Biochemistry of Herbicides Affecting Photosynthesis Kenneth Wright and J

Total Page:16

File Type:pdf, Size:1020Kb

Biochemistry of Herbicides Affecting Photosynthesis Kenneth Wright and J Biochemistry of Herbicides Affecting Photosynthesis Kenneth Wright and J. R. Corbett Fisons Ltd., Chesterford Park Research Station, Saffron Walden, Essex, CB10 1XL, U.K. Z. Naturforsch. 34 c, 966 — 972 (1979) ; received May 24, 1979 Herbicides, Photosynthesis, Pigment Synthesis, Inhibition This paper reviews the inhibitory effects of herbicides at three locations within photosynthetic electron transport, on photophosphorylation, and on pigment synthesis. 1. Introduction photosystem I, usually DCPIP or ferricyanide in an uncoupled system). Examples of the well known clas­ This paper is an introduction to the primary ses are given by Draber et al. [2]. The common effects of herbicides on photosynthetic electron structural requirements for activity in many chemical transport, photophosphorylation and pigment syn­ series have been pointed out [2, 6 — 8]; essentially thesis. Herbicides are not known to have primary inhibitors have a lipophilic moiety near the group effects on transcription, translation or carbon fixa­ — C ( = X) — N = (X = 0 or NH). One of the substi­ tion, and the inhibition of lipid synthesis by the tuents on the nitrogen is often H but this is not thiolcarbamates will not be considered since it is obligatory [2]. Some exceptions to these simple not restricted to the chloroplast. We will be con­ criteria will be mentioned later. cerned mainly with the primary biochemical elfects Location. The DCMU site is close to photosystem of compounds so far as they are known, since re­ ports of gross effects on whole plants do not provide II (see [1] for summary of early evidence) and leads which can be of use in seeking out new active most workers believe that DCMU blocks electron transfer from the primary acceptor of photosystem II herbicides. We will need to concentrate on the most (Q) to plastoquinone [9] though there may also be recent developments; a previous review [1] considers an effect on the water-splitting reaction [10]. Much the earlier work. Throughout we shall be empha­ progress on the detailed location is reported else­ sizing information that might aid the synthesis of where in this volume. The hatched area in Fig. 1 new herbicides. indicates the proteinaceous shield which is part of a model of the acceptor side of photosystem II 2. Compounds interfering with electron transport developed by Renger [11]. He suggests that DCMU (Fig. 2) interacts at this site by binding to the protein, because once the shield had been digested with Most herbicides in use today kill their target trypsin, several inhibitory effects of DCMU were weeds by interaction with photosynthetic electron no longer seen. Other research groups have now transport [2, 3], summarized in Fig. 1 [4]. For a examined additional electron transport inhibitors summary of the minority views on the organisation using this technique. All “DCMU-site” inhibitors of electron transport see [5]. The heavy arrows behave in the same way; trifluralin (1), nitrofen indicate the three sites we shall consider. (3), and perhaps ioxynil (5) do not (see [12] and 2.1. The DCMU site other papers in this volume). Many classes of compound are now know to Direct evidence that many Hill reaction inhibitors inhibit the Hill reaction (electron transfer between bind at the same site has recently been obtained in H20 and an electron acceptor acting before or after the elegant experiments of Tischer and Strottman [13]. They studied the binding of radioactive atra- zine (7), metribuzin (9) and phenmedipham (10) Abbreviations: DBMIB, 2,5-dibromo-3-methyl-6-isopropyl-p- benzoquinone; DCMU, 3-(3',4'-dichlorophenyl)-l,l-dimethyl- to chloroplast fragments and established (i) that urea; DCPIP, dichlorophenolindophenol; DNOC, 4,6-di- these compounds and DCMU compete directly with nitro-o-cresol; EPTC, ethyl-N,N-di-ra-propylthiolcarbamate. one another for the same site and (ii) that the bind­ Reprint requests to Dr. K. Wright. ing constants calculated directly from studies with 0341-0417 I 79 / 1100-0966 $ 01.00/0. radioactive compound or indirectly from competi- K. Wright and J. R. Corbett • Biochemistry of Herbicides Affecting Photosynthesis 967 BIPYRIDYLIUMS “ 0*5 *o-V 0-5 Fig. 1. Diagrammatic represen­ tation of the electron transport pathway of photosynthesis. See, for instance, reference [4] for further details and sources. The sites considered in the text are SITE It SITE I marked. CF3-^^-NPr2 Me-^^-NH.CHEt2 NO, NO* Me NO- 1 2 3 R =R =ci 4 R’ = CF3;R2= N 0 2 OH Cl R* N ^ N Et.NH^TJ ^ k. ^ nhNH,R.r NN SM6 RJ 5 R1 =R2=I;R3=CN 7 R=Pr 9 £ R' = R3=N 02;R2=Me 8 R = Et O NH co °-<S> lü ] ^ jo ? B>C° SR’ . _ T T \11, N Fig. 2. Structures of compounds inter- Me Me O.CO.NH H *fenng • with-.u electroni . transport. * (see/ 1 1 10B '-nPD2-c text). 1, trifluralin; 2, penoxalin; 3, l v I I \ £ ~ r' ~ * nitrofen; 4, fluorodifen; 5, ioxynil; 6, IO R'-'Pr DNOC; 7, atrazine; 8, simazine; 9, 2 metribuzin; 10, phenmedipham; 11, R =CH2C(CI)=CHCI bentazon; 12, EPTC; 13, diallate. 968 K. Wright and J. R. Corbett • Biochemistry of Herbicides Affecting Photosynthesis tion experiments were the same as the inhibition a lesser extent, fluorodifen are modest inhibitors of constants computed from Hill reaction inhibition plant mitochondrial electron transport (I50 for nitro­ data. Hence this site at which all the compounds fen 27 — 74 fM , depending on the substrate; [19]), compete is almost certainly the site at which inhibi­ so this might contribute to their herbicidal effect. A tion is brought about. further suggestion is that the compound acts as an Information about the DCMU site has recently energy-transfer inhibitor (see section 3). been provided by Machado and Amtzen et al. ([1 4 ], Reason why plants are killed. Although inhibition and see this volume). They discovered that triazine at the diuron site would cause depletion of ATP and resistance displayed by the weed Chenopodium NADPH2 death is probably not due to “starvation” album was due to a change in the chloroplast bind­ but rather to damage following a failure of the ing site so that binding of atrazine (7) was greatly mechanism that normally protects the photosynthetic decreased whilst DCMU binding was unaffected. apparatus against excessive illumination [20]. Taken together with the results described above it Stanger and Appleby [21] suggested that the seems likely that the various classes of compound damage was initiated by the lade of NADPH2 bind to different overlapping parts of a protein re­ required to maintain the protective carotenoid pig­ ceptor site so as to bring about inhibition of electron ments in the reduced form. Ridley [20], however, transfer [15]. suggests that when DCMU blocks electron transport Compounds which might inhibit the Hill reaction. conformational changes in the membrane that allow Although bentazon (11) has been shown to be a spillover of excitation energy from the antennae Hill reaction inhibitor [16], it was less effective units serving PS II to those serving PS I are pre­ than the inhibitors considered so far (e. g. 50% vented. Protection via the normal mechanism in­ inhibition of methyl viologen reduction at 200 j u m ) volving carotenoids is then no longer adequate and and the inhibition was, unusually, progressive with pigment breakdown ensues. When electron transport time; Böger et al. [17] suggested from their work between the photosystems resumes following the on algal chloroplasts and whole algae that a me­ addition of, e. g. a donor between the photosystems, tabolite may have been responsible. the conformational change which allows spillover Van Rensen et al. [18] measured the effects of can occur again and protection is restored. DNOC (6) on the Hill reaction using a variety of Both schemes are consistent with the results of conditions. The uncoupled ferricyanide Hill reac­ Moreland and Hill [3] who incubated isolated tion was the most sensitive, 50% inhibition being chloroplasts with DCMU in the light and in the caused at about 1 //M with uncoupling effects at dark, and then washed the chloroplasts to determine higher concentrations. Trebst and Draber [15] have if any irreversible inhibition had occurred. Less recently carried out regression analyses on Hill activity was restored to chloroplasts kept in the light, reaction inhibition results from a considerable presumably due to pigment breakdown. However, number of 2,6-disubstituted-4-nitrophenols and have when the experiment was conducted with simazine shown that the shape of the substituents was impor­ (8) the same restoration of activity was found after tant rather than their hydrophobic parameters. The both treatments. If both these compounds do bind authors postulate that the nitrophenols bind to a to the same site [13], the precise cause of death different site on the shielding protein (from DCMU may not be the same in each case; this warrants and other Hill reaction inhibitors) although the further investigation. same inhibitory effect on electron transport is in­ 2.2. The action of the bipyridylium herbicides duced. Diphenyl ethers also inhibit the Hill reaction, but The basic mechanism of action of these com­ the reported I50 values are perhaps a little high pounds has been quite well understood for some (nitrofen (3) 22 —23//M; but cf. fluorodifen (4), time although the details of the toxic species and 4.5 —5.6//M; [19]), and, like the dinitrophenols, their effects are still under investigation. The herbi­ they do not fit the structural requirements for the cides interact with photosynthetic electron transport DCMU site. Further, van Assche [12] found that as indicated in Fig. 1. Structural requirements for nitrofen did not compete with labelled DCMU for activity are known [22] and the sequence of events binding to chloroplast membranes.
Recommended publications
  • 2,4-Dichlorophenoxyacetic Acid
    2,4-Dichlorophenoxyacetic acid 2,4-Dichlorophenoxyacetic acid IUPAC (2,4-dichlorophenoxy)acetic acid name 2,4-D Other hedonal names trinoxol Identifiers CAS [94-75-7] number SMILES OC(COC1=CC=C(Cl)C=C1Cl)=O ChemSpider 1441 ID Properties Molecular C H Cl O formula 8 6 2 3 Molar mass 221.04 g mol−1 Appearance white to yellow powder Melting point 140.5 °C (413.5 K) Boiling 160 °C (0.4 mm Hg) point Solubility in 900 mg/L (25 °C) water Related compounds Related 2,4,5-T, Dichlorprop compounds Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) 2,4-Dichlorophenoxyacetic acid (2,4-D) is a common systemic herbicide used in the control of broadleaf weeds. It is the most widely used herbicide in the world, and the third most commonly used in North America.[1] 2,4-D is also an important synthetic auxin, often used in laboratories for plant research and as a supplement in plant cell culture media such as MS medium. History 2,4-D was developed during World War II by a British team at Rothamsted Experimental Station, under the leadership of Judah Hirsch Quastel, aiming to increase crop yields for a nation at war.[citation needed] When it was commercially released in 1946, it became the first successful selective herbicide and allowed for greatly enhanced weed control in wheat, maize (corn), rice, and similar cereal grass crop, because it only kills dicots, leaving behind monocots. Mechanism of herbicide action 2,4-D is a synthetic auxin, which is a class of plant growth regulators.
    [Show full text]
  • U.S. EPA, Pesticide Product Label, DICAMBAZINE, 09/25/2003
    UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON. D.C. 20460 OFFICE OF PREVENTION, PESTICIDES AND TOXIC SUBSTANCES SEP 2 5 2003 Albaugh, Inc. clo Pyxis Regulatory Consulting, Inc. ATTN: Michael Kellogg 11324 1']'1' Ave. Ct. NW Gig Harbor, W A 98332 Dear Mr. Kellogg: Subject: Fast Track Amendment for Atrazine Product Product: Dicambaiine EPA Registration Number: 42750-41 Submission Date: 04/24/03 The labeling referred to above, submitted in connection with registration under the Federal Insecticide, Fungicide and Rodenticide Act, as amended is acceptable, provided you make the followmg changes before you release the product for shipment. 1. Change the PPE section to the following: • "Some materials that are chemical-resistant to this product are barrier laminate> 14 mils, neoprene rubber> 14 mils, polyvinyl chloride (PVC) > 14 mils, butyl rubber> 14 mils, orviton >14 mils. Ifyou want more options, follow the instructions for category A on an EPA chemical-resistance category selection chart. " • "Mixers, loaders, applicators and other handlers not using Engineering Controls must wear: Coveralls over long sleeved ~hirt and long pants Chemical resistant gloves Chemical resistant footwear plus socks Chemical resistant headgear (if overhead exposure) A NlOSH approved dust mist filtering respirator with any N, R, P or HE filter A chemical resistant apron (if exposed to undiluted product)" • "Mixers, loaders, applicators and other handlers using Engineering Controls must wear: Long-sleeved shirt and long pants Chemical resistant gloves and apron for mixers and loaders Shoes plus socks See Engineering Controls for additional requirements" Note to registrant: You must drop the N type filter from the respirator statement if the product contains or is used with oil.
    [Show full text]
  • Exposure to Herbicides in House Dust and Risk of Childhood Acute Lymphoblastic Leukemia
    Journal of Exposure Science and Environmental Epidemiology (2013) 23, 363–370 & 2013 Nature America, Inc. All rights reserved 1559-0631/13 www.nature.com/jes ORIGINAL ARTICLE Exposure to herbicides in house dust and risk of childhood acute lymphoblastic leukemia Catherine Metayer1, Joanne S. Colt2, Patricia A. Buffler1, Helen D. Reed3, Steve Selvin1, Vonda Crouse4 and Mary H. Ward2 We examine the association between exposure to herbicides and childhood acute lymphoblastic leukemia (ALL). Dust samples were collected from homes of 269 ALL cases and 333 healthy controls (o8 years of age at diagnosis/reference date and residing in same home since diagnosis/reference date) in California, using a high-volume surface sampler or household vacuum bags. Amounts of agricultural or professional herbicides (alachlor, metolachlor, bromoxynil, bromoxynil octanoate, pebulate, butylate, prometryn, simazine, ethalfluralin, and pendimethalin) and residential herbicides (cyanazine, trifluralin, 2-methyl-4- chlorophenoxyacetic acid (MCPA), mecoprop, 2,4-dichlorophenoxyacetic acid (2,4-D), chlorthal, and dicamba) were measured. Odds ratios (OR) and 95% confidence intervals (CI) were estimated by logistic regression. Models included the herbicide of interest, age, sex, race/ethnicity, household income, year and season of dust sampling, neighborhood type, and residence type. The risk of childhood ALL was associated with dust levels of chlorthal; compared to homes with no detections, ORs for the first, second, and third tertiles were 1.49 (95% CI: 0.82–2.72), 1.49 (95% CI: 0.83–2.67), and 1.57 (95% CI: 0.90–2.73), respectively (P-value for linear trend ¼ 0.05). The magnitude of this association appeared to be higher in the presence of alachlor.
    [Show full text]
  • Delayed Fluorescence Imaging of Photosynthesis Inhibitor and Heavy Metal Induced Stress in Potato
    Cent. Eur. J. Biol. • 7(3) • 2012 • 531-541 DOI: 10.2478/s11535-012-0038-z Central European Journal of Biology Delayed fluorescence imaging of photosynthesis inhibitor and heavy metal induced stress in potato Research Article Jaka Razinger1,*, Luka Drinovec2, Maja Berden-Zrimec3 1Agricultural Institute of Slovenia, 1000 Ljubljana, Slovenia 2Aerosol d.o.o., 1000 Ljubljana, Slovenia 3Institute of Physical Biology, 1000 Ljubljana, Slovenia Received 09 November 2011; Accepted 13 March 2012 Abstract: Early chemical-induced stress in Solanum tuberosum leaves was visualized using delayed fluorescence (DF) imaging. The ability to detect spatially heterogeneous responses of plant leaves exposed to several toxicants using delayed fluorescence was compared to prompt fluorescence (PF) imaging and the standard maximum fluorescence yield of PSII measurements (Fv/Fm). The toxicants used in the study were two photosynthesis inhibitors (herbicides), 100 μM methyl viologen (MV) and 140 μM diuron (DCMU), and two heavy metals, 100 μM cadmium and 100 μM copper. The exposure times were 5 and 72 h. Significant photosynthesis-inhibitor effects were already visualized after 5 h. In addition, a significant reduction in the DF/PF index was measured in DCMU- and MV-treated leaves after 5 h. In contrast, only DCMU-treated leaves exhibited a significant decrease in Fv/Fm after 5 h. All treatments resulted in a significant decrease in the DF/PF parameter after 72 h of exposure, when only MV and Cd treatment resulted in visible symptoms. Our study highlights the power of delayed fluorescence imaging. Abundant quantifiable spatial information was obtained with the instrumental setup. Delayed fluorescence imaging has been confirmed as a very responsive and useful technique for detecting stress induced by photosynthesis inhibitors or heavy metals.
    [Show full text]
  • Evidence for Different Binding Sites on the 33-Kda Protein for DCMU, Atrazine and QB
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Volume 167, number 2 FEBS 1259 February 1984 Evidence for different binding sites on the 33-kDa protein for DCMU, atrazine and QB Chantal Astier, Alain Boussac and Anne-Lise Etienne Laboratoire de PhotosynthPse, CNRS, BP I, 91190 Gifsur-Yvette, France Received 21 November 1983; revised version received 4 January 1984 Two DCMU-resistant strains of the cyanobacterium Synechocystis 6714 were used to analyse the binding sites of DCMU, atrazine and QB. DCMU’-11~was DCMU and atrazine resistant; it presented an impaired electron flow and its 33-kDa protein was weakly attached to the membrane. DCMU’-IIB, derived from the former, simultaneously regained atrazine sensitivity, normal electron flow and a tight linkage of the 33-kDa protein to the membrane. This mutant shows that loss of DCMU binding does not necessarily affect the binding of either atrazine or QB. The role of the 33-kDa protein is discussed. Cyanobacteria Mutant Herbicide Photosynthesis Photosystem ZZ 1. INTRODUCTION that a specific attack of lysine residues resulted also in a partial release of inhibition by SN58132, Electron transfer on the acceptor side of a DCMU-type inhibitor [17]. Photosystem II occurs through a primary acceptor Radioactivity labelling experiments were used to QA [l] (a particular plastoquinone of the general demonstrate a competition between DCMU and pool [2] closely associated with the chlorophyll atrazine [6,18-201. A similar competition was pro- center), a secondary acceptor Qn [3] bound to its posed in [l l] between DCMU and QB.
    [Show full text]
  • Interactions of Paraquat and Nitrodiphenylether Herbicides with the Chloroplast Photosynthetic Electron Transport in the Activation of Toxic Oxygen Species
    INTERACTIONS OF PARAQUAT AND NITRODIPHENYLETHER HERBICIDES WITH THE CHLOROPLAST PHOTOSYNTHETIC ELECTRON TRANSPORT IN THE ACTIVATION OF TOXIC OXYGEN SPECIES by Brad Luther Upham Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Plant Physiology APPROVED: Kriton K. Hatzios, Chairman -----..------,,...-r---~---------J ohn L. Hess Joyce G. Foster Laurence D. Moore David M. Orcutt William E. Winner INTERACTIONS OF PARAQUAT AND.NITRODIPHENYLETHER HERBICIDES WITH THE PHOTOSYNTHETIC ELECTRON TRANSPORT IN THE ACTIVATION OF TOXIC OXYGEN SPECIES by Brad Luther Upham Kriton K. Hatzios, Chairman Plant Physiology (ABSTRACT) The interactions of paraquat (methylviologen) and diphenylether her- bicides with the Mehler reaction as investigated. Sera from two differ- ent rabbits (RSl & RS2) were examined for their patterns of inhibition of the photosynthetic electron transport (PET) system. Serum from RS2 was greatly hemolyzed. Fifty ul of RSI serum were required for 100% inhibi- tion of a 1120 --> methylviologen(MV)/02 reaction, whereas only 10 µl of a 1:10 dilution of RS2 were needed for 100% inhibition. The ~-globulin fraction from purified rabbit serum (RSl) did not inhibit PET, indicat- ing that the antibody fraction of the rabbit serum does not contain the inhibitor. It appears that the inhibitor is from the hemolyzed red blood cells. Rabbit sera, added to chloroplast preparations prior illu- mination, caused no inhibition of a 1120 --> MV/02 reaction while addi- tion of rabbit sera during illumination inhibited the 1120 --> MV/02 reaction within 1-3 s. Various Hill reactions were used to determine the site of inhibition.
    [Show full text]
  • List of Herbicide Groups
    List of herbicides Group Scientific name Trade name clodinafop (Topik®), cyhalofop (Barnstorm®), diclofop (Cheetah® Gold*, Decision®*, Hoegrass®), fenoxaprop (Cheetah® Gold* , Wildcat®), A Aryloxyphenoxypropionates fluazifop (Fusilade®, Fusion®*), haloxyfop (Verdict®), propaquizafop (Shogun®), quizalofop (Targa®) butroxydim (Falcon®, Fusion®*), clethodim (Select®), profoxydim A Cyclohexanediones (Aura®), sethoxydim (Cheetah® Gold*, Decision®*), tralkoxydim (Achieve®) A Phenylpyrazoles pinoxaden (Axial®) azimsulfuron (Gulliver®), bensulfuron (Londax®), chlorsulfuron (Glean®), ethoxysulfuron (Hero®), foramsulfuron (Tribute®), halosulfuron (Sempra®), iodosulfuron (Hussar®), mesosulfuron (Atlantis®), metsulfuron (Ally®, Harmony®* M, Stinger®*, Trounce®*, B Sulfonylureas Ultimate Brushweed®* Herbicide), prosulfuron (Casper®*), rimsulfuron (Titus®), sulfometuron (Oust®, Eucmix Pre Plant®*), sulfosulfuron (Monza®), thifensulfuron (Harmony®* M), triasulfuron, (Logran®, Logran® B Power®*), tribenuron (Express®), trifloxysulfuron (Envoke®, Krismat®*) florasulam (Paradigm®*, Vortex®*, X-Pand®*), flumetsulam B Triazolopyrimidines (Broadstrike®), metosulam (Eclipse®), pyroxsulam (Crusader®Rexade®*) imazamox (Intervix®*, Raptor®,), imazapic (Bobcat I-Maxx®*, Flame®, Midas®*, OnDuty®*), imazapyr (Arsenal Xpress®*, Intervix®*, B Imidazolinones Lightning®*, Midas®*, OnDuty®*), imazethapyr (Lightning®*, Spinnaker®) B Pyrimidinylthiobenzoates bispyribac (Nominee®), pyrithiobac (Staple®) C Amides: propanil (Stam®) C Benzothiadiazinones: bentazone (Basagran®,
    [Show full text]
  • DCMU) Or Paraquat-Treated Euglena Gracilis Cells Erich F
    Chlorophyll Photobleaching and Ethane Production in Dichlorophenyldimethylurea- (DCMU) or Paraquat-Treated Euglena gracilis Cells Erich F. Elstner and W. Osswald Institut für Botanik und Mikrobiologie, Technische Universität München, Arcisstr. 21, D-8000 München 2 Z. Naturforsch. 35 c, 129-135 (1980); received August 20/September 28, 1979 Chlorophyll Bleaching, Herbicides, Euglena gracilis, Ethane, Fat Oxidation Light dependent (35 Klux) chlorophyll bleaching in autotrophically grown Euglena gracilis cells at slightly acidic pH (6.5 —5.4) is stimulated by the photosystem II blockers DCMU and DBMIB (both 10~ 5 m) as well as by the autooxidizable photosystem I electron acceptor, paraquat (1 0 -3 m ). Chlorophyll photobleaching is accompanied by the formation of thiobarbituric acid — sensitive material (“malondialdehyde”) and ethane. Both chlorophyll photobleaching and light dependent ethane formation are partially prevented by higher concentrations (10~* m ) of the autooxidizable photosystem II electron acceptor DBMIB or by sodium bicarbonate (25 mM). In vitro studies with cell free extracts (homogenates) from E. gracilis suggest that a-linolenic acid oxidation by excited (reaction center II) chlorophyll represents the driving force for both ethane formation and chlorophyll bleaching. Ethane formation thus appears to be a sensitive and non-destructive “in vivo’’ marker for both restricted energy dissipation in photosystem II and, conditions yielding reactive oxygen species at the reducing side o f photosystem I. Introduction quent lipid attack and membrane destruction in the case of low potential photosystem I electron ac­ Chlorophyll bleaching is one of the characteristic ceptors as paraquat and other bipyridylium salts symptoms for plant diseases introduced by infec­ [4, 5, 9], tions, certain physical parameters or by chemicals.
    [Show full text]
  • Pesticide Simazine and Breast Cancer Risk
    Pesticide Simazine and Breast Cancer Risk http://envirocancer.cornell.edu/Bibliography/pesticide/bib.simazine.cfm Skip to main content New Program Learning Resources Events Maps & Stats Research Resources BCERF Research Pesticide Simazine and Breast Cancer Risk Bibliography This bibliography is provided as a service to our readers. It is compiled from the entries in the BCERF Environmental Risk Factors Bibliographic Database. This bibliography is arranged topically. The topics include: Chemical Names and Trade Names Transformation Products and Metabolites History of Use and Usage Regulatory Status and Regulations Human Studies-Evidence of Carcinogenicity Animal Experimental Studies-Evidence of Carcinogencity Evidence of Estrogenicity Effect on Reproduction Formation of Co-Carcinogens Mutagenicity Environmental Fate Persistency in Soil Water Contamination Chemical Names and Trade Names Meister, R. T. (1997). Pesticide Dictionary; Simazine. In 1997 Farm Chemicals Handbook, R. T. Meister, ed. (Willoughby, OH: Meister Publishing Company), pp. C 334. Montgomery, J. H. (1993). Simazine. In Agrochemicals Desk Reference (Boca Raton: Lewis Publishers), pp. 371-377. WSSA. (1994). Simazine. In Herbicide Handbook, 7th, W. H. Ahrens, ed. (Champaign, IL: Weed Science Society of America), pp. 270-272. Transformation Products and Metabolites Adams, N. H., Levi, P., and Hodgson, E. (1990). In vitro studies of the metabolism of atrazine, simazine, and terbutryn in several vertebrate species. Journal of Agricultural and Food Chemistry 38, 1411-1417. WSSA. (1994). Simazine. In Herbicide Handbook, 7th, W. H. Ahrens, ed. (Champaign, IL: Weed Science Society of America), pp. 270-272. History of Use and Usage Bartowiak, D., Newhart, K., Pepple, M., Troiano, J., and Weaver, D. (1995). Sampling for Pesticide Residues in California Well Water; 1995 Update of the Well Inventory Data Base (Sacremento, CA: California Environmental Protection Agency, Dept.
    [Show full text]
  • Pesticides EPA 738-R-06-008 Environmental Protection and Toxic Substances April 2006 Agency (7508P)
    Simazine RED April 6, 2006 United States Prevention, Pesticides EPA 738-R-06-008 Environmental Protection and Toxic Substances April 2006 Agency (7508P) Reregistration Eligibility Decision for Simazine Page 1 of 266 Reregistration Eligibility Decision (RED) Document for Simazine List A Case Number 0070 Approved by: Date: April 6, 2006 Debra Edwards, Ph. D. Director Special Review and Reregistration Division Page 2 of 266 Table of Contents Simazine Reregistration Eligibility Decision Team ................................................................... 5 Glossary of Terms and Abbreviations ........................................................................................ 6 Abstract.......................................................................................................................................... 8 I. Introduction............................................................................................................................... 9 II. Chemical Overview................................................................................................................ 10 A. Chemical Identity ................................................................................................................10 B. Use and Usage Profile .........................................................................................................11 C. Tolerances............................................................................................................................12 III. Summary of Risk Assessments
    [Show full text]
  • List of Class 1 Designated Chemical Substances
    List of Class 1 Designated Chemical Substances *1:CAS numbers are to be solely as references. They may be insufficient or lacking, in case there are multiple chemical substances. No. Specific Class 1 CAS No. (PRTR Chemical (*1) Name Law) Substances 1 - zinc compounds(water-soluble) 2 79-06-1 acrylamide 3 140-88-5 ethyl acrylate 4 - acrylic acid and its water-soluble salts 5 2439-35-2 2-(dimethylamino)ethyl acrylate 6 818-61-1 2-hydroxyethyl acrylate 7 141-32-2 n-butyl acrylate 8 96-33-3 methyl acrylate 9 107-13-1 acrylonitrile 10 107-02-8 acrolein 11 26628-22-8 sodium azide 12 75-07-0 acetaldehyde 13 75-05-8 acetonitrile 14 75-86-5 acetone cyanohydrin 15 83-32-9 acenaphthene 16 78-67-1 2,2'-azobisisobutyronitrile 17 90-04-0 o-anisidine 18 62-53-3 aniline 19 82-45-1 1-amino-9,10-anthraquinone 20 141-43-5 2-aminoethanol 21 1698-60-8 5-amino-4-chloro-2-phenylpyridazin-3(2H)-one; chloridazon 5-amino-1-[2,6-dichloro-4-(trifluoromethyl)phenyl]-3-cyano- 22 120068-37-3 4[(trifluoromethyl)sulfinyl]pyrazole; fipronil 23 123-30-8 p-aminophenol 24 591-27-5 m-aminophenol 4-amino-6-tert-butyl-3-methylthio-1,2,4-triazin-5(4H)-one; 25 21087-64-9 metribuzin 26 107-11-9 3-amino-1-propene 27 41394-05-2 4-amino-3-methyl-6-phenyl-1,2,4-triazin-5(4H)-one; metamitron 28 107-18-6 allyl alcohol 29 106-92-3 1-allyloxy-2,3-epoxypropane 30 - n-alkylbenzenesulfonic acid and its salts(alkyl C=10-14) 31 - antimony and its compounds 32 120-12-7 anthracene 33 1332-21-4 asbestos ○ 34 4098-71-9 3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate 35 78-84-2 isobutyraldehyde
    [Show full text]
  • 20210311 IAEG AD-DSL V5.0 for Pdf.Xlsx
    IAEGTM AD-DSL Release Version 4.1 12-30-2020 Authority: IAEG Identity: AD-DSL Version number: 4.1 Issue Date: 2020-12-30 Key Yellow shading indicates AD-DSL family group entries, which can be expanded to display a non-exhaustive list of secondary CAS numbers belonging to the family group Substance Identification Change Log IAEG Regulatory Date First Parent Group IAEG ID CAS EC Name Synonyms Revision Date ECHA ID Entry Type Criteria Added IAEG ID IAEG000001 1327-53-3 215-481-4 Diarsenic trioxide Arsenic trioxide R1;R2;D1 2015-03-17 2015-03-17 100.014.075 Substance Direct Entry IAEG000002 1303-28-2 215-116-9 Diarsenic pentaoxide Arsenic pentoxide; Arsenic oxide R1;R2;D1 2015-03-17 2015-03-17 100.013.743 Substance Direct Entry IAEG000003 15606-95-8 427-700-2 Triethyl arsenate R1;R2;D1 2015-03-17 2017-08-14 100.102.611 Substance Direct Entry IAEG000004 7778-39-4 231-901-9 Arsenic acid R1;R2;D1 2015-03-17 2015-03-17 100.029.001 Substance Direct Entry IAEG000005 3687-31-8 222-979-5 Trilead diarsenate R1;R2;D1 2015-03-17 2017-08-14 100.020.890 Substance Direct Entry IAEG000006 7778-44-1 231-904-5 Calcium arsenate R1;R2;D1 2015-03-17 2017-08-14 100.029.003 Substance Direct Entry IAEG000009 12006-15-4 234-484-1 Cadmium arsenide Tricadmium diarsenide R1;R2;D1 2017-08-14 2017-08-14 Substance Direct Entry IAEG000021 7440-41-7 231-150-7 Beryllium (Be) R2 2015-03-17 2019-01-24 Substance Direct Entry IAEG000022 1306-19-0 215-146-2 Cadmium oxide R1;R2;D1 2015-03-17 2017-08-14 100.013.770 Substance Direct Entry IAEG000023 10108-64-2 233-296-7 Cadmium
    [Show full text]