Geophysical Study of Complex Meteorite Impact Structures

Total Page:16

File Type:pdf, Size:1020Kb

Geophysical Study of Complex Meteorite Impact Structures Western University Scholarship@Western Electronic Thesis and Dissertation Repository 11-27-2017 9:30 AM Geophysical Study of Complex Meteorite Impact Structures William Zylberman The University of Western Ontario Supervisor Quesnel Yoann The University of Western Ontario Co-Supervisor Osinski Gordon R. The University of Western Ontario Graduate Program in Geophysics A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © William Zylberman 2017 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Geophysics and Seismology Commons Recommended Citation Zylberman, William, "Geophysical Study of Complex Meteorite Impact Structures" (2017). Electronic Thesis and Dissertation Repository. 5165. https://ir.lib.uwo.ca/etd/5165 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. UNIVERSITE D’AIX-MARSEILLE Ecole Doctorale 251 – « Sciences de l’Environnement » Centre Européen de Recherche et d’enseignement des Géosciences de l’Environnement (CEREGE)/UM34 En cotutelle avec/In co-tutelle with WESTERN UNIVERSITY « Geophysics (Planetary Science) » Center for Planetary Science and Exploration (CPSX)/Department of Earth Sciences Thèse présentée pour obtenir le grade universitaire de Docteur en Géosciences de l’Environnement Thesis presented for obtention of the University Title of Ph.D. in Geophysics (Planetary Science) William ZYLBERMAN Etude Géophysique de Structures d’Impact Météoritique Geophysical Study of Meteorite Impact Structures Soutenue publiquement le 27/11/2017 devant le jury / Defended publicly the 27th November 2017 in front of the jury: M. Lauri PESONEN University of Helsinki Rapporteur M. Stuart GILDER Ludwig Maximilians Universität Rapporteur Mme Sheri MOLNAR Western University Examinateur M. Pierre ROCHETTE CEREGE – Aix-Marseille Université Examinateur M. Jérôme GATTACCECA CEREGE – CNRS Examinateur M. Yoann QUESNEL CEREGE – Aix-Marseille Université Directeur M. Gordon R. OSINSKI CPSX – Western University Co-Directeur 2 Abstract Hypervelocity impact craters are the most abundant morphologic features on rocky planetary bodies of the Solar System, except on Earth where they have mostly been erased by plate tectonics, erosion, or are buried under sediments. The internal structure of complex impact craters can only be studied on Earth by using ground-truth geophysical and geological studies. Such approaches - combined with modeling - can reveal how impact cratering, target geological composition, erosion and other post-impact processes can lead to the observed geophysical anomalies, which could also be detected by remote geophysical data on other planetary surfaces. In this work, a multidisciplinary approach is conducted by coupling geological data to field and laboratory geophysics. Magnetic field mapping, gravimetry measurements, electromagnetic soundings (EM34), paleomagnetic analyses, rock magnetism and petrography techniques are used. Four impact structures in Canada are studied: Haughton, Tunnunik, West and East Clearwater Lake. For the first time, we reveal that the recently-discovered Tunnunik impact structure has typical negative gravity and positive magnetic field anomalies, which help us to reconsider the brecciation extent in the target rocks. The 20 km diameter Haughton crater, which is less eroded than Tunnunik, shows evidence for an enhanced-magnetization in the core of the central uplift, caused by impact-generated hydrothermal alteration. Some samples of the Clearwater Lake impact structures in Québec are also studied with paleomagnetism, which helps to constrain the different ages of the East and West Clearwater Lake impacts. This work has important implications for our understanding of impact-cratering in the Solar System, especially concerning the study of planetary surfaces. The important roles of post-impact processes such as alteration and erosion on geophysical anomalies, petrophysical properties and morphometry of complex impact structures are also discussed in detail, suggesting that such effects should be more studied and quantified in future works. 3 Keywords Geophysics, Impact Structures, Impact Cratering, Paleomagnetism, Post-impact Processes 4 Résumé Les cratères d'impact hypervéloces sont les structures morphologiques les plus abondantes à la surface des corps planétaires telluriques du Système solaire, sauf sur Terre où ils ont été pour la plupart effacés par la tectonique des plaques, l'érosion ou bien sont enterrés sous les sédiments. La structure interne des cratères d'impact de type complexe ne peut être étudiée en détail que sur Terre par des études géophysiques et géologiques de terrain. De telles approches - combinées à de la modélisation - peuvent révéler comment le processus de cratérisation, la composition des roches cibles, l'érosion et d'autres processus post- impact peuvent conduire aux anomalies géophysiques observées, qui peuvent également être détectées par des données satellitaires sur d’autres planètes. Dans ce travail, une approche multidisciplinaire est menée en couplant les données géologiques à la géophysique de terrain et de laboratoire. La cartographie du champ magnétique, les mesures gravimétriques, les sondages électromagnétiques (EM34), les analyses paléomagnétiques, le magnétisme des roches et les techniques pétrographiques sont utilisées. Quatre structures d'impact au Canada sont étudiées : Haughton, Tunnunik et les lacs à l’Eau Claire Ouest et Est. Pour la première fois, nous révélons que la structure de Tunnunik récemment découverte présente des anomalies de gravité négative et de champ magnétique positif typiques, ce qui nous aide à reconsidérer l'étendue de la fracturation dans les roches cibles. La structure d’Haughton de 20 km de diamètre, moins érodée que Tunnunik, montre des signes d'une aimantation augmentée au centre de son soulèvement central, ce qui est causé par l’altération hydrothermale induite par l’impact. Des échantillons provenant des structures d'impact des Lacs à l’Eau Claire au Québec sont également étudiés avec le paléomagnétisme, contribuant à contraindre les âges différents des deux impacts. Ce travail a des implications importantes pour notre compréhension du processus de cratérisation dans le Système solaire, notamment en ce qui concerne l'étude des surfaces planétaires. Les rôles importants des processus post-impact tels que l'altération et l'érosion sur les anomalies géophysiques, les propriétés pétrophysiques et la morphométrie des structures d'impact complexes sont également discutés en détail, suggérant que ces effets devraient être plus étudiés et quantifiés dans de futurs travaux. 5 Mots-clés Géophysique, Structures d’Impact, Cratérisation, Paléomagnétisme, Processus Post- Impact 6 Résumé étendu (extended abstract in French) 1. Etat de l’Art et Méthodes Les cratères d’impact sont les structures les plus représentées à la surface des planètes telluriques, astéroïdes et comètes1. On différencie souvent les cratères d’impact de type simple (forme concave standard) des cratères d’impact de type complexe. Ces derniers sont en effet caractérisés par une zone centrale élevée (soulèvement central), une dépression annulaire faillée et un bord structurellement compliqué, ils ont des ratios profondeur/diamètre typiques de 1:10 à 1:20, ce qui signifie qu'ils sont aussi plus profonds que les cratères simples2. Les seules véritables preuves scientifiques confirmant la présence d'un cratère d'impact sont les critères de métamorphisme de choc, telles que l’observation de cônes de percussion ou de structures de déformations planaires dans les minéraux choqués. Même si toutes les roches affectées par un impact sont appelées « impactites » (incluant les roches pré-impact), le processus de cratérisation résulte en la production d’impactites néoformées telles que les brèches d’impact, les roches d’impact fondues, le verre et les tectites. Les processus post-impact tels que l’érosion affectant les cratères terrestres sont importants car ils peuvent en modifier les caractéristiques géologiques, morphologiques et géophysiques. Par exemple, le diamètre D d’un cratère complexe est souvent inférieur au diamètre apparent Da d’un cratère érodé (alors appelé « structure d’impact »). Cette thèse présente de nouvelles données géophysiques acquises sur le terrain dans des structures d’impact de type complexe. Quelles sont les anomalies géophysiques typiquement associées aux cratères d'impact de type complexe, et que peuvent nous apprendre ces données sur leurs structures profondes et les processus associés à l’impact ? Typiquement, la signature gravimétrique des cratères complexes correspond à une anomalie de Bouguer négative. Ces anomalies augmentent généralement en taille et en 1 French 1998, in Osinski 2013 2 Melosh 1989 7 amplitude pour un diamètre de cratère croissant3. Elles reflètent les densités réduites des roches en raison de la fracturation induite par l’impact ou la présence de nouvelles roches de densités plus faibles par rapport aux roches cibles originales4. Des anomalies de Bouguer positives liées à un épaississement crustal peuvent être observées aux centres des grands bassins d'impact (D > 30 km) tels que sur la Lune. Les structures d'impact de D < 40 km peuvent être caractérisées par des anomalies de champ magnétique négatives (e.g., les Lacs
Recommended publications
  • Planetary Geologic Mappers Annual Meeting
    Program Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 Planetary Geologic Mappers Annual Meeting June 12–14, 2018 • Knoxville, Tennessee Institutional Support Lunar and Planetary Institute Universities Space Research Association Convener Devon Burr Earth and Planetary Sciences Department, University of Tennessee Knoxville Science Organizing Committee David Williams, Chair Arizona State University Devon Burr Earth and Planetary Sciences Department, University of Tennessee Knoxville Robert Jacobsen Earth and Planetary Sciences Department, University of Tennessee Knoxville Bradley Thomson Earth and Planetary Sciences Department, University of Tennessee Knoxville Abstracts for this meeting are available via the meeting website at https://www.hou.usra.edu/meetings/pgm2018/ Abstracts can be cited as Author A. B. and Author C. D. (2018) Title of abstract. In Planetary Geologic Mappers Annual Meeting, Abstract #XXXX. LPI Contribution No. 2066, Lunar and Planetary Institute, Houston. Guide to Sessions Tuesday, June 12, 2018 9:00 a.m. Strong Hall Meeting Room Introduction and Mercury and Venus Maps 1:00 p.m. Strong Hall Meeting Room Mars Maps 5:30 p.m. Strong Hall Poster Area Poster Session: 2018 Planetary Geologic Mappers Meeting Wednesday, June 13, 2018 8:30 a.m. Strong Hall Meeting Room GIS and Planetary Mapping Techniques and Lunar Maps 1:15 p.m. Strong Hall Meeting Room Asteroid, Dwarf Planet, and Outer Planet Satellite Maps Thursday, June 14, 2018 8:30 a.m. Strong Hall Optional Field Trip to Appalachian Mountains Program Tuesday, June 12, 2018 INTRODUCTION AND MERCURY AND VENUS MAPS 9:00 a.m. Strong Hall Meeting Room Chairs: David Williams Devon Burr 9:00 a.m.
    [Show full text]
  • 3-D Seismic Characterization of a Cryptoexplosion Structure
    Cryptoexplosion structure 3-D seismic characterization of a eryptoexplosion structure J. Helen Isaac and Robert R. Stewart ABSTRACT Three-quarters of a circular structure is observed on three-dimensional (3-D) seismic data from James River, Alberta. The structure has an outer diameter of 4.8 km and a raised central uplift surrounded by a rim synform. The central uplift has a diameter of 2.4 km and its crest appears to be uplifted about 400 m above regional levels. The structure is at a depth of about 4500 m. This is below the zone of economic interest and the feature has not been penetrated by any wells. The disturbed sediments are interpreted to be Cambrian. We infer that the structure was formed in Late Cambrian to Middle Devonian time and suffered erosion before the deposition of the overlying Middle Devonian carbonates. Rim faults, probably caused by slumping of material into the depression, are observed on the outside limb of the synform. Reverse faults are evident underneath the feature and the central uplift appears to have coherent internal reflections. The amount of uplift decreases with increasing depth in the section. The entire feature is interpreted to be a cryptoexplosion structure, possibly caused by a meteorite impact. INTRODUCTION Several enigmatic circular structures, of different sizes and ages, have been observed on seismic data from the Western Canadian sedimentary basin (WCSB) (e.g., Sawatzky, 1976; Isaac and Stewart, 1993) and other parts of Canada (Scott and Hajnal, 1988; Jansa et al., 1989). The structures present startling interruptions in otherwise planar seismic features.
    [Show full text]
  • Cross-References ASTEROID IMPACT Definition and Introduction History of Impact Cratering Studies
    18 ASTEROID IMPACT Tedesco, E. F., Noah, P. V., Noah, M., and Price, S. D., 2002. The identification and confirmation of impact structures on supplemental IRAS minor planet survey. The Astronomical Earth were developed: (a) crater morphology, (b) geo- 123 – Journal, , 1056 1085. physical anomalies, (c) evidence for shock metamor- Tholen, D. J., and Barucci, M. A., 1989. Asteroid taxonomy. In Binzel, R. P., Gehrels, T., and Matthews, M. S. (eds.), phism, and (d) the presence of meteorites or geochemical Asteroids II. Tucson: University of Arizona Press, pp. 298–315. evidence for traces of the meteoritic projectile – of which Yeomans, D., and Baalke, R., 2009. Near Earth Object Program. only (c) and (d) can provide confirming evidence. Remote Available from World Wide Web: http://neo.jpl.nasa.gov/ sensing, including morphological observations, as well programs. as geophysical studies, cannot provide confirming evi- dence – which requires the study of actual rock samples. Cross-references Impacts influenced the geological and biological evolu- tion of our own planet; the best known example is the link Albedo between the 200-km-diameter Chicxulub impact structure Asteroid Impact Asteroid Impact Mitigation in Mexico and the Cretaceous-Tertiary boundary. Under- Asteroid Impact Prediction standing impact structures, their formation processes, Torino Scale and their consequences should be of interest not only to Earth and planetary scientists, but also to society in general. ASTEROID IMPACT History of impact cratering studies In the geological sciences, it has only recently been recog- Christian Koeberl nized how important the process of impact cratering is on Natural History Museum, Vienna, Austria a planetary scale.
    [Show full text]
  • Minutes of the January 25, 2010, Meeting of the Board of Regents
    MINUTES OF THE JANUARY 25, 2010, MEETING OF THE BOARD OF REGENTS ATTENDANCE This scheduled meeting of the Board of Regents was held on Monday, January 25, 2010, in the Regents’ Room of the Smithsonian Institution Castle. The meeting included morning, afternoon, and executive sessions. Board Chair Patricia Q. Stonesifer called the meeting to order at 8:31 a.m. Also present were: The Chief Justice 1 Sam Johnson 4 John W. McCarter Jr. Christopher J. Dodd Shirley Ann Jackson David M. Rubenstein France Córdova 2 Robert P. Kogod Roger W. Sant Phillip Frost 3 Doris Matsui Alan G. Spoon 1 Paul Neely, Smithsonian National Board Chair David Silfen, Regents’ Investment Committee Chair 2 Vice President Joseph R. Biden, Senators Thad Cochran and Patrick J. Leahy, and Representative Xavier Becerra were unable to attend the meeting. Also present were: G. Wayne Clough, Secretary John Yahner, Speechwriter to the Secretary Patricia L. Bartlett, Chief of Staff to the Jeffrey P. Minear, Counselor to the Chief Justice Secretary T.A. Hawks, Assistant to Senator Cochran Amy Chen, Chief Investment Officer Colin McGinnis, Assistant to Senator Dodd Virginia B. Clark, Director of External Affairs Kevin McDonald, Assistant to Senator Leahy Barbara Feininger, Senior Writer‐Editor for the Melody Gonzales, Assistant to Congressman Office of the Regents Becerra Grace L. Jaeger, Program Officer for the Office David Heil, Assistant to Congressman Johnson of the Regents Julie Eddy, Assistant to Congresswoman Matsui Richard Kurin, Under Secretary for History, Francisco Dallmeier, Head of the National Art, and Culture Zoological Park’s Center for Conservation John K.
    [Show full text]
  • Detecting and Avoiding Killer Asteroids
    Target Earth! Detecting and Avoiding Killer Asteroids by Trudy E. Bell (Copyright 2013 Trudy E. Bell) ARTH HAD NO warning. When a mountain- above 2000°C and triggering earthquakes and volcanoes sized asteroid struck at tens of kilometers (miles) around the globe. per second, supersonic shock waves radiated Ocean water suctioned from the shoreline and geysered outward through the planet, shock-heating rocks kilometers up into the air; relentless tsunamis surged e inland. At ground zero, nearly half the asteroid’s kinetic energy instantly turned to heat, vaporizing the projectile and forming a mammoth impact crater within minutes. It also vaporized vast volumes of Earth’s sedimentary rocks, releasing huge amounts of carbon dioxide and sulfur di- oxide into the atmosphere, along with heavy dust from both celestial and terrestrial rock. High-altitude At least 300,000 asteroids larger than 30 meters revolve around the sun in orbits that cross Earth’s. Most are not yet discovered. One may have Earth’s name written on it. What are engineers doing to guard our planet from destruction? winds swiftly spread dust and gases worldwide, blackening skies from equator to poles. For months, profound darkness blanketed the planet and global temperatures dropped, followed by intense warming and torrents of acid rain. From single-celled ocean plank- ton to the land’s grandest trees, pho- tosynthesizing plants died. Herbivores starved to death, as did the carnivores that fed upon them. Within about three years—the time it took for the mingled rock dust from asteroid and Earth to fall out of the atmosphere onto the ground—70 percent of species and entire genera on Earth perished forever in a worldwide mass extinction.
    [Show full text]
  • Interpretations of Gravity Anomalies at Olympus Mons, Mars: Intrusions, Impact Basins, and Troughs
    Lunar and Planetary Science XXXIII (2002) 2024.pdf INTERPRETATIONS OF GRAVITY ANOMALIES AT OLYMPUS MONS, MARS: INTRUSIONS, IMPACT BASINS, AND TROUGHS. P. J. McGovern, Lunar and Planetary Institute, Houston TX 77058-1113, USA, ([email protected]). Summary. New high-resolution gravity and topography We model the response of the lithosphere to topographic loads data from the Mars Global Surveyor (MGS) mission allow a re- via a thin spherical-shell flexure formulation [9, 12], obtain- ¡g examination of compensation and subsurface structure models ing a model Bouguer gravity anomaly ( bÑ ). The resid- ¡g ¡g ¡g bÓ bÑ in the vicinity of Olympus Mons. ual Bouguer anomaly bÖ (equal to - ) can be Introduction. Olympus Mons is a shield volcano of enor- mapped to topographic relief on a subsurface density interface, using a downward-continuation filter [11]. To account for the mous height (> 20 km) and lateral extent (600-800 km), lo- cated northwest of the Tharsis rise. A scarp with height up presence of a buried basin, we expand the topography of a hole Ö h h ¼ ¼ to 10 km defines the base of the edifice. Lobes of material with radius and depth into spherical harmonics iÐÑ up h with blocky to lineated morphology surround the edifice [1-2]. to degree and order 60. We treat iÐÑ as the initial surface re- Such deposits, known as the Olympus Mons aureole deposits lief, which is compensated by initial relief on the crust mantle =´ µh c Ñ c (hereinafter abbreviated as OMAD), are of greatest extent to boundary of magnitude iÐÑ . These interfaces the north and west of the edifice.
    [Show full text]
  • No. 40. the System of Lunar Craters, Quadrant Ii Alice P
    NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates.
    [Show full text]
  • Asteroid Impact, Not Volcanism, Caused the End-Cretaceous Dinosaur Extinction
    Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction Alfio Alessandro Chiarenzaa,b,1,2, Alexander Farnsworthc,1, Philip D. Mannionb, Daniel J. Luntc, Paul J. Valdesc, Joanna V. Morgana, and Peter A. Allisona aDepartment of Earth Science and Engineering, Imperial College London, South Kensington, SW7 2AZ London, United Kingdom; bDepartment of Earth Sciences, University College London, WC1E 6BT London, United Kingdom; and cSchool of Geographical Sciences, University of Bristol, BS8 1TH Bristol, United Kingdom Edited by Nils Chr. Stenseth, University of Oslo, Oslo, Norway, and approved May 21, 2020 (received for review April 1, 2020) The Cretaceous/Paleogene mass extinction, 66 Ma, included the (17). However, the timing and size of each eruptive event are demise of non-avian dinosaurs. Intense debate has focused on the highly contentious in relation to the mass extinction event (8–10). relative roles of Deccan volcanism and the Chicxulub asteroid im- An asteroid, ∼10 km in diameter, impacted at Chicxulub, in pact as kill mechanisms for this event. Here, we combine fossil- the present-day Gulf of Mexico, 66 Ma (4, 18, 19), leaving a crater occurrence data with paleoclimate and habitat suitability models ∼180 to 200 km in diameter (Fig. 1A). This impactor struck car- to evaluate dinosaur habitability in the wake of various asteroid bonate and sulfate-rich sediments, leading to the ejection and impact and Deccan volcanism scenarios. Asteroid impact models global dispersal of large quantities of dust, ash, sulfur, and other generate a prolonged cold winter that suppresses potential global aerosols into the atmosphere (4, 18–20). These atmospheric dinosaur habitats.
    [Show full text]
  • 1922 Elizabeth T
    co.rYRIG HT, 192' The Moootainetro !scot1oror,d The MOUNTAINEER VOLUME FIFTEEN Number One D EC E M BER 15, 1 9 2 2 ffiount Adams, ffiount St. Helens and the (!oat Rocks I ncoq)Ora,tecl 1913 Organized 190!i EDITORlAL ST AitF 1922 Elizabeth T. Kirk,vood, Eclttor Margaret W. Hazard, Associate Editor· Fairman B. L�e, Publication Manager Arthur L. Loveless Effie L. Chapman Subsc1·iption Price. $2.00 per year. Annual ·(onl�') Se,·ent�·-Five Cents. Published by The Mountaineers lncorJ,orated Seattle, Washington Enlerecl as second-class matter December 15, 19t0. at the Post Office . at . eattle, "\Yash., under the .-\0t of March 3. 1879. .... I MOUNT ADAMS lllobcl Furrs AND REFLEC'rION POOL .. <§rtttings from Aristibes (. Jhoutribes Author of "ll3ith the <6obs on lltount ®l!!mµus" �. • � J� �·,,. ., .. e,..:,L....._d.L.. F_,,,.... cL.. ��-_, _..__ f.. pt",- 1-� r�._ '-';a_ ..ll.-�· t'� 1- tt.. �ti.. ..._.._....L- -.L.--e-- a';. ��c..L. 41- �. C4v(, � � �·,,-- �JL.,�f w/U. J/,--«---fi:( -A- -tr·�� �, : 'JJ! -, Y .,..._, e� .,...,____,� � � t-..__., ,..._ -u..,·,- .,..,_, ;-:.. � --r J /-e,-i L,J i-.,( '"'; 1..........,.- e..r- ,';z__ /-t.-.--,r� ;.,-.,.....__ � � ..-...,.,-<. ,.,.f--· :tL. ��- ''F.....- ,',L � .,.__ � 'f- f-� --"- ��7 � �. � �;')'... f ><- -a.c__ c/ � r v-f'.fl,'7'71.. I /!,,-e..-,K-// ,l...,"4/YL... t:l,._ c.J.� J..,_-...A 'f ',y-r/� �- lL.. ��•-/IC,/ ,V l j I '/ ;· , CONTENTS i Page Greetings .......................................................................tlristicles }!}, Phoiitricles ........ r The Mount Adams, Mount St. Helens, and the Goat Rocks Outing .......................................... B1/.ith Page Bennett 9 1 Selected References from Preceding Mount Adams and Mount St.
    [Show full text]
  • Extraordinary Rocks from the Peak Ring of the Chicxulub Impact Crater: P-Wave Velocity, Density, and Porosity Measurements from IODP/ICDP Expedition 364 ∗ G.L
    Earth and Planetary Science Letters 495 (2018) 1–11 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Extraordinary rocks from the peak ring of the Chicxulub impact crater: P-wave velocity, density, and porosity measurements from IODP/ICDP Expedition 364 ∗ G.L. Christeson a, , S.P.S. Gulick a,b, J.V. Morgan c, C. Gebhardt d, D.A. Kring e, E. Le Ber f, J. Lofi g, C. Nixon h, M. Poelchau i, A.S.P. Rae c, M. Rebolledo-Vieyra j, U. Riller k, D.R. Schmitt h,1, A. Wittmann l, T.J. Bralower m, E. Chenot n, P. Claeys o, C.S. Cockell p, M.J.L. Coolen q, L. Ferrière r, S. Green s, K. Goto t, H. Jones m, C.M. Lowery a, C. Mellett u, R. Ocampo-Torres v, L. Perez-Cruz w, A.E. Pickersgill x,y, C. Rasmussen z,2, H. Sato aa,3, J. Smit ab, S.M. Tikoo ac, N. Tomioka ad, J. Urrutia-Fucugauchi w, M.T. Whalen ae, L. Xiao af, K.E. Yamaguchi ag,ah a University of Texas Institute for Geophysics, Jackson School of Geosciences, Austin, USA b Department of Geological Sciences, Jackson School of Geosciences, Austin, USA c Department of Earth Science and Engineering, Imperial College, London, UK d Alfred Wegener Institute Helmholtz Centre of Polar and Marine Research, Bremerhaven, Germany e Lunar and Planetary Institute, Houston, USA f Department of Geology, University of Leicester, UK g Géosciences Montpellier, Université de Montpellier, France h Department of Physics, University of Alberta, Canada i Department of Geology, University of Freiburg, Germany j SM 312, Mza 7, Chipre 5, Resid.
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • Download Complete Volume
    JOURNAL OF THE TRANSACTIONS OF THE - VICTOR I A INSTITUTE. VOL. XXI. SECTION NI;> I FROM SEA. COAST AT A.Sl(A,LA ~ H JERUSAlEM TO THE J,JR~AN IIIC.0 JEHi CH O." t<0~110,n·... lsc"lt3''"'EII -I,,..,;;": C.S. Wlc.Sw,a.~t,n,,,ofl'l,illutin., N. l. Nwri,.wlil,: .l,V,W,,tn,u,, C. l . Crct,rcc,,,,,, J.,,,.,,,.i,,,,..., _ N. 1.:. }Vu.blit.n. Sun.J&/.,)1.,. F. V, £,,1.~1,,,,~. SECTION N'? 2. FRO M T H E. T A.B LE · LANO Of' S ,JUD.EA TOT Mt PLAINS Of'MOA.B ~. oFKtRAH. 8YJEB£L USOUM. TA.SL£ L,.ND or MOAB SECTION N~ 7 !='ROM cuLr o F sun MEAFtTO R eY THE M OUNTAINS o, s 1ttA.1 ro-:-wt: PLAT EAU or TH£ TIH. No rt,h, G. &rcy !Jra..,,,i, t;,e, (F>1.r-i,.t(C11) a.n.d, 5,·'hi.tt. w.:.th. ·m.,,m.flr-OU.4 d.y1<.r f! , • ..,,po.-w,g s,uubto,.,, n,,d.Li,,,... •w,,.-B,:,i,, / S . 8 L j 11flRl20NTALSCALr 11MIL[ S• I INCH. J)y l~o;1nniu,on of th i:J Oommittce (•f the /'o,T,i:sti.1w E :cpluMtivn Fund. JOURNAL OF THE TRANSACTIONS OF ~ht lictoria Jnstitut~, <'lR l!gilosopgital cSotiet~ of ~reat Jritain. EDITED BY THE HONORARY SECRETARY, CAPTAIN FRANCIS W. H. PETRIE, F.G.fS., &c. VOL. XXI. LONDON: (tBublisbell n11 tbe Institute). INDIA: W. THACKER & Co. UNITED STATES: G. T.PUTNAM'S SONS, N.Y_.
    [Show full text]