Crop Residue Management to Reduce Erosion and Improve Soil

Total Page:16

File Type:pdf, Size:1020Kb

Crop Residue Management to Reduce Erosion and Improve Soil United States Department of Agriculture Crop Residue Agricultural Research Service Management To Conservation Research Report Number 40 Reduce Erosion and May 1995 Improve Soil Quality Northwest i 1 1 1 1 1 3 i 5 1 1 I 11-; j 2,cc I 110 1 11 I 2 12. 1 1 1 1; 8 i l ik 111;0411/110 li ii 1 1 111 Ech 1;1 m < MO OWILO z 0 a WM I- 11 United States Department of Agriculture Crop Residue Agricultural Research Service Management To Conservation Research Report Number 40 Reduce Erosion and May 1995 Improve Soil Quality Northwest R.I. Papendick and W.C. Moldenhauer, Editors Abstract Papendick, R.I., and W.C. Moldenhauer, eds. 1995. Crop imply that uses discussed here have been registered. All Residue Management To Reduce Erosion and Improve Soil uses of pesticides must be registered by appropriate state or Quality: Northwest. U.S. Department of Agriculture, Federal agencies or both before they can be recommended. Agricultural Research Service, CRR-40, 68 pp. While supplies last, single copies of this publication may be Leaving crop residue on the soil surface during cropping has obtained at no cost from a Natural Resources Conservation a number of clear advantages over tillage that leaves the soil Service District office. Copies of this publication may be surface bare. Most obvious is the greatly reduced erosion purchased from the National Technical Information Service, from wind and water. This advantage alone makes the 5285 Port Royal Road, Springfield, VA 22161; telephone change worthwhile. Mandated conservation compliance by (703) 487-4650. 1995 is a further incentive to adopt surface crop residue management. Other advantages include increased yield due This is one of six regional publications designed to bring to water conserved by surface residue, lower soil tempera- research results and experience of experts in the field of tures, higher quality soil over time due to increased soil crop residue management to the attention of farmers and organic matter levels, and, in many cases, reduced input of their advisers. A copy of the five other regional reports on time, labor, and fuel. Crop Residue Management To Reduce Erosion and Improve Soil Quality can be obtained from the Conservation Tech- The feasibility of farming while leaving residues on the nology Information Center, 1220 Potter Drive, Room 170, surface is indicated by the rapid rate at which farmers are West Lafayette, IN 47906 (fax 317-494-5969, telephone adopting these management practices. Success is due in 317-494-9555). The other five regions are Appalachia and large part to greater effectiveness and reduced cost of Northeast, North Central, Northern Great Plains, Southeast, herbicides and the improvement of planting equipment and Southern Great Plains. available on the market. Keywords: Agricultural economics, conservation tillage, crop rotation, farming methods, erosion, mulch tillage, no- The United States Department of Agriculture (USDA) pro- till, nutrient cycling, pest management, raindrop erosion, hibits discrimination in its programs on the basis of race, ridge tillage, soil compaction, soil conservation, soil color, national origin, sex, religion, age, disability, political erosion, surface residue tillage, sweep tillage, tillage, water beliefs, and marital or familial status. (Not all prohibited conservation, wind erosion. bases apply to all programs.) Persons with disabilities who require alternative means for communication of program Mention of trade names or commercial products in this information (Braille, large print, audiotape, etc.) should publication is solely for the purpose of providing specific contact the USDA Office of Communications at (202) 720- information and does not imply recommendation or en- 5881 (voice) or (202) 720-7808 (TDD). dorsement by the U.S. Department of Agriculture over others not mentioned. To file a complaint, write the Secretary of Agriculture, U.S. Department of Agriculture, Washington, DC 20250, or call (202) 720-7327 (voice) or (202) 720-1127 (TDD). USDA is This publication reports research involving pesticides. It an equal employment opportunity employer. does not contain recommendations for their use nor does it Issued May 1995 Contents Contributors iv 6 Achieving Conservation Compliance with Residue Farming in the Intermediate-Precipitation Zone 26 1 Introduction: Why the Emphasis on Crop Residue D.J. Wysocki, F.L. Young, R.J. Cook, P.E. Rasmussen, Management? 1 D.L. Young, R.J. Veseth, and R.I. Papendick W.C. Moldenhauer and R.I. Papendick Rotations in Use 26 2 Terminology 3 Residue Production 26 David L. Schertz and John Becherer Fertility Management 26 Tillage and Planting Options for Managing Description of the Region 4 ,Residue Levels 26 R.I. Papendick, F.L. Young, K.S. Pike, and R.J. Cook Risk and Management of Weeds in Conservation Till 29 Climate 4 Risk and Magagement of Crop Disease in Topography and Soils 4 Conservation Till 29 Traditional Cropping and Tillage Practices 4 Other Soil Conservation Practices 30 Erosion and Water Conservation Problems 5 Economic Advantages and Risks of Conservation Pest Problems 6 Production Systems 30 4 Surface Residue Management 10 7 Achieving Conservation Compliance with Residue D.K. McCool, J.E. Hammel, and R.I. Papendick Farming in the Low-Precipitation Zone 32 D.J. Wysocki, P.E. Rasmussen, F.L.Young, R.J. Cook, D.L. Effectiveness of Residues for Controlling Erosion from Young, and R.I. Papendick Wind and Water 10 Residue Effects on Soil Water and Temperature 10 Rotations in Use 32 Measuring and Reporting Residue Amount 11 Residue Production 32 Residue Reductions by Implements and Tools 11 Fertility Management 32 Critical Erosion Period 12 Tillage and Planting Options for Managing Residue Levels 32 5 Achieving Conservation Compliance with Residue Risk and Management of Weeds in Farming in the High-Precipitation Zone 17 Conservation Till 33 R.J. Veseth, P.E. Rasmussen, F.L. Young, R.I. Cook, Risk and Management of Diseases in D.L. Young, and R.I. Papendick Conservation Till 34 Other Soil Conservation Practices 34 Rotations in Use 17 Economic Advantages and Risks of Conservation Residue Production 17 Production Systems 34 Fertility Management 17 Tillage and Planting Options for Managing 8 Alternatives to Residue Management 35 Residue Levels 18 W.D. Kemper, W.C. Moldenhauer, and R.I. Papendick Risk and Management of Weeds in Conservation Till 22 9 Crop Residue Management for Soil Conservation on Risk and Management of Crop Disease in Irrigated Lands of the Northwest 37 Conservation Till 23 D.L. Carter, W.D. Kemper, R.D. Berg, and M.J. Brown Other Soil Conservation Practices 24 Economic Advantages and Risks of Conservation Erosion Problems Induced by Furrow Irrigation 37 Production Systems 25 Residue Management for Erosion Control on Furrow-irrigated Land 37 Effects of Tillage on Furrow Irrigation Uniformity and Efficiency 40 Residue Managment Under Sprinkler Irrigation 42 National Perspectives on Management Options for IL National Perspectives on Long-Term Effects Lands Concluding Their Tenure in the Conservation of Tillage and Crop Residue Management 52 Reserve Program (CRP) 44 W.C. Moldenhauer, W.D. Kemper, and R.I. Papendick T.E. Schumacher, M.J. Lindstrom, M.L. Blecha, and RI Papendick The Beginnings of Soil Degradation 52 Effects of Reducing Tillage on Residual Conservation Reserve Program 44 Organic Matter 53 Effects of Grass on Soil Properties 45 Effects of Increasing Surface Residues on Residual Soil Improvement from CRP (Long-Term Grass) 45 Organic Matter 53 Post-CRP Options 46 Effects of Leaving Crop Residue on the Surface 54 No-Till After CRP 47 Reasons for Limited Tillage 56 Design of No-Till Systems 49 Environmental Effects of Herbicides Used in Conservation Measures for Residue-Deficient Crops 50 Reduced-Tillage Systems 56 Contributors John Becherer, chief executive officer, United Soybean R.I. Papendick, soil scientist, U.S. Department of Agriculture, Board, St. Louis, MO Agricultural Research Service, Pullman, WA R.D. Berg, research technician, U.S. Department of Agricul- K.S. Pike, entomologist, Irrigated Agriculture Research and ture, Agricultural Research Service, Kimberly, ID Extension Center, Washington State University, Prosser, WA M.L. Blecha, county extension agent, Jerauld County, P.E. Rasmussen, soil scientist, U.S. Department of Agricul- Wessington Springs, SD ture, Agricultural Research Service, Pendleton, OR M.J. Brown, soil scientist, U.S. Department of Agriculture, David L Schertz, national agronomist, U.S. Department of Agricultural Research Service, Kimberly, ID Agriculture, Natural Resources Conservation Service, Washington, DC D.L. Carter, soil scientist, U.S. Department of Agriculture, Agricultural Research Service, Kimberly, ID T.E. Schumacher, soil physicist, Plant Science Department, South Dakota State University, Brookings, SD R.J. Cook, plant pathologist, U.S. Department of Agricul- ture, Agricultural Research Service, Pullman, WA R.J. Veseth, extension conservation tillage specialist, Depart- ment of Plant and Entomological Sciences, University of I.E. Hammel, soil physicist, Department of Plant and Idaho, Moscow, /D Entomological Sciences, University of Idaho, Moscow, ID D.J. Wysocki, extension soil scientist, Columbia Basin W,D. Kemper, soil scientist, National Program Staff, U.S. Agricultural Research Center, Oregon State University, Department of Agriculture, Agricultural Research Service, Pendleton, OR Beltsville, MD D.L. Young, agricultural economist, Department of Agricul- M.J. Lindstrom, soil scientist, U.S. Department of Agricul- tural Economics, Washington State University, Pullman, WA ture, Agricultural Research Service, Morris, MN F.L. Young, weed scientist, U.S. Department of Agriculture, Agricultural Research Service, Pullman, WA D.K. McCool, agricultural engineer, U.S. Department of Agriculture, Agricultural Research Service, Pullman, WA W.C. Moldenhauer (retired), soil scientist, U.S. Department of Agriculture, Agricultural Research Service, Volga, SD iv Introduction: Why the Emphasis on Farmers' willingness to leave residue on the surface was Crop Residue Management? greatly enhanced by the development of herbicides, which provided an alternative to tillage for controlling weeds. W.C. Moldenhauer and R.I.
Recommended publications
  • Dynamic Cropping Systems: Increasing Adaptability Amid an Uncertain Future
    Published online June 5, 2007 Dynamic Cropping Systems: Increasing Adaptability Amid an Uncertain Future J. D. Hanson,* M. A. Liebig, S. D. Merrill, D. L. Tanaka, J. M. Krupinsky, and D. E. Stott ABSTRACT was »6.5 billion in late 2005, and is projected to rise Future trends in population growth, energy use, climate change, to 7.6 billion by 2020 and 9.1 billion by 2050 (United and globalization will challenge agriculturists to develop innovative Nations Population Division, 2006). To meet the demand production systems that are highly productive and environmentally for food, agriculture will need to produce as much food sound. Furthermore, future agricultural production systems must pos- in the next 25 yr as it has produced in the last 10 000 yr sess an inherent capacity to adapt to change to be sustainable. Given (Mountain, 2006). Increasing food production to this this context, adoption of dynamic cropping systems is proposed to extent will have significant ramifications on resource meet multiple agronomic and environmental objectives through the use. From 1961 to 1996, the doubling of agricultural food enhancement of management adaptability to externalities. Dynamic production was associated with a 6.9-fold increase in cropping systems are a form of agricultural production that relies on an annual strategy to optimize the outcome of (i) production, (ii) eco- N fertilization, a 3.5-fold increase in P fertilization, a nomic, and (iii) resource conservation goals using ecologically-based 1.7-fold increase of irrigated cropland, and a 1.1-fold management principles. Dynamic cropping systems are inherently increase of land under cultivation (Tilman, 1999).
    [Show full text]
  • Circular Bioeconomy Research for Development in Sub-Saharan Africa: Innovations, Gaps, and Actions
    sustainability Article Circular Bioeconomy Research for Development in Sub-Saharan Africa: Innovations, Gaps, and Actions Shiferaw Feleke 1,* , Steven Michael Cole 1,* , Haruna Sekabira 2 , Rousseau Djouaka 3 and Victor Manyong 1 1 Social Science and Agribusiness, International Institute of Tropical Agriculture (IITA), Dar es Salaam 34441, Tanzania; [email protected] 2 Natural Resource Management, International Institute of Tropical Agriculture (IITA), Kigali 1269, Rwanda; [email protected] 3 Plant Production and Plant Health, International Institute of Tropical Agriculture (IITA), Cotonou 0932, Benin; [email protected] * Correspondence: [email protected] (S.F.); [email protected] (S.M.C.); Tel.: +255-222700092 (S.F.) Abstract: The International Institute of Tropical Agriculture (IITA) has applied the concept of ‘circular bioeconomy’ to design solutions to address the degradation of natural resources, nutrient-depleted farming systems, hunger, and poverty in sub-Saharan Africa (SSA). Over the past decade, IITA has implemented ten circular bioeconomy focused research for development (R4D) interventions in several countries in the region. This article aims to assess the contributions of IITA’s circular bioeconomy focused innovations towards economic, social, and environmental outcomes using the outcome tracking approach, and identify areas for strengthening existing circular bioeconomy R4D interventions using the gap analysis method. Data used for the study came from secondary sources available in the public domain. Results indicate that IITA’s circular bioeconomy interventions led to ten technological innovations (bio-products) that translated into five economic, social, and Citation: Feleke, S.; Cole, S.M.; environmental outcomes, including crop productivity, food security, resource use efficiency, job Sekabira, H.; Djouaka, R.; Manyong, V.
    [Show full text]
  • Water Quality & Agriculture: It's Your Responsibility
    Water Quality & AgricultureIT’S YOUR RESPONSIBILITY A Landowner’s Guide to Oregon’s Agricultural Water Quality Program Photo courtesy of USDA NRCS Water Quality & Agriculture IT’S YOUR RESPONSIBILITY Agricultural Water Quality Program In 1972, the federal Clean Water Act was passed to clean up water pollution from human activities such as forestry, factories, wastewater treatment plants, and agriculture. Oregon’s Agricultural Water Quality Management Act (Act) was passed in 1993 with the input and support of the agricultural industry and the Oregon Board of Agriculture. The Act is the foundation of the Oregon Department of Agriculture’s (ODA) Agricultural Water Quality Management Program (Program). The Act directed ODA to assist the industry in preventing and controlling pollution from agricultural sources. Working in partnership with Oregon’s 45 local Soil and Water Conservation Districts (SWCDs), ODA identified 38 watershed-based Agricultural Water Quality Management Areas (Management Areas) throughout the state. ODA Water Quality Specialists work with the agricultural landowners, and other stakeholders, who serve as Local Advisory Committee (LAC) members for each Management Area. Each LAC identifies local agricultural water quality problems and opportunities for improvement. Agricultural Water Quality Management Area Plans (Area Plans) address agricultural water quality issues in Oregon. As the LACs helped create the Area Plans, they also helped write Area Rules (regulations) for that Management Area. The Area Rules ensure that all landowners do their part to prevent and control water pollution. The Program is designed to help anyone engaged in agricultural activities prevent water pollution. How might my activities affect water quality? The primary water quality issues related to agriculture are excessive sediment, nutrients, stream temperature, and bacteria.
    [Show full text]
  • Diversifying Cropping Systems PROFILE: THEY DIVERSIFIED to SURVIVE 3
    Opportunities in Agriculture CONTENTS WHY DIVERSIFY? 2 Diversifying Cropping Systems PROFILE: THEY DIVERSIFIED TO SURVIVE 3 ALTERNATIVE CROPS 4 PROFILE: DIVERSIFIED NORTH DAKOTAN WORKS WITH MOTHER NATURE 9 PROTECT NATURAL RESOURCES, RENEW PROFITS 10 AGROFORESTRY 13 PROFILE: PROFITABLE PECANS WORTH THE WAIT 15 STRENGTHEN COMMUNITY, SHARE LABOR 15 PROFILE: STRENGTHENING TIES AMONG MAINE FARMERS 16 RESOURCES 18 Alternative grains and oilseeds – like, from left, buckwheat, amaranth and flax – add diversity to cropping systems and open profitable niche markets while contributing to environmentally sound operations. – Photos by Rob Myers Published by the Sustainable KARL KUPERS, AN EASTERN WASHINGTON GRAIN GROWER, Although growing alternative crops to diversify a Agriculture Network (SAN), was a typical dryland wheat farmer who idled his traditional farm rotation increase profits while lessen- the national outreach arm land in fallow to conserve moisture. After years of ing adverse environmental impacts, the majority of of the Sustainable Agriculture watching his soil blow away and his market price slip, U.S. cropland is still planted in just three crops: soy- Research and Education he made drastic changes to his 5,600-acre operation. beans, corn and wheat. That lack of crop diversity (SARE) program, with funding In place of fallow, he planted more profitable hard can cause problems for farmers, from low profits by USDA's Cooperative State red and hard white wheats along with seed crops like to soil erosion. Adding new crops that fit climate, Research, Education and condiment mustard, sunflower, grass and safflower. geography and management preferences can Extension Service. All of those were drilled using a no-till system Kupers improve not only your bottom line, but also your calls direct-seeding.
    [Show full text]
  • Socio-Demographic and Economic Characteristics, Crop-Livestock Production Systems and Issues for Rearing Improvement: a Review
    Available online at http://www.ifgdg.org Int. J. Biol. Chem. Sci. 12(1): 519-541, February 2018 ISSN 1997-342X (Online), ISSN 1991-8631 (Print) Review Paper http://ajol.info/index.php/ijbcs http://indexmedicus.afro.who.int Socio-demographic and economic characteristics, crop-livestock production systems and issues for rearing improvement: A review Daniel Bignon Maxime HOUNDJO1, Sébastien ADJOLOHOUN1*, Basile GBENOU1, Aliou SAIDOU2, Léonard AHOTON2, Marcel HOUINATO1, Soumanou SEIBOU TOLEBA1 and Brice Augustin SINSIN3 1Département de Production Animale, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, 03 BP 2819 Jéricho, Cotonou, Benin. 2Département de Production Végétale, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, 03 BP 2819 Jéricho, Cotonou, Benin. 3Département de l’Aménagement et Gestion des Ressources Naturelles, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, 03 BP 2819 Jéricho, Cotonou, Benin. *Corresponding author; E-mail : [email protected]; Tél: (+229) 97 89 88 51 ABSTRACT This paper reviews some characteristics of crop-livestock production systems in Benin with a special focus on the issues for enhance pasture production and nutritive value which in turn will increase animal productivity. Benin is located in the Gulf of Guinea of the Atlantic Ocean in West Africa and covers 114,763 km2. The population estimated in 2017 is 10,900,000 inhabitants with an annual population growth rate of 3.5%. The country is primarily an agro-based economy, characterized by subsistence agricultural production that employs more than 70%. The climate ranges from the bimodal rainfall equatorial type in the south to the tropical unimodal monsoon type in the north.
    [Show full text]
  • Crop Residue Management
    AGRONOMIC DESIGN INSIGHTSBrought to you by CASE IH CROP RESIDUE MANAGEMENT WHAT’S INSIDE Growers can improve yield potential by focusing on seven key agronomic aspects of the The Crop Residue crop production cycle: crop residue management, soil tilth, seed bed conditions, seed Management Challenge . 1 placement accuracy, plant food availability, crop protection and harvest quality. Crop residue decomposition is largely a biological process. The rate of decomposition Unlocking the Nutritive increases with warm temperatures, adequate moisture and abundant bacteria, fungi, Value of Residue . 2 insects, earthworms, bugs, and other creatures to dig and digest. Minerals and Maintaining Soil Organic Matter . 2 nutrients are recycled back into the production of crops. This fact sheet addresses crop residue management: the agronomic and economic Challenges Posed by Hybrid Vigor . 3 benefits of utilizing residue in the soil; the challenges and opportunities associated with liberating the nutritive value of crop residue from today’s tough hybrids; and Equipment Considerations When how the right equipment can help producers maximize the cycling and availability of Managing Residue . 3 nutrients in residue and improve the soil’s organic matter. THE CROP RESIDUE MANAGEMENT CHALLENGE By Dr. Rob Zemenchik, Case IH Global Marketing Manager – Agronomy With commercial fertilizer prices on the rise in recent years, the nutrient value of crop residue has become both a significant economic and agronomic consideration. Corn stalks, soybean stubble and wheat straw can be baled and sold for livestock feed or bedding or biofuel production. And some crops are harvested as forage or silage, reducing crop residue in the field. In the Bt corn era, reduced decomposition time has emerged because of extended ear-fill periods that leave stay-green residues and fewer warm post-harvest days—all complicating crop residue management.
    [Show full text]
  • Crop Residue Management: Solution to Achieve Better Air Quality
    DISCUSSION PAPER January 2020 CROP RESIDUE MANAGEMENT: SOLUTION TO ACHIEVE BETTER AIR QUALITY CROP RESIDUE MANAGEMENT: SOLUTION TO ACHIEVE BETTER AIR QUALITY © COPYRIGHT The material in this publication is copyrighted. Content from this position paper may be used for non-commercial purposes, provided it is attributed to the source. Authors Arindam Datta, Fellow, Centre for Environmental Studies, TERI Mrinal A. Emmanuel, Project Associate, Centre for Environmental Studies, TERI N. K. Ram, Senior Fellow & Area Convenor, Renewable Energy Technology Applications, TERI Sunil Dhingra, Senior Fellow & Associate Director, Renewable Energy Technology Applications, TERI Reviewers Sumit Sharma, Senior Fellow & Director, Centre for Environmental Studies, TERI Ajay Shankar, Distinguished Fellow, Director-General’s Office, TERI Acknowledgements Authors greatly acknowledge the support received from Bloomberg Philanthropies. Suggested Format for Citation Datta, A, M A Emmanuel, N K Ram and S Dhingra. 2020. Crop Residue Management: Solution To Achieve Better Air Quality. New Delhi: TERI Design Sushmita Ghosh, Sudeep Pawar, TERI Press PUBLISHED BY The Energy and Resources Institute (TERI) FOR MORE INFORMATION Centre for Sustainable Mobility, TERI, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi 110 003, India | Tel.: +91 11 2468 2100 or 2468 2111 | Fax: +91 11 2468 2144 or 2468 2145 Email: [email protected] | Web: www.teriin.org TABLE OF CONTENTS Introduction 1 Current Status of the Sector 2 Prescribed Strategy 5 Acknowledgement 8 References 8 iv DISCUSSIONPOLICY BRIEF PAPER INTRODUCTION Residents of different cities (probably villages too) of sugarcane (12.0) > maize (11.2) > cotton (9.8) > rice (9.3) India breathe some of the least healthy air of the globe.
    [Show full text]
  • Water Quality Effects of Crop Residue Removal for Cellulosic Ethanol Production
    Water quality effects of crop residue removal for cellulosic ethanol production Ian KenneyA, Humberto Blanco-CanquiB, DeAnn PresleyA, Charles RiceA, Nathan NelsonA, Brian OlsonC D and Keith Janssen AKansas State University, Department of Agronomy. 2004 Throckmorton Plant Sciences Center, Manhattan, KS 66506. BKansas State University, Western Kansas Agricultural Research Center-Hays. 1232 240th Ave., Hays, KS 67601. CKansas State University, Northwest Research Extension Center-Colby. 105 Experiment Farm Rd., Colby, KS 67701. DKansas State University, East Central Kansas Experiment Field-Ottawa. 2149 Montana Rd., Ottawa, KS 66067. Abstract Crop residues have been identified as a prime feedstock for large-scale cellulosic ethanol production. Therefore, understanding the impacts of widespread residue harvest on soil and environment is essential to establish soil-specific residue harvest rates. We assessed the effects of variable levels of corn residue removal on runoff and soil erosion on a regional scale across three locations (Colby, Hugoton, and Ottawa) in Kansas. Five residue treatments that consisted of removing 0, 25, 50, 75, and 100% of corn residue after harvest were studied for losses of runoff, sediment, soil organic carbon (SOC), total N and P, NO3-N, NH4- N, and PO4-P. Simulated rainfall at a rate of 76.2 mm/h in Colby and Hugoton, and 91.4 mm/h in Ottawa was applied for 30 min. Results of this regional study showed that runoff volume, SOC, and total N and P concentrations increased with increase in residue removal at all locations. In contrast, NO3-N, NH4-N, and PO4-P concentrations in runoff increased with decrease in residue removal rate, most likely due to nutrient leaching from residues.
    [Show full text]
  • Crop Residues and Livestock Residues
    BIOENERGY AND FOOD SECURITY RAPID APPRAISAL (BEFS RA) User Manual CROP RESIDUES AND LIVESTOCK RESIDUES 1 BEFS Rapid Appraisal Natural Resources Module __________________________________ Agricultural Residues Component Crop Residues and Livestock Residues User Manual 2 Acknowledgements The BEFS Rapid Appraisal was the result of a team effort to which the following authors, listed in alphabetical order, contributed1: Giacomo Branca (Tuscia University, Viterbo), Luca Cacchiarelli (Tuscia University, Viterbo), Carlos A. Cardona (National University of Colombia at Manizales), Erika Felix, Arturo Gianvenuti, Ana Kojakovic, Irini Maltsoglou, Jutamanee Martchamadol, Luis Rincon, Andrea Rossi, Adriano Seghetti, Florian Steierer, Heiner Thofern, Andreas Thulstrup, Michela Tolli, Monica Valencia (National University of Colombia at Manizales) and Stefano Valle (Tuscia University, Viterbo). Inputs and contributions were also received from Renato Cumani, Amir Kassam, Harinder Makkar, Walter Kollert, Seth Meyer, Francesco Tubiello and his team, Alessio d’Amato (University of Rome, Tor Vergata) and Luca Tasciotti. We would like to thank the Bioenergy and Food Security Working Group in Malawi2 as well as the National Biofuels Board3 and its Technical Working Group in the Philippines for their involvement in the pilot testing of the BEFS Rapid Appraisal and the useful feedback provided. We also wish to extend our appreciation to Rex B. Demafelis and his team from University of the Philippines Los Baños for their valuable support in the pilot testing exercise.
    [Show full text]
  • Harvesting Crop Residue
    United States Department of Agriculture Harvesting Crop Residue: What is it worth? Iowa Fact Sheet Natural Resources Conservation Service Des Moines, Iowa October 2016 Dollar Value of Crop Residue The plant residue left in the Fertilizer Value of Nutrients in One Ton of Corn Residue* field after harvest is a valuable Element Concentration Pound/ton Fertilizer Value of resource. Increasing demand in residue (%) nutrient price nutrients in for harvested crop residue has ($/.lb)** residue left many producers wondering ($/ton) whether they should bale and sell c = (b/100) x a b d e = c x d their crop residue or leave it in the 2,000 field. To help make that decision producers should consider the N 1.85 37 .40 $14.80 following: P205 .175 3.5 .45 $1.58 K 0 1.65 33 .35 $11.55 Cost of harvesting the residue 2 Based on a custom baling price Total Value $33.05 of $13 per large round bale ($22/ *Based on Table 1 from Al-Kaisi, et al, 2008. The Effect of Residue Management on Soil and Water ton) and custom raking at $3/ton, Quality. **Based on 2016 Crop Production Costs from Iowa State University. Substitute current prices it costs about $25/ton (based on in column d and multiply by column c to get value of each nutrient per ton of corn residue. 1,200 lb bales) to harvest residue. Value of removed nutrients Based on data from the Agricultural Research Service’s (ARS) National Soil Tilth Lab, a ton of corn residue contains about 37 lbs.
    [Show full text]
  • Agriculture: a Glossary of Terms, Programs, and Laws, 2005 Edition
    Agriculture: A Glossary of Terms, Programs, and Laws, 2005 Edition Updated June 16, 2005 Congressional Research Service https://crsreports.congress.gov 97-905 Agriculture: A Glossary of Terms, Programs, and Laws, 2005 Edition Summary The complexities of federal farm and food programs have generated a unique vocabulary. Common understanding of these terms (new and old) is important to those involved in policymaking in this area. For this reason, the House Agriculture Committee requested that CRS prepare a glossary of agriculture and related terms (e.g., food programs, conservation, forestry, environmental protection, etc.). Besides defining terms and phrases with specialized meanings for agriculture, the glossary also identifies acronyms, abbreviations, agencies, programs, and laws related to agriculture that are of particular interest to the staff and Members of Congress. CRS is releasing it for general congressional use with the permission of the Committee. The approximately 2,500 entries in this glossary were selected in large part on the basis of Committee instructions and the informed judgment of numerous CRS experts. Time and resource constraints influenced how much and what was included. Many of the glossary explanations have been drawn from other published sources, including previous CRS glossaries, those published by the U.S. Department of Agriculture and other federal agencies, and glossaries contained in the publications of various organizations, universities, and authors. In collecting these definitions, the compilers discovered that many terms have diverse specialized meanings in different professional settings. In this glossary, the definitions or explanations have been written to reflect their relevance to agriculture and recent changes in farm and food policies.
    [Show full text]
  • A Beginning Farmer's Guide to Agriculture Words, Terms and Definitions
    W 941 A Beginning Farmer’s Guide to Agriculture Words, Terms and Definitions A Beginning Farmer’s Guide to Agriculture Words, Terms and Defnitions l A Compiled by: Mitchell Mote, Extension Agent, Rutherford County Andrew P. Griffth, Associate Professor, Department of Agriculture and Resource Economics Kevin Rose, Extension County Director, Giles County Troy Dugger, Program Coordinator, Center for Proftable Agriculture INTRODUCTION This document is designed as a guide to help new or beginning farmers understand agriculture terminology. There are many terms related to different aspects of agriculture that may not be known to those who have not been involved in farming or have very little farming experience. Many of these terms and their meaning can be found in this document. While this list is not exhaustive of all the terms used in the feld of agriculture, it is prepared with the hope that the terms found in this guide will be useful and provide new and beginning farmers a foundation to better understand agriculture. How to “Talk” Farming Avian HOW TO TALK FARMING A beginning farmer's guide to Agriculture Words, Terms and Definitions Acidic: A soil pH of less than 7.0. The Apiary: A place where honeybees are Avian: Pertaining to poultry and/or fowl. lower the number, the more acidic the kept; colonies of bees in hives. soil will be. The pH scale ranges from Backgrounding: The feeding and 0 to 14, with 7 as neutral. Aquaculture: The commercial management of meat animals from production of aquatic plants or animals the time they are weaned as calves Acre: U.S.
    [Show full text]