FLNB-Mutated Autosomal Dominant Disease Spectrum: from Clinical Phenotypes to Cellular and Molecular Findings

Total Page:16

File Type:pdf, Size:1020Kb

FLNB-Mutated Autosomal Dominant Disease Spectrum: from Clinical Phenotypes to Cellular and Molecular Findings Am J Transl Res 2018;10(5):1400-1412 www.ajtr.org /ISSN:1943-8141/AJTR0075362 Original Article Comparative analysis of the two extremes of FLNB-mutated autosomal dominant disease spectrum: from clinical phenotypes to cellular and molecular findings Qiming Xu1, Nan Wu1,3,4, Lijia Cui5, Mao Lin1, D Thirumal Kumar6, C George Priya Doss6, Zhihong Wu2,3,4, Jianxiong Shen1,3,4, Xiangjian Song7, Guixing Qiu1,3,4 Departments of 1Orthopedic Surgery, 2Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; 3Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, China; 4Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences, Beijing, China; 5Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China; 6Department of Integrative Biology, Vellore Institute of Technology, Vellore, India; 7Department of Pediatric Orthopedics, Zhengzhou Orthopedic Hospital, Zhengzhou, Henan, China Received March 3, 2018; Accepted April 18, 2018; Epub May 15, 2018; Published May 30, 2018 Abstract: Non-randomly distributed missense mutations of Filamin B (FLNB) can lead to a spectrum of autoso- mal dominant-inherited skeletal malformations caused by bone hypoplasia, including Larsen syndrome (LS), ate- losteogenesi-I (AO-I), atelosteogenesi-I (AO-III) and boomerang dysplasia (BD). Among this spectrum of diseases, LS causes a milder hypoplasia of the skeletal system, compared to BD’s much more severe symptoms. Previous studies revealed limited molecular mechanisms of FLNB-related diseases but most of them were carried out with HEK293 cells from the kidney which could not reproduce FLNB’s specificity to skeletal tissues. Instead, we elected to use ATDC5, a chondrogenic stem cell line widely used to study endochondral osteogenesis. In this study, we established FLNB-transfected ATDC5 cell model. We reported a pedigree of LS with mutation of FLNBG1586R and reviewed a case of BD with mutation of FLNBL171R. Using the ATDC5 cell model above, we compared cellular and mo- lecular phenotypes of BD-associated FLNBL171R and LS-associated FLNBG1586R. We found that while both phenotypes had an increased expression of Runx2, FLNBL171R-expressing ATDC5 cells presented globular aggregation of FLNB protein and increased cellular apoptosis rate while FLNBG1586R-expressing ATDC5 cells presented evenly distributed FLNB protein and decreased cellular migration. These findings support our explanation for the cause of differ- ences in clinical phenotypes between LS and BD. Our study makes a comparative analysis of two extremes of the FLNB-mutated autosomal dominant spectrum, relating known clinical phenotypes to our new cellular and molecular findings. These results indicated next steps for future research on the role of FLNB in the physiological process of endochondral osteogenesis. Keywords: FLNB, larsen syndrome, boomerang dysplasia, ATDC5 cell, apoptosis Introduction IM 108721) and boomerang dysplasia (BD, OMIM 112310). LS is at one extreme of the Filamin B (FLNB) constitutes a large dimeric spectrum with the mildest hypoplasia of skele- actin-binding protein to act as a cytoskeleton tal system, while BD is at the other extreme and multifunctional signal scaffold [1]. Nonran- with the severest hypoplasia of skeletal system domly-distributed missense mutations of FL- [2, 3]. LS presents skeletal deformities includ- NB can lead to a spectrum of autosomal-domi- ing scoliosis; cervical kyphosis; supernumerary nant inherited skeletal malformations caused carpal bones; dislocation of large joints; and by bone hypoplasia, including Larsen syndrome characteristic facial malformations, including (LS, OMIM 150250), atelosteogenesis-I (AO-I, prominent forehead, wide-spaced eyes and OMIM 108720), atelosteogenesis-III (AO-III, OM- depressed nasal bridge [4, 5]. BD is a lethal Comparative analysis of FLNB missense mutated disease spectrum skeletal dysplasia characterized by underdevel- difference in clinical phenotypes between LS opment and potential lack of ossification in ver- and BD. tebrae, the acetabulum, or in the long bones of limbs, [6]. Almost all fetuses with BD die late Material and methods in the prenatal stage, making it difficult to stu- dy the molecular mechanisms of FLNB in BD. Clinical and radiological investigation AO-I and AO-III express traits between those Our clinic recruited an eight-year old male with associated with LS and BD. In addition to the- diagnosis of LS. We recorded the medical his- se diseases with FLNB missense mutations, tory of the patient and his family, then condu- nonsense mutations of FLNB can lead to spon- cted physical and radiological examinations on dylocarpotarsal synostosis syndrome (SCT, body parts with potential skeletal malformation OMIM 272460), an autosomal recessive skele- (Figure 1). The morbidity of BD was much rarer tal malformation characterized by premature than LS. We chose a BD case with the mostly fusion in carpal and tarsal joints and between reported BD-associated mutation c.T512G the vertebrae leading to scoliosis and lordosis (p.Leu171Arg) from literature [2, 6] as the [10]. research object for BD. Various phenotypes of Mutations in FLNB are exclusively associated those chosen objects of LS and BD were com- with skeletal diseases [4], indicating a high his- pared in details (Table 1). tological specificity of FLNB mutations’ patho- Whole exome sequencing and Sanger se- genesis to the skeletal system. Multiple studies quencing have attempted to explain the pathogenesis of FLNB mutations in skeletal malformation [3], The study was approved by the Ethics Com- including delay of ossification in growth plate of mittee of Peking Union Medical College Hos- long bone [11], hypo-mobility of chondrocytes pital. With informed consent from the patient [12] and disturbance of proliferation; and dif- and his family members, we extracted DNA ferentiation and apoptosis in chondrocytes [13- from peripheral blood samples of the pati- 15]. However, most of these studies were focused on nonsense mutations associated ent, and his father, mother and sister using with SCT. Little literature has explained the Puregene Blood kit. Whole exome sequencing pathogenic mechanisms of FLNB missense was performed using the Illumina HiSeq 2000 mutations in skeletal malformations due to (Illumina, San Diego, CA), reaching an average complexity of this spectrum of diseases. Mo- coverage of 116X. Reads were mapped to reover, those studies were mostly carried out in UCSC human genome reference assembly 19 HEK293 cells from the kidney, which may not (hg 19). Variant was called using BWA softwa- be affected by FLNB in the same way as skele- re (0.7.5a-r405). To identify pathogenic muta- tal tissues. tions, the variants were further compared to three databases including ClinVar, OMIM and In this study, we examine whether FLNB mis- HGMD; single nucleotide polymorphisms (SNP) sense variants cause the difference between among the normal population was excluded LS and BD at cellular and molecular levels. based five population-based databases, includ- The target variants of LS were selected as ing 1000 Genomes Project Dataset, Exome c.4756G>A (p.Gly1586Arg) in FLNB, which was Sequencing Project, Exome Aggregation Con- found in our LS patient, and another LS case sortium dataset and Allele Frequency Net Da- reported by Krakow et al. [10], and the target tabase of Japan Tokyo and Netherlands. Mu- mutation of BD was c.512T>G (p.Leu171Arg) in tations found in FLNB were further confirmed FLNB, which was reported in a male fetus diag- using Sanger sequencing. Exon 14 in FLNB nosed as BD [2, 6]. After transfecting FLNB was amplified using polymerase chain reaction plasmid to ATDC5 cell line, we compared distri- (PCR), and sequenced in an Applied Biosystem bution patterns of these two FLNB variants in 3730xl DNA Analyzer. cytoplasm, properties of cellular shape, cell migration, and apoptosis, and expression of Plasmid construction and transfection Runx2 and Smad3 in endochondral osteogen- esis. The cellular and molecular findings in our The wild-type FLNB plasmid was kindly donated study sketched a logical chain to explain the by Stephen P. Robertson from Otago University, 1401 Am J Transl Res 2018;10(5):1400-1412 Comparative analysis of FLNB missense mutated disease spectrum Figure 1. Clinical manifestation and family tree of the patient with Larsen syndrome. Whole spine X-ray and cervical spine X-ray revealed severe scoliosis (A) and cervical kyphosis with dysplasia of C4 and C5 vertebrae (B); hand and carpal joint X-ray showed supernumerary carpal bones and spatulate thumb; there should be eight carpal bones in a normal wrist while thirteen carpal bones were found in the wrist of this patient (C); gross anatomical pictures revealed serious back curves, short stature and varus deformities of elbow on both sides (D); The father (III2), uncle (III1), grandfather (II1) and great-grandfather (I1) had unusual faces, spatulate distal phalanges and varus deformities in both elbows similar to the patient (IV1) (E); A FLNB missense mutation (NM_001457.3, c.4756G>A (p.Gly1586Arg)) was identified in both the patient and his father, and was not found in the mother and sister (F). Dunedin, New Zealand [2]. The full-length FL- University. Both HEK293 and ATDC5 cells NB cDNA (reference sequence NM_001457.3), were grown in DMEM containing 10% FCS was assembled with EGFP on the C-terminal under 37°C with 5% CO2. Antibiotics-free media (from
Recommended publications
  • Genes in Eyecare Geneseyedoc 3 W.M
    Genes in Eyecare geneseyedoc 3 W.M. Lyle and T.D. Williams 15 Mar 04 This information has been gathered from several sources; however, the principal source is V. A. McKusick’s Mendelian Inheritance in Man on CD-ROM. Baltimore, Johns Hopkins University Press, 1998. Other sources include McKusick’s, Mendelian Inheritance in Man. Catalogs of Human Genes and Genetic Disorders. Baltimore. Johns Hopkins University Press 1998 (12th edition). http://www.ncbi.nlm.nih.gov/Omim See also S.P.Daiger, L.S. Sullivan, and B.J.F. Rossiter Ret Net http://www.sph.uth.tmc.edu/Retnet disease.htm/. Also E.I. Traboulsi’s, Genetic Diseases of the Eye, New York, Oxford University Press, 1998. And Genetics in Primary Eyecare and Clinical Medicine by M.R. Seashore and R.S.Wappner, Appleton and Lange 1996. M. Ridley’s book Genome published in 2000 by Perennial provides additional information. Ridley estimates that we have 60,000 to 80,000 genes. See also R.M. Henig’s book The Monk in the Garden: The Lost and Found Genius of Gregor Mendel, published by Houghton Mifflin in 2001 which tells about the Father of Genetics. The 3rd edition of F. H. Roy’s book Ocular Syndromes and Systemic Diseases published by Lippincott Williams & Wilkins in 2002 facilitates differential diagnosis. Additional information is provided in D. Pavan-Langston’s Manual of Ocular Diagnosis and Therapy (5th edition) published by Lippincott Williams & Wilkins in 2002. M.A. Foote wrote Basic Human Genetics for Medical Writers in the AMWA Journal 2002;17:7-17. A compilation such as this might suggest that one gene = one disease.
    [Show full text]
  • Larsen Syndrome
    I M A G E S Larsen Syndrome Larsen syndrome (OMIM 150250) is a complex syndrome with genetic heterogeneity, and with both autosomal dominant and autosomal recessive An eleven year old male child born to a patterns of inheritance. Mutations in gene encoding nonconsanguinous couple presented with multiple filamin B (FLNB) result in Larsen syndrome. This joint dislocation since birth. He had mild motor gene has an important role in vertebral delay. Examination showed presence of short segmentation, joint formation and endochondral stature. There was no microcephaly. He had flat ossification and is also mutated in atelosteogenesis facies, prominent forehead, depressed nasal bridge, types I and III, and in spondylocarpotarsal and hypertelorism (Fig. 1). He had bilateral syndromes. Autosomal dominant form is rhizomelic shortening of upper limbs, spatulate and characterized by flat facies, joint hypermobility, dislocated thumbs (Fig. 2), bilateral elbow, ankle, congenital multiple joint dislocations, especially of and hip dislocation (Fig.3). Examination of parents the knees and talipes equinovarus. The mid-face is did not reveal any features of Larsen syndrome. hypoplastic with a depressed nasal bridge. Cleft X-rays of long bones showed presence of bilateral palate may be present. Osteoarthritis involving large tibio-femoral and patellar dislocation at knees and joints and progressive kyphoscoliosis are potential dislocation at hip, ankles and thumbs. He also had complications. Airway obstruction caused by hypoplastic fibula on right side. X-ray spine showed tracheomalacia and bronchomalacia may be life presence of short and thick pedicles, kyphosis and threatening. All affected individuals should be hypoplastic superior articular facets. There was no evaluated for cervical spine instability and caution atlanto axial dislocation.
    [Show full text]
  • The Nutrition and Food Web Archive Medical Terminology Book
    The Nutrition and Food Web Archive Medical Terminology Book www.nafwa.
    [Show full text]
  • RD-Action Matchmaker – Summary of Disease Expertise Recorded Under
    Summary of disease expertise recorded via RD-ACTION Matchmaker under each Thematic Grouping and EURORDIS Members’ Thematic Grouping Thematic Reported expertise of those completing the EURORDIS Member perspectives on Grouping matchmaker under each heading Grouping RD Thematically Rare Bone Achondroplasia/Hypochondroplasia Achondroplasia Amelia skeletal dysplasia’s including Achondroplasia/Growth hormone cleidocranial dysostosis, arthrogryposis deficiency/MPS/Turner Brachydactyly chondrodysplasia punctate Fibrous dysplasia of bone Collagenopathy and oncologic disease such as Fibrodysplasia ossificans progressive Li-Fraumeni syndrome Osteogenesis imperfecta Congenital hand and fore-foot conditions Sterno Costo Clavicular Hyperostosis Disorders of Sex Development Duchenne Muscular Dystrophy Ehlers –Danlos syndrome Fibrodysplasia Ossificans Progressiva Growth disorders Hypoparathyroidism Hypophosphatemic rickets & Nutritional Rickets Hypophosphatasia Jeune’s syndrome Limb reduction defects Madelung disease Metabolic Osteoporosis Multiple Hereditary Exostoses Osteogenesis imperfecta Osteoporosis Paediatric Osteoporosis Paget’s disease Phocomelia Pseudohypoparathyroidism Radial dysplasia Skeletal dysplasia Thanatophoric dwarfism Ulna dysplasia Rare Cancer and Adrenocortical tumours Acute monoblastic leukaemia Tumours Carcinoid tumours Brain tumour Craniopharyngioma Colon cancer, familial nonpolyposis Embryonal tumours of CNS Craniopharyngioma Ependymoma Desmoid disease Epithelial thymic tumours in
    [Show full text]
  • Prevalence and Incidence of Rare Diseases: Bibliographic Data
    Number 1 | January 2019 Prevalence and incidence of rare diseases: Bibliographic data Prevalence, incidence or number of published cases listed by diseases (in alphabetical order) www.orpha.net www.orphadata.org If a range of national data is available, the average is Methodology calculated to estimate the worldwide or European prevalence or incidence. When a range of data sources is available, the most Orphanet carries out a systematic survey of literature in recent data source that meets a certain number of quality order to estimate the prevalence and incidence of rare criteria is favoured (registries, meta-analyses, diseases. This study aims to collect new data regarding population-based studies, large cohorts studies). point prevalence, birth prevalence and incidence, and to update already published data according to new For congenital diseases, the prevalence is estimated, so scientific studies or other available data. that: Prevalence = birth prevalence x (patient life This data is presented in the following reports published expectancy/general population life expectancy). biannually: When only incidence data is documented, the prevalence is estimated when possible, so that : • Prevalence, incidence or number of published cases listed by diseases (in alphabetical order); Prevalence = incidence x disease mean duration. • Diseases listed by decreasing prevalence, incidence When neither prevalence nor incidence data is available, or number of published cases; which is the case for very rare diseases, the number of cases or families documented in the medical literature is Data collection provided. A number of different sources are used : Limitations of the study • Registries (RARECARE, EUROCAT, etc) ; The prevalence and incidence data presented in this report are only estimations and cannot be considered to • National/international health institutes and agencies be absolutely correct.
    [Show full text]
  • Blueprint Genetics Comprehensive Skeletal Dysplasias and Disorders
    Comprehensive Skeletal Dysplasias and Disorders Panel Test code: MA3301 Is a 251 gene panel that includes assessment of non-coding variants. Is ideal for patients with a clinical suspicion of disorders involving the skeletal system. About Comprehensive Skeletal Dysplasias and Disorders This panel covers a broad spectrum of skeletal disorders including common and rare skeletal dysplasias (eg. achondroplasia, COL2A1 related dysplasias, diastrophic dysplasia, various types of spondylo-metaphyseal dysplasias), various ciliopathies with skeletal involvement (eg. short rib-polydactylies, asphyxiating thoracic dysplasia dysplasias and Ellis-van Creveld syndrome), various subtypes of osteogenesis imperfecta, campomelic dysplasia, slender bone dysplasias, dysplasias with multiple joint dislocations, chondrodysplasia punctata group of disorders, neonatal osteosclerotic dysplasias, osteopetrosis and related disorders, abnormal mineralization group of disorders (eg hypopohosphatasia), osteolysis group of disorders, disorders with disorganized development of skeletal components, overgrowth syndromes with skeletal involvement, craniosynostosis syndromes, dysostoses with predominant craniofacial involvement, dysostoses with predominant vertebral involvement, patellar dysostoses, brachydactylies, some disorders with limb hypoplasia-reduction defects, ectrodactyly with and without other manifestations, polydactyly-syndactyly-triphalangism group of disorders, and disorders with defects in joint formation and synostoses. Availability 4 weeks Gene Set Description
    [Show full text]
  • Essential Genetics 5
    Essential genetics 5 Disease map on chromosomes 例 Gaucher disease 単一遺伝子病 天使病院 Prader-Willi syndrome 隣接遺伝子症候群,欠失が主因となる疾患 臨床遺伝診療室 外木秀文 Trisomy 13 複数の遺伝子の重複によって起こる疾患 挿画 Koromo 遺伝子の座位あるいは欠失等の範囲を示す Copyright (c) 2010 Social Medical Corporation BOKOI All Rights Reserved. Disease map on chromosome 1 Gaucher disease Chromosome 1q21.1 1p36 deletion syndrome deletion syndrome Adrenoleukodystrophy, neonatal Cardiomyopathy, dilated, 1A Zellweger syndrome Charcot-Marie-Tooth disease Emery-Dreifuss muscular Hypercholesterolemia, familial dystrophy Hutchinson-Gilford progeria Ehlers-Danlos syndrome, type VI Muscular dystrophy, limb-girdle type Congenital disorder of Insensitivity to pain, congenital, glycosylation, type Ic with anhidrosis Diamond-Blackfan anemia 6 Charcot-Marie-Tooth disease Dejerine-Sottas syndrome Marshall syndrome Stickler syndrome, type II Chronic granulomatous disease due to deficiency of NCF-2 Alagille syndrome 2 Copyright (c) 2010 Social Medical Corporation BOKOI All Rights Reserved. Disease map on chromosome 2 Epiphyseal dysplasia, multiple Spondyloepimetaphyseal dysplasia Brachydactyly, type D-E, Noonan syndrome Brachydactyly-syndactyly syndrome Peters anomaly Synpolydactyly, type II and V Parkinson disease, familial Leigh syndrome Seizures, benign familial Multiple pterygium syndrome neonatal-infantile Escobar syndrome Ehlers-Danlos syndrome, Brachydactyly, type A1 type I, III, IV Waardenburg syndrome Rhizomelic chondrodysplasia punctata, type 3 Alport syndrome, autosomal recessive Split-hand/foot malformation Crigler-Najjar
    [Show full text]
  • Discover Dysplasias Gene Panel
    Discover Dysplasias Gene Panel Discover Dysplasias tests 109 genes associated with skeletal dysplasias. This list is gathered from various sources, is not designed to be comprehensive, and is provided for reference only. This list is not medical advice and should not be used to make any diagnosis. Refer to lab reports in connection with potential diagnoses. Some genes below may also be associated with non-skeletal dysplasia disorders; those non-skeletal dysplasia disorders are not included on this list. Skeletal Disorders Tested Gene Condition(s) Inheritance ACP5 Spondyloenchondrodysplasia with immune dysregulation (SED) AR ADAMTS10 Weill-Marchesani syndrome (WMS) AR AGPS Rhizomelic chondrodysplasia punctata type 3 (RCDP) AR ALPL Hypophosphatasia AD/AR ANKH Craniometaphyseal dysplasia (CMD) AD Mucopolysaccharidosis type VI (MPS VI), also known as Maroteaux-Lamy ARSB syndrome AR ARSE Chondrodysplasia punctata XLR Spondyloepimetaphyseal dysplasia with joint laxity type 1 (SEMDJL1) B3GALT6 Ehlers-Danlos syndrome progeroid type 2 (EDSP2) AR Multiple joint dislocations, short stature and craniofacial dysmorphism with B3GAT3 or without congenital heart defects (JDSCD) AR Spondyloepimetaphyseal dysplasia (SEMD) Thoracic aortic aneurysm and dissection (TADD), with or without additional BGN features, also known as Meester-Loeys syndrome XL Short stature, facial dysmorphism, and skeletal anomalies with or without BMP2 cardiac anomalies AD Acromesomelic dysplasia AR Brachydactyly type A2 AD BMPR1B Brachydactyly type A1 AD Desbuquois dysplasia CANT1 Multiple epiphyseal dysplasia (MED) AR CDC45 Meier-Gorlin syndrome AR This list is gathered from various sources, is not designed to be comprehensive, and is provided for reference only. This list is not medical advice and should not be used to make any diagnosis.
    [Show full text]
  • Boomerang Dysplasia in a Chinese Female Fetus
    HK J Paediatr (new series) 2006;11:324-326 Boomerang Dysplasia in a Chinese Female Fetus ACF LAM, SJ HU, TMF TONG, STS LAM Abstract Boomerang dysplasia (BD) was first described by Kozlowski et al in 1981; and is a form of neonatally lethal chondrodysplasia. The name itself vividly described its characteristic radiographic features, and the importance of recognising these features has major implication in genetic counselling. All, except two reported cases of BD were males. We here reported the third female case of Boomerang dysplasia in literature. Key words Boomerang dysplasia; FLNB gene; Skeletal dysplasia Introduction sporadic and the incidence of BD was estimated to be 1/1,222,698 live born infants.4 Boomerang dysplasia (BD) is a very rare perinatally Autosomal recessive spondylocarpotarsal syndrome, lethal skeletal dysplasia that was first reported by Kozlowski atelosteogenesis type I and III, dominant form Larsen et al in 1981,1 and is characterised by decreased ossification syndrome, and BD formed a spectrum of skeletal dysplasia of cranium and vertebral bodies, incomplete or absent with overlapping clinical phenotypes (Table 1). They shared ossification of long bones that are characteristically curved a common pathogenesis in vertebral segmentation, joint to give this condition its name. Vertebral ossification defect formation and endochondral ossification.5 In 2004, Krakow is most commonly found in the thoracic region, giving the et al5 identified mutations in the Filamin B (FLNB) gene in appearance of "hour glass' with associated wavy ribs. the first four conditions. In July 2005, Bicknell et al6 Histologically, it is characterised by the presence of reported FLNB gene mutations in two unrelated patients multinucleated giant chondrocytes in resting cartilage.
    [Show full text]
  • Omphalocele and Gastroschisis Precision Panel Overview Indications Clinical Utility
    Omphalocele and Gastroschisis Precision Panel Overview Omphalocele, also known as exomphalos, is a midline abdominal wall defect at the base of the umbilical cord where herniation of abdominal contents takes place. The herniated organs are covered by the parietal peritoneum. The cause of omphalocele postulated to be a failure of the bowel to return into the abdomen by 10-12 weeks. Omphaloceles are associated with other anomalies in more than 70% of the cases, generally chromosomal, and the severity is dictated by the anomalies that are present. The main difficulty of this condition is the exclusion of associated conditions, not all diagnosed prenatally. Gastroschisis represents a herniation of abdominal contents through a paramedian full-thickness abdominal fusion defect. The abdominal herniation, in contrast with omphalocele, is usually to the right of the umbilical cord. It usually contains small bowel and has no surrounding membrane. Challenges in management of gastroschisis are related to the prevention of late intrauterine death, and the prediction and treatment of complex forms. The Igenomix Omphalocele and Gastroschisis Gene Panel can be used to as a screening tool for underlying genetic alterations associated to these conditions. It provides a comprehensive analysis of the genes involved in this disease using next-generation sequencing (NGS) to fully understand the spectrum of relevant genes involved. Indications The Igenomix Omphalocele and Gastroschisis Gene Panel is indicated for those patients with a clinical suspicion of omphalocele and/or gastroschisis which manifest as: - Herniation of intestines through abdominal wall - Polyhydramnios in utero - Elevated levels of maternal serum a-fetoprotein (MSAFP) Clinical Utility The clinical utility of this panel is: - The genetic and molecular confirmation for an accurate clinical diagnosis of a symptomatic patient.
    [Show full text]
  • EUROCAT Syndrome Guide
    JRC - Central Registry european surveillance of congenital anomalies EUROCAT Syndrome Guide Definition and Coding of Syndromes Version July 2017 Revised in 2016 by Ingeborg Barisic, approved by the Coding & Classification Committee in 2017: Ester Garne, Diana Wellesley, David Tucker, Jorieke Bergman and Ingeborg Barisic Revised 2008 by Ingeborg Barisic, Helen Dolk and Ester Garne and discussed and approved by the Coding & Classification Committee 2008: Elisa Calzolari, Diana Wellesley, David Tucker, Ingeborg Barisic, Ester Garne The list of syndromes contained in the previous EUROCAT “Guide to the Coding of Eponyms and Syndromes” (Josephine Weatherall, 1979) was revised by Ingeborg Barisic, Helen Dolk, Ester Garne, Claude Stoll and Diana Wellesley at a meeting in London in November 2003. Approved by the members EUROCAT Coding & Classification Committee 2004: Ingeborg Barisic, Elisa Calzolari, Ester Garne, Annukka Ritvanen, Claude Stoll, Diana Wellesley 1 TABLE OF CONTENTS Introduction and Definitions 6 Coding Notes and Explanation of Guide 10 List of conditions to be coded in the syndrome field 13 List of conditions which should not be coded as syndromes 14 Syndromes – monogenic or unknown etiology Aarskog syndrome 18 Acrocephalopolysyndactyly (all types) 19 Alagille syndrome 20 Alport syndrome 21 Angelman syndrome 22 Aniridia-Wilms tumor syndrome, WAGR 23 Apert syndrome 24 Bardet-Biedl syndrome 25 Beckwith-Wiedemann syndrome (EMG syndrome) 26 Blepharophimosis-ptosis syndrome 28 Branchiootorenal syndrome (Melnick-Fraser syndrome) 29 CHARGE
    [Show full text]
  • Case Report 16
    Skeletal Radiol. 1, 175-176 (1977) - 9 1977by the International Skeletal Society Skeletal Radiology Case Report 16 Ramiro Hernandez, M.D.1, Andrew K. Poznanski, M.D. 1., and Robert Hensinger, M.D. 2 Division of Pediatric Radiology and Section of Orthopedic Surgery, C.S. Mott Children's Hospital, The University of Michigan Medical Center, Ann Arbor, Michigan, USA Fig. 1. Observe the extremely long, thin bones of the arms and hands. Contractures of the fingers are noted. A fracture just below the middle third of the right humerus is present Fig. 2. Note the extremely thin ribs and clavicles Fig. 3. Observe the delayed maturation in this one-week-old child, with very small distal femoral ossification centers and absent tibial epiphyses. This disharmony may be compared with the upper extremities in Figure 1 where the humeral centers are clearly ossified. Observe the diminution in muscle mass in the upper and lower extremities (also see Fig. 1) History This one-week-old 2.4-kg baby was the product of a 38-week gestation of a 15-week-old black, unmarried mother. Multiple contractures were noted to involve the hips, knees, elbows, wrists, and all the proximal interphatangeal joints, except the left index finger. Motion was relatively normal beyond the flexion contractures. Examination of the eyes showed no abnormality. * Presented by Dr. Andrew K. Poznanski at the 3rd Annual Meeting of the International Skeletal Society in Montreal, Canada, September 10th-12th, 1976 Address reprint requests to." A.K. Poznanski, M.D., Division of Pediatric Radiology, Fig. 4. A photograph of the ear demonstrates C.S.
    [Show full text]