lunar and Planetary Institute. This abstract volume was prepared by the Publications Office staff at the Lunar and Planetary Institute. The Lunar and Planetary Institute is operated by the Universities Space Research Association under contract No. NASW-4066 with the National Aeronautics and Space Administration.
    [Show full text]
  • The End-Cretaceous Mass Extinction and the Chicxulub Impact
    Wright State University CORE Scholar Earth and Environmental Sciences Faculty Publications Earth and Environmental Sciences 5-2016 The End-Cretaceous Mass Extinction and the Chicxulub Impact Rebecca Teed Wright State University - Main Campus, [email protected] Follow this and additional works at: https://corescholar.libraries.wright.edu/ees Part of the Environmental Sciences Commons, Evolution Commons, and the Paleobiology Commons Repository Citation Teed, R. (2016). The End-Cretaceous Mass Extinction and the Chicxulub Impact. https://corescholar.libraries.wright.edu/ees/127 This Open Education Resource (OER) is brought to you for free and open access by the Earth and Environmental Sciences at CORE Scholar. It has been accepted for inclusion in Earth and Environmental Sciences Faculty Publications by an authorized administrator of CORE Scholar. For more information, please contact library- [email protected]. The end-Cretaceous mass extinction and the Chicxulub impact by Rebecca Teed, Wright State University What Do We Know About Massive Meteor Impacts? Meteors crash into Earth’s atmosphere every day, but almost all crumble into dust before they reach the surface. Occasionally, a larger fragment, called a meteorite, makes it all the way to Earth’s surface. There have been cases of people injured and property damaged by meteorites. One of the more spectacular recent atmospheric impacts occurred over Chelyabinsk, Russia, in 2013. The meteor exploded in the air, generating a shockwave that shattered windows all over the city, sending over a thousand people to the hospital. To make matters worse, the impact occurred in February, during very cold weather, and it was hard to heat those homes until the windows could be repaired.
    [Show full text]
  • Asteroid Impact, Not Volcanism, Caused the End-Cretaceous Dinosaur Extinction
    Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction Alfio Alessandro Chiarenzaa,b,1,2, Alexander Farnsworthc,1, Philip D. Mannionb, Daniel J. Luntc, Paul J. Valdesc, Joanna V. Morgana, and Peter A. Allisona aDepartment of Earth Science and Engineering, Imperial College London, South Kensington, SW7 2AZ London, United Kingdom; bDepartment of Earth Sciences, University College London, WC1E 6BT London, United Kingdom; and cSchool of Geographical Sciences, University of Bristol, BS8 1TH Bristol, United Kingdom Edited by Nils Chr. Stenseth, University of Oslo, Oslo, Norway, and approved May 21, 2020 (received for review April 1, 2020) The Cretaceous/Paleogene mass extinction, 66 Ma, included the (17). However, the timing and size of each eruptive event are demise of non-avian dinosaurs. Intense debate has focused on the highly contentious in relation to the mass extinction event (8–10). relative roles of Deccan volcanism and the Chicxulub asteroid im- An asteroid, ∼10 km in diameter, impacted at Chicxulub, in pact as kill mechanisms for this event. Here, we combine fossil- the present-day Gulf of Mexico, 66 Ma (4, 18, 19), leaving a crater occurrence data with paleoclimate and habitat suitability models ∼180 to 200 km in diameter (Fig. 1A). This impactor struck car- to evaluate dinosaur habitability in the wake of various asteroid bonate and sulfate-rich sediments, leading to the ejection and impact and Deccan volcanism scenarios. Asteroid impact models global dispersal of large quantities of dust, ash, sulfur, and other generate a prolonged cold winter that suppresses potential global aerosols into the atmosphere (4, 18–20). These atmospheric dinosaur habitats.
    [Show full text]
  • Shock Papers 2008
    Shock Physics Papers 2008 2008, Acarer, M. and Demir, B. "An investigation of mechanical and metallurgical properties of explosive welded aluminum-dual phase steel" Mater. Letts 62 4158-4160 2008, Akbari-Mousavi, S.A.A., Barrett, L.M. and Al-Hassani, S.T.S. "Explosive welding of metal plates" J. Mater. Process. Technol. 202 224-239 2008, Akli, K.U., Hansen, S.B., Kemp, A.J., Freeman, R.R., Beg, F.N., Clark, D.C., Chen, S.D., Hey, D., Hatchett, S.P., Highbarger, K., Giraldez, E., Green, J.S., Gregori, G., Lancaster, K.L., Ma, T., MacKinnon, A.J., Norreys, P., Patel, N., Pasley, J., Shearer, C., Stephens, R.B., Stoeckl, C., Storm, M., Theobald, W., Van Woerkom, L.D., Weber, R. and Key, M.H. "Laser heating of solid matter by light-pressure- driven shocks at ultrarelativistic intensities" Phys. Rev. Letts 100 165002 2008, Alba-Baena, N.G., Salas, W. and Murr, L.E. "Characterization of micro and nano two-phase regimes created by explosive shock-wave consolidation of powder mixtures" Mater. Charact. 59 1152-1160 2008, Alexander, C.S., Chhabildas, L.C., Reinhart, W.D. and Templeton, D.W. "Changes to the shock response of fused quartz due to glass modification" Int. J. Impact Engng 35 1376-1385 2008, Álvarez, U.M., Ramírez, A., Fernández, F., Méndez, A. and Loske, A.M. "The influence of single pulse and tandem shock waves on bacteria" Shock Waves 17 441-447 2008, Amer, E., Gren, P. and Sjödahl, M. "Shock wave generation in laser ablation studied using pulsed digital holographic interferometry" J.
    [Show full text]
  • A Tale of Clusters: No Resolvable Periodicity in the Terrestrial Impact Cratering Record
    Meier & Holm-Alwmark, 2017 – A tale of clusters (accepted for publication in MNRAS) A tale of clusters: No resolvable periodicity in the terrestrial impact cratering record Matthias M. M. Meier1* and Sanna Holm-Alwmark2 1ETH Zurich, Institute of Geochemistry & Petrology, Clausiusstrasse 25, 8092 Zurich, Switzerland 2Department of Geology, Lund University, S olvegatan 12, 22362 Lund, Sweden * E-Mail: [email protected] Accepted 2017 January 23. Received 2017 January 18; in original form 2016 July 09. This is a pre-copyedited, author-produced PDF of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record is available at: dx.doi.org/10.1093/mnras/stx211 ABSTRACT Rampino & Caldeira (2015) carry out a circular spectral analysis (CSA) of the ter- restrial impact cratering record over the past 260 million years (Ma), and suggest a ~26 Ma periodicity of impact events. For some of the impacts in that analysis, new accurate and high-precision (“robust”; 2SE<2%) 40Ar-39Ar ages have recently been published, resulting in significant age shifts. In a CSA of the updated impact age list, the periodicity is strongly reduced. In a CSA of a list containing only im- pacts with robust ages, we find no significant periodicity for the last 500 Ma. We show that if we relax the assumption of a fully periodic impact record, assuming it to be a mix of a periodic and a random component instead, we should have found a periodic component if it contributes more than ~80% of the impacts in the last 260 Ma.
    [Show full text]
  • Small Spacecraft in Planetary Defence Related Applications
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Institute of Transport Research:Publications Small Spacecraft in Planetary Defence Related Applications – Capabilities, Constraints, Challenges Jan Thimo Grundmann Caroline Lange DLR Institute of Space Systems DLR Institute of Space Systems Robert-Hooke-Strasse 7 Robert-Hooke-Strasse 7 28359 Bremen, 28359 Bremen, Germany Germany +49-421-24420-1107 +49-421-24420-1159 [email protected] [email protected] Bernd Dachwald Christian D. Grimm Faculty of Aerospace Engineering DLR Institute of Space Systems FH Aachen University of Applied Robert-Hooke-Strasse 7 Sciences 28359 Bremen, Hohenstaufenallee 6 Germany 52064 Aachen, +49-421-24420-1266 Germany [email protected] +49-241-6009-52343 / -52854 [email protected] Aaron Dexter Koch Stephan Ulamec DLR Institute of Space Systems DLR Space Operations and Astronaut Robert-Hooke-Strasse 7 Training – MUSC 28359 Bremen, 51147 Cologne, Germany Germany +49-421-24420-1183 +49-2203-601-4567 [email protected] [email protected] Abstract— In this paper we present an overview of the TABLE OF CONTENTS characteristics and peculiarities of small spacecraft missions related to planetary defence applications. We provide a brief 1. INTRODUCTION……………………………….1 overview of small spacecraft missions to small solar system MBRACING ONSTRAINTS bodies. On this background we present recent missions and 2. E C …………………..3 selected projects and related studies at the German Aerospace 3. GETTING SMALL ……………………………..5 Center, DLR, that contribute to planetary defence related 4. GETTING THERE ……………………………10 activities. These range from Earth orbit technology OING HINGS demonstrators to active science missions in interplanetary 5.
    [Show full text]
  • Chicxulub Impact Event Computer Animations and Paper Models by Tau Rho Alpha, John P
    Go Home U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Chicxulub impact event Computer animations and paper models By Tau Rho Alpha, John P. Galloway and Scott W. Starratt Open-file Report 97-442-A This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this program has been used by the U.S. Geological Survey, no warranty, expressed or implied, is made by the USGS as to the accuracy and functioning of the program and related program material, nor shall the fact of distribution constitute any such warranty, and no responsibility is assumed by the USGS in connection therewith. U.S. Geological Survey Menlo Park, CA 94025 Comments encouraged tralpha @ geodata. wr.usgs. go v [email protected] [email protected] (go backward) <~l L^ (go forward) Description of Report This report illustrates, by means of computer animations and two paper models, how dinosaurs may have become extinct as a result of an asteroid impact. By studying the animations and the paper models, students will better understand the mass extinctions that have been part of the Earth's history. Included in the paper and diskette versions of this report are templates for making the two paper models, instructions for their assembly, and a discussion of a possible asteroid impact at Chicxulub, Mexico. In addition, the diskette version includes two animations of an asteroid impact, one view from space and the other from the Earth.
    [Show full text]
  • Lesson Plan Luis Alvarez: Dinosaurs, Pyramids, and Bubble Chambers
    Lesson Plan Luis Alvarez: Dinosaurs, Pyramids, and Bubble Chambers Photograph by Jerome Danburg, courtesy AIP Emilio Segrè Visual Archives, Danburg Collection Grade Level(s): 9-12 Subject(s): History, Particle Physics In-Class Time: 60-90 min Prep Time: 10-15 min Materials • Print outs of Seeing Particles Activity or Access to computers • Discussion sheets (In Resources Section below) • Videos/Links: o Pyramid Video: http://www.dailymail.co.uk/sciencetech/article-5040093/Hidden- structure-inside-Great-Pyramid-Giza.html o Seeing Particles Activity: http://epweb2.ph.bham.ac.uk/user/watkins/seeweb/BubbleChamber.htm o What Really Killed the Dinosaurs: https://www.youtube.com/watch?v=1iNcRJGzzxs Objective In this lesson plan, students will learn about the life of experimental physicist Luis W. Alvarez, as well as his contributions to particle physics. The activities in this guide are meant to highlight Alvarez’ contributions to physics, while the readings are meant to highlight Luiz’ other works in radar systems and extinction theories. Introduction Prepared by the Center for the History of Physics at AIP 1 Luis. W Alvarez was born in 1911 in San Francisco. He was a second-generation immigrant from Cuba, though due to the climate at the time towards immigrants and Cuba, he was not in touch with his Cuban heritage, and preferred to not be called Latino. His father was a physician. [1] He was encouraged by his high school teachers to attend the university of Chicago for college, and received his bachelors, masters and doctorate degree in physics there. [1] As a grad student he worked to build a cosmic ray telescope with Compton to measure the East-West effect of cosmic rays.
    [Show full text]
  • UC Berkeley Berkeley Scientific Journal
    UC Berkeley Berkeley Scientific Journal Title Collision Course: The Threat and Effects of an Asteroid Impact Permalink https://escholarship.org/uc/item/68q7q2f4 Journal Berkeley Scientific Journal, 17(2) ISSN 1097-0967 Author Reddy, Sharath Publication Date 2013 DOI 10.5070/BS3172020099 Undergraduate eScholarship.org Powered by the California Digital Library University of California COLLISION COURSE: THE THREAT AND EFFEctS OF AN ASTEROID IMPAct BSJ SHARATH REDDY Berkeley Scientific Journal • death and dying • fall/Spring year • Volume #17 • iSSue #2 • 1 n the winter of 2012, believers in the Mayan sure waves that felled trees for 30 miles, an lub that formed about 65 million years ago, it actually occurring. Comparing the threat prophecy predicting the cataclysmic destruc- impact which was more powerful than the precisely when the K-Pg (Cretaceous Paleo- of an asteroid impact to the threat of other tion of the Earth on December 21st, 2012 atomic bomb dropped on Hiroshima (Phil- gene) extinction occurred. Asteroid impacts geological threats allows us to gain a better Iwere disappointed when life continued on lips, 2008). Villagers living nearly 40 miles are point events, which lead to a longer term understanding of the relative threat an NEO the 22nd. Although that may have been a from the blast epicenter were eyewitnesses effects such as a decrease in temperature and poses. Megatsunamis caused by massive un- “near miss” for the planet’s inhabitants, a to the event, communicating what they saw death of vegetation, which would eventually dersea earthquakes and volcanic supererup- new threat is just upon the horizon: asteroids, to Russian geologists and astronomers.
    [Show full text]