Best Practices for Soc Design Electronic Design Process Symposium 2014

Total Page:16

File Type:pdf, Size:1020Kb

Best Practices for Soc Design Electronic Design Process Symposium 2014 Best Practices for SoC Design Electronic Design Process Symposium 2014 Kurt Shuler Vice President Marketing, Arteris [email protected] Copyright © 2014 Arteris Arteris Snapshot Founded in 2003; headquarters in Silicon Valley Awards Customer Adoption 50 56 39 19 12 5 8 1 2006 2007 2008 2009 2010 2011 2012 2013 Timeline of Key Events* Arteris is founded Charlie Janac Arteris secures Arteris ships second-generation Arteris Leading Arteris by Philippe joins Arteris funding in a round led NoC: FlexNoC. It closes funding becomes smartphone announces Boucard, Alain as CEO. by Synopsys and from Qualcomm Ventures profitable. models ship hiring of new Fanet and César moves headquarters (Europe), ARM (UK) and Innotech using Arteris engineering Douady in Paris. from Paris to Silicon (Japan) plus existing investors. interconnect leadership Valley. technology. team. 2003 2004 2005 2006 2007 2007 2009 2010 2011 2012 2013 2013 2014 Arteris ships its first Texas Instruments selects Arteris starts customer A majority (~60%) of the Arteris receives interconnect IP product the Arteris NoCSolution IP relationships with world’s mobility system-on- Qualcomm first funding from called “NoCSolution” for OMAP4 Application Samsung and chip projects adopt Arteris purchases Arteris Crescendo and closes US$ 1 Processor development. TI Qualcomm, ships FlexNoC Interconnect. Arteris IP and engineering Ventures, Ventech million in licenses works with Arteris to FlexLLI Interchip Link receives Inc. 500 and other team in unique and TVM Capital. almost immediately. productize NoC technology. IP products. awards for rapid growth. transaction. *Timeline graphic courtesy of World Economic Forum Copyright © 2014 Arteris 2 Active Customers +9 Unannounced Customers Copyright © 2014 Arteris 3 IP is key to SoC assembly success CPU Subsystem Design-Specific Subsystems Application IP DSP Subsystem (A/V) Subsystem AES A15 A15 A7 A7 IP IP IP IP IP IP 2D GR. GPU Subsystem A15 A15 A7 A7 3D Graphics FlexWay® Interconnect FlexWay Interconnect MPEG L2 cache L2 cache IP IP IP IP IP IP Etc. Coherent ® Interchip LinksTM Interconnect FlexNoC Top Level Interconnect Subsystem Interconnect Memory Scheduler WiFi HDMI CRI Crypto Memory Controller USB 3 GSM Firewall MIPI PCIe Ethernet USB 2 (PCF+) LP DDR Wide IO LTE Display DDR3 PHY RSA- PHY PHY LTE Adv. PSS PMU 3.0, 2.0 Cert. Engine PHY PHY JTAG High Speed Wired Peripherals Wireless Subsystem Memory Subsystem Arteris Interconnect IP Products Security Subsystem I/O Peripherals Copyright © 2014 Arteris 4 Goal: Reduce TTM to 9 to 12 months FlexNoC Structural NoC Automated NoC Exploration Synthesis Verification FlexVerifier Observability System Verilog-based assertions can be reused at system level Standard TTM is 18-24 Months Interconnect Interconnect Architecture Design Verification SoC system Verification A D V S T/O IP Design IP Integration P Physical Design Platform Debug 18 – 24 Actual Customer Experience with Arteris NoC months A D V S P T/O FPGA Emulation 9 – 12 Software Development 1-2 days iteration months Copyright © 2014 Arteris 5 Best Practices Lessons learned from the most successful SoC companies 1. Internally-develop only your most important IP 2. Create a corporate “IP library” 3. Develop corporate design and verification methodologies 4. Use a platform and derivatives approach Copyright © 2014 Arteris 6 1. Internally-develop only your most important IP Copyright © 2014 Arteris 7 2. Create a corporate “IP library” Copyright © 2014 Arteris 8 3. Develop corporate design and verification methodologies FlexNoC Structural NoC Automated NoC Exploration Synthesis Verification FlexVerifier Observability System Verilog-based assertions can be reused at system level Example Design and Verification Flow Interconnect Interconnect Architecture Design Verification SoC system Verification A D V S T/O IP Design IP Integration P Physical Design Platform Debug Copyright © 2014 Arteris 9 4. Use a platform and derivatives approach Copyright © 2014 Arteris 10 Semi vendors aren’t the only one who make chips! Design IP Semiconductor System House Service Provider Vendor Vendor or OEM or Channel Copyright © 2014 Arteris 11 Cash on Hand Systems Houses, Semiconductor and Design IP Vendors, Billions ($B) Apple $147.00 Microsoft $68.31 Google $48.09 Samsung $35.16 Sony $19.07 Intel $18.16 Qualcomm $13.28 Amazon $11.45 Ebay $9.41 TI $3.96 AMD $2.94 Toshiba $2.59 STMicroelectronics $2.49 Broadcom $2.37 Renesas Electronics $1.60 ARM $0.91 Synopsys $0.89 Cadence $0.72 Imagination $0.08 Sources: Morningstar, Forbes, Yahoo Finance, Wikinvest Copyright © 2014 Arteris 12 Efficient SoC assembly & IP reuse must become core skills for all semi vendors ○ SoC assembly is more critical to success than creating custom IPs ○ Best practices can enable semi vendors to make more and better chips, more efficiently ○ Semi customers are becoming competitors as chip design “democratizes” Copyright © 2014 Arteris 13 Copyright © 2014 Arteris 14 .
Recommended publications
  • GS40 0.11-Μm CMOS Standard Cell/Gate Array
    GS40 0.11-µm CMOS Standard Cell/Gate Array Version 1.0 January 29, 2001 Copyright Texas Instruments Incorporated, 2001 The information and/or drawings set forth in this document and all rights in and to inventions disclosed herein and patents which might be granted thereon disclosing or employing the materials, methods, techniques, or apparatus described herein are the exclusive property of Texas Instruments. No disclosure of information or drawings shall be made to any other person or organization without the prior consent of Texas Instruments. IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this war- ranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage (“Critical Applications”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WAR- RANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.
    [Show full text]
  • High-Level Synthesis Tools for Xilinx Fpgas
    An Independent Evaluation of: High-Level Synthesis Tools for Xilinx FPGAs By the staff of Berkeley Design Technology, Inc. Executive Summary In 2009, Berkeley Design Technology Inc. (BDTI), an HLSTs provided roughly 40X better performance than a independent benchmarking and analysis firm, launched mainstream DSP processor, and that the high-level syn- the BDTI High-Level Synthesis Tool Certification Pro- thesis tools were able to achieve FPGA resource utiliza- gram™ to evaluate high-level synthesis tools for tion levels comparable to hand-written RTL code. FPGAs. Such tools take as their input a high-level repre- Furthermore, as we will discuss in this white paper, sentation of an application (written in C or MATLAB, for implementing our video application using the HLSTs example) and generate a register-transfer-level (RTL) along with Xilinx FPGA tools required a similar level of implementation for an FPGA. Thus far, two high-level effort as that required for the DSP processor. This find- synthesis tools, AutoESL’s AutoPilot and the Synopsys ing will no doubt be surprising to many, as FPGAs have Synphony C Compiler, have been certified under the historically required much more development time than program. DSPs. BDTI’s evaluation program uses two example appli- Based on our analysis, we believe that HLSTs can sig- cations, a video motion analysis application and a wireless nificantly increase the productivity of current FPGA receiver, to evaluate high-level synthesis tools (HLSTs) users. For those using DSP processors in highly demand- on a number of quantitative and qualitative metrics. As ing applications, we believe that FPGAs used with shown in Figure 1 and Figure 2, we found that the Xilinx HLSTs are worthy of serious consideration.
    [Show full text]
  • Introduction to Intel® FPGA IP Cores
    Introduction to Intel® FPGA IP Cores Updated for Intel® Quartus® Prime Design Suite: 20.3 Subscribe UG-01056 | 2020.11.09 Send Feedback Latest document on the web: PDF | HTML Contents Contents 1. Introduction to Intel® FPGA IP Cores..............................................................................3 1.1. IP Catalog and Parameter Editor.............................................................................. 4 1.1.1. The Parameter Editor................................................................................. 5 1.2. Installing and Licensing Intel FPGA IP Cores.............................................................. 5 1.2.1. Intel FPGA IP Evaluation Mode.....................................................................6 1.2.2. Checking the IP License Status.................................................................... 8 1.2.3. Intel FPGA IP Versioning............................................................................. 9 1.2.4. Adding IP to IP Catalog...............................................................................9 1.3. Best Practices for Intel FPGA IP..............................................................................10 1.4. IP General Settings.............................................................................................. 11 1.5. Generating IP Cores (Intel Quartus Prime Pro Edition)...............................................12 1.5.1. IP Core Generation Output (Intel Quartus Prime Pro Edition)..........................13 1.5.2. Scripting IP Core Generation....................................................................
    [Show full text]
  • NOTICE of ANNUAL MEETING of STOCKHOLDERS April 23, 2001 ______
    NOTICE OF ANNUAL MEETING OF STOCKHOLDERS April 23, 2001 ________________ To the Stockholders of Synopsys, Inc.: NOTICE IS HEREBY GIVEN that the Annual Meeting of Stockholders of Synopsys, Inc., a Delaware corporation (the “Company”), will be held on Monday, April 23, 2001, at 4:00 p.m., local time, at the Company’s principal executive offices at 700 East Middlefield Road, Mountain View, California 94043, for the following purposes: 1. To elect eight directors to serve for the ensuing year or until their successors are elected. 2. To approve an amendment to the Company’s Employee Stock Purchase Plan and International Employee Stock Purchase Plan to increase the number of shares of Common Stock reserved for issuance thereunder by 1,200,000 shares. 3. To approve an amendment to the 1992 Stock Option Plan to extend the term of the Plan from January 2002 to January 2007. 4. To ratify the appointment of KPMG LLP as independent auditors of the Company for fiscal year 2001. 5. To transact such other business as may properly come before the meeting or any adjournment or adjournments thereof. The foregoing items of business are more fully described in the Proxy Statement accompanying this Notice. Only stockholders of record at the close of business on February 26, 2001 are entitled to notice of and to vote at the meeting. All stockholders are cordially invited to attend the meeting in person. However, to assure your representation at the meeting, you are urged to sign and return the enclosed proxy (the “Proxy”) as promptly as possible in the envelope enclosed.
    [Show full text]
  • IEEE 802.3Da SPMD TF Meeting May 19, 2021 Prepared by Peter Jones
    IEEE 802.3da SPMD TF meeting May 19, 2021 Prepared by Peter Jones Presentations posted at: https://www.ieee802.org/3/da/index.html Agenda/Admin - Chad Jones All times in Pacific Time (PT) 7:01am: The Chair reviewed the agenda in https://www.ieee802.org/3/da/public/051921/8023da_agenda_051921.pdf. The Chair asked if there were any corrections or additions to the agenda. There being no corrections or additions, the agenda stands approved. The Chair asked if anyone hasn’t had a chance to review the minutes for April 21, 2021. None responded. The Chair asked if there were any change to be made to the April 21, 2021 minutes. None responded. The April 21, 2021 minutes were approved by unanimous consent. 7:09am: Call for patents was made, no one responded. 7:14am: opening agenda slides complete. The meeting moves on to presentations. Presentations/Discussion. 7:14am: LTspice Model Validation Chris DiMinico, MC Communications/PHY-SI LLC/SenTekse/Panduit Bob Voss, Panduit Paul Wachtel, Panduit 7:21am: presentation done, start of Q&A. 7:30am: Q&A done. 7:30am: Startup sequence Michael Paul, ADI 8.05am: presentation & Q&A done. 8:05am: Editors comments George Zimmerman, CME Consulting/various 8:28am: Closing remarks Next meeting: May 26, 2021 , 7:00am PT. Meeting closed – 8:31am PT Attendees (from Webex + emails) Name Employer Affiliation Attended 05/19 Alessandro Ingrassia Canova Tech Canova Tech y Anthony New Prysmian Group Prysmian Group y Bernd Horrmeyer Phoenix Contact Phoenix Contact y Bob Voss Panduit Corp. Panduit Corp. y Brian Murray Analog Devices Inc.
    [Show full text]
  • Microchip Technology Inc
    Microchip Technology Inc. Watchdog Report ™ MCHP (NASDAQ Global) | CIK:827054 | United States | SEC llings The new model for duciary analysis Sep 24, 2021 Jan 1, 2020 Jan 1, 2016 RECENT PERIOD HISTORICAL PERIOD Key Facts 10-Q led on Aug 3, 2021 for period ending Jun 2021 Business address: Chandler, Arizona, United States Reporting Irregularities RECENT HISTORICAL Industry: Semiconductor and Related Device Manufacturing (NAICS Financial Restatements 334413) SEC ler status: Large Accelerated Filer as of Jun 2021 Revisions Index member: S&P 500, Russell 1000 Out of Period Adjustments Market Cap: $45.3b as of Sep 24, 2021 Late Filings Annual revenue: $5.44b as of Mar 31, 2021 Impairments Corporate Governance Changes in Accounting Estimates CEO: Ganesh Moorthy since 2021 Disclosure Controls CFO: Eric J. Bjornholt since 2009 1st level Internal Controls Board Chairman: Steve Sanghi since 1993 Critical / Key Audit Matters Audit Committee Chair: NOT AVAILABLE Anomalies in the Numbers 2nd level RECENT HISTORICAL Benford's Law Auditor: Ernst & Young LLP since 2001 Outside Counsel (most recent): Wilson Sonsini Goodrich & Rosati Beneish M-Score Osborn Maledon PA Accounting Disclosure Complexity 3rd level Securities & Exchange Commission Concerns RECENT HISTORICAL SEC Reviewer: (unknown) 4th level SEC Oversight SEC Letters to Management Revenue Recognition Non-GAAP Measures Litigation & External Pressures RECENT HISTORICAL Signicant Litigation Securities Class Actions Shareholder Activism Watchdog Research, Inc., offers both individual and group subscriptions, Cybersecurity data feeds and/or custom company reports to our subscribers. Management Review Subscribe: We have delivered 300,000 public company reports to over RECENT HISTORICAL 27,000 individuals, from over 9,000 investment rms and to 4,000+ public CEO Changes company corporate board members.
    [Show full text]
  • Xilinx XAPP107: Synopsys/Xilinx High Density Design Methodology Using
    Product Obsolete/Under Obsolescence Application Note 3 0 Synopsys/Xilinx High Density Design Methodology Using FPGA Compiler™ XAPP107 August 6, 1998 (Version 1.0) 03*Written by: Bernardo Elayda & Ramine Roane Summary This paper describes design practices to synthesize high density designs (i.e. over 100k gates), composed of large functional blocks, for today’s larger Xilinx FPGA devices using the Synopsys FPGA Compiler. The Synopsys FPGA Compiler version 1998.02, Alliance Series 1.5, and the XC4000X family were used in preparing the material for this application note. Introduction designs preserving some levels of hierarchy will lead to better placement routing results and shorter compile times. For smaller designs, optimal quality of results can often be achieved by ungrouping hierarchical boundaries (compile The designer must determine which trade-offs to make to -ungroup_all). For high density designs, designers tra- meet his design goals and timing requirements. ditionally partition their circuits into small 5-10k gate mod- High density designs require greater selectivity on which ules. With todays version of FPGA Compiler (1998.02) and hierarchical boundaries to eliminate for synthesis. Flatten- currently available workstation hardware it is no longer nec- ing a 150k gate design can lead to long compile times, and essary to partition a design into small 5K to 10K blocks for compromise results. The following guidelines will help in efficient synthesis. In fact, artificial partitioning the design choosing which blocks to flatten in a large design: can worsen optimization results by breaking paths into sep- 1. Eliminating boundaries between combinatorial blocks arate partitions and preventing FPGA Compiler from being allows the synthesis tool to optimize glue logic across able to optimize the entire path.
    [Show full text]
  • 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
    Case 5:19-cv-02082-LHK Document 48 Filed 06/26/19 Page 1 of 9 1 2 3 4 5 6 7 8 UNITED STATES DISTRICT COURT 9 NORTHERN DISTRICT OF CALIFORNIA 10 SAN JOSE DIVISION 11 12 SYNOPSYS, INC., Case No. 19-CV-02082-LHK 13 Plaintiff, ORDER GRANTING PRELIMINARY INJUNCTION 14 v. 15 INNOGRIT, CORP., 16 Defendant. 17 United States District Court District United States Northern District of California District Northern 18 On April 23, 2019, the Court denied Plaintiff’s ex parte application for a temporary 19 restraining order. ECF No. 16 at 6. However, the Court also ordered Defendant to show cause why 20 a preliminary injunction should not issue. Id. The Court permitted the parties to brief whether a 21 preliminary injunction is appropriate here. Before the Court is the question of whether to impose a 22 preliminary injunction in the instant case. Having considered the parties’ submissions, the relevant 23 law, and the record in this case, the Court GRANTS a preliminary injunction. 24 I. BACKGROUND 25 Factual Background 26 Plaintiff is a provider of electronic design automation (“EDA”). ECF No. 39 (first 27 amended complaint, or “FAC”) at ¶ 8. EDA refers to “using computers to design, verify, and 28 1 Case No. 19-CV-02082-LHK ORDER GRANTING PRELIMINARY INJUNCTION Case 5:19-cv-02082-LHK Document 48 Filed 06/26/19 Page 2 of 9 1 simulate the performance of electronic circuits.” Id. Plaintiff has invested substantial sums of 2 money in designing EDA software, and offers a variety of software applications to purchasers.
    [Show full text]
  • GS30 Product Overview
    GS30 0.15-µm CMOS Standard Cell/Gate Array Version 1.0 February, 2001 Copyright Texas Instruments Incorporated, 2001 The information and/or drawings set forth in this document and all rights in and to inventions disclosed herein and patents which might be granted thereon disclosing or employing the materials, methods, techniques, or apparatus described herein are the exclusive property of Texas Instruments. No disclosure of information or drawings shall be made to any other person or organization without the prior consent of Texas Instruments. IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this war- ranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage (“Critical Applications”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WAR- RANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.
    [Show full text]
  • Demand-Based Scheduling Using Noc Probes
    Demand-based Scheduling using NoC Probes Kurt Shuler Jonah Probell Monica Tang Arteris, Inc. Sunnyvale, CA, USA www.arteris.com ABSTRACT Contention for shared resources, such as memory in a system-on-chip, is inefficient. It limits performance and requires initiator IPs, such as CPUs, to stay powered up and run at clock speeds higher than they would otherwise. When a system runs multiple tasks simultaneously, contention will vary depending on each task’s demand for shared resources. Scheduling in a conventional system does not consider how much each task will demand shared resources. Proposed is a demand-based method of scheduling tasks that have diverse demand for shared resources in a multi- processor system-on-chip. Tasks with extremes of high and low demand are scheduled to run simultaneously. Where tasks in a system are cyclical, knowledge of period, duty cycle, phase, and magnitude are considered in the scheduling algorithm. Using demand-based scheduling, the time variation of aggregate demand is reduced, as might be its maximum. The average access latency and resulting idle clock cycles are reduced. This allows initiator IPs to run at lower clock frequencies, finish their tasks sooner, and spend more time in powered down modes. Use of probes within a network-on-chip to gather demand statistics, application-specific algorithm considerations, operating system thread scheduler integration, and heterogeneous system middleware integration are discussed. Contents 1. Introduction ......................................................................................................................................................................
    [Show full text]
  • MIPI Low Latency Interface (LLI) for Mobile Phone Bom Cost Savings
    MIPI Low Latency Interface (LLI) for Mobile Phone BoM Cost Savings Scott Yang Greater China Country Manger Arteris Inc 1 Copyright © 2012 MIPI Alliance. All rights reserved. Legal Disclaimer The material contained herein is not a license, either expressly or impliedly, to any IPR owned or controlled by any of the authors or developers of this material or MIPI. The material contained herein is provided on an “AS IS” basis and to the maximum extent permitted by applicable law, this material is provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material and MIPI hereby disclaim all other warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of responses, of results, of workmanlike effort, of lack of viruses, and of lack of negligence. ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT WITH REGARD TO THIS MATERIAL. All materials contained herein are protected by copyright laws, and may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise exploited in any manner without the express prior written permission of MIPI Alliance. MIPI, MIPI Alliance and the dotted rainbow arch and all related trademarks, tradenames, and other intellectual property are the exclusive property of MIPI Alliance and cannot be used without its express prior written permission. IN NO EVENT WILL ANY AUTHOR OR DEVELOPER OF THIS MATERIAL OR MIPI BE LIABLE TO ANY OTHER PARTY FOR THE COST OF PROCURING SUBSTITUTE GOODS OR SERVICES, LOST PROFITS, LOSS OF USE, LOSS OF DATA, OR ANY INCIDENTAL, CONSEQUENTIAL, DIRECT, INDIRECT, OR SPECIAL DAMAGES WHETHER UNDER CONTRACT, TORT, WARRANTY, OR OTHERWISE, ARISING IN ANY WAY OUT OF THIS OR ANY OTHER AGREEMENT RELATING TO THIS MATERIAL, WHETHER OR NOT SUCH PARTY HAD ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES.
    [Show full text]
  • Flexnoc® Interconnect IP
    FlexNoC® Interconnect IP Arteris IP FlexNoC network-on-chip (NoC) interconnect IP improves performance, development time, power consumption and die size of system on chip (SoC) devices for consumer electronics, mobile, automotive and other applications. Benefits Fast Facts SILICON PROVEN • Scales from 10s to 100s of IP blocks FlexNoC is the first commercial NoC interconnect and is shipping in over 1.5 Billion chips. • Protocol interoperability: It is the backbone SoC interconnect used by Samsung, Mobileye, Altera (Intel), Hisilicon AMBA AXI, AHB, APB; OCP; PIF; (Huawei) and other industry leaders for their most important projects. custom / proprietary • Lowest die area & congestion STATE-OF-THE-ART TECHNOLOGY FlexNoC is continually updated with the latest technologies, including support for new • Lowest latency & power protocols like AMBA® AHB5 and new capabilities like the FlexNoC Resilience Package for • Shortest design time automotive ISO 26262 compliance and the PIANO Timing Assistance Package. • Visual floorplan, area & timing SCALABILITY & PRODUCTIVITY closure estimation Create SoCs using IP with any protocol (AMBA, OCP, PIF or proprietary) and scale up • Integrated systemc simulation & UVM to 100s of IP blocks. Implement any topology (tree, ring, or mesh) while reducing verification support development time through the use of automated simulation and verification technology. • Optimal QOS—bandwidth & latency • Meet ISO 26262 ASIL D requirements CPU Subsystem Design-Specific Subsystem DSP Subsystem (A/V) Application IP Subsystem 2D A72 A72 A53 A53 IP IP IP IP IP IP CPU Subsystems GR. A72 A72 A53 A53 3D Graphics FlexWay Interconnect FlexWay Interconnect MPEG L2 Cache L2 Cache IP IP IP IP IP IP Ect. Ncore Cache Proxy $ FlexNoC Non-Coherent Interconnect Interchip Links CMC Coherent Interconnect CodaCache LLC WiFi CRI HDMI Crypto Firewall MIPI GSM (PCF+) Display LTE Memory Scheduler Subsystem Interconnect RSA-PSS PMU Cert.
    [Show full text]