Diversifying Cropping Systems PROFILE: THEY DIVERSIFIED to SURVIVE 3
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Indian Crop Diversity
Indian crop diversity N Sivaraj, SR Pandravada, V Kamala, N Sunil, K Rameash, Babu Abraham, M Elangovan* & SK Chakrabarty National Bureau of Plant Genetic Resources (NBPGR), Regional Station, Hyderabad 500030. *Directorate of Sorghum Research (DSR), Hyderabad 500 030, Andhra Pradesh. What is Crop diversity? exchange for broadening the genetic base, conservation Crop diversity is the variability in genetic and phenotypic of crop diversity, exploring and promoting the under- traits that is found in cultivars grown by the farming utilized crops; developing genetic diversity to reduce crop community. Crop varieties may vary in height, branching vulnerability to climate changes and to overcome other pattern, flower colour, fruiting time or seed size etc. and they yield limiting characters. may also vary in their response to less obvious abiotic traits such as their response to heat, cold or drought, or their Status of India’s Crop diversity ability to resist specific disease and pests. It is possible to The Indian subcontinent is extremely diverse in its discern variation in almost every conceivable trait, including climate, physiography and flora and the Indian gene nutritional qualities, preparation and cooking techniques, centre is among the 12 mega diversity regions of the and of course how a crop tastes. And if a trait cannot be world. Rich diversity occurs in several crop plants and found in the crop itself, it can often be found in a wild their wild progenitors. About 25 crop species were relative of that crop, a plant that has similar traits of that domesticated in India. It is endowed with rich diversity of species which is not under cultivation or used in agriculture, more than 18,000 species of higher plants including, 160 but exist in the wild. -
Social Organization of Crop Genetic Diversity. the G × E × S Interaction Model
Diversity 2012, 4, 1-32; doi:10.3390/d4010001 OPEN ACCESS diversity ISSN 1424-2818 www.mdpi.com/journal/diversity Article Social Organization of Crop Genetic Diversity. The G × E × S Interaction Model Christian Leclerc 1,* and Geo Coppens d’Eeckenbrugge 2 1 CIRAD, UMR AGAP, Avenue Agropolis, TA A 96/03, Montpellier 34398, France 2 CIRAD, UMR 5175 CEFE, 1919 Route de Mende, Montpellier 34293, France; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +33-467-61-71-16; Fax: +33-467-61-56-05. Received: 25 October 2011; in revised form: 28 November 2011 / Accepted: 12 December 2011 / Published: 21 December 2011 Abstract: A better knowledge of factors organizing crop genetic diversity in situ increases the efficiency of diversity analyses and conservation strategies, and requires collaboration between social and biological disciplines. Four areas of anthropology may contribute to our understanding of the impact of social factors on crop diversity: ethnobotany, cultural, cognitive and social anthropology. So far, most collaborative studies have been based on ethnobotanical methods, focusing on farmers’ individual motivations and actions, and overlooking the effects of farmer’s social organization per se. After reviewing common shortcomings in studies on sorghum and maize, this article analyzes how social anthropology, through the analysis of intermarriage, residence and seed inheritance practices, can contribute to studies on crop genetic diversity in situ. Crop varieties are thus considered social objects and socially based sampling strategies can be developed. Such an approach is justified because seed exchange is built upon trust and as such seed systems are embedded in a pre-existing social structure and centripetally oriented as a function of farmers’ social identity. -
Dynamic Cropping Systems: Increasing Adaptability Amid an Uncertain Future
Published online June 5, 2007 Dynamic Cropping Systems: Increasing Adaptability Amid an Uncertain Future J. D. Hanson,* M. A. Liebig, S. D. Merrill, D. L. Tanaka, J. M. Krupinsky, and D. E. Stott ABSTRACT was »6.5 billion in late 2005, and is projected to rise Future trends in population growth, energy use, climate change, to 7.6 billion by 2020 and 9.1 billion by 2050 (United and globalization will challenge agriculturists to develop innovative Nations Population Division, 2006). To meet the demand production systems that are highly productive and environmentally for food, agriculture will need to produce as much food sound. Furthermore, future agricultural production systems must pos- in the next 25 yr as it has produced in the last 10 000 yr sess an inherent capacity to adapt to change to be sustainable. Given (Mountain, 2006). Increasing food production to this this context, adoption of dynamic cropping systems is proposed to extent will have significant ramifications on resource meet multiple agronomic and environmental objectives through the use. From 1961 to 1996, the doubling of agricultural food enhancement of management adaptability to externalities. Dynamic production was associated with a 6.9-fold increase in cropping systems are a form of agricultural production that relies on an annual strategy to optimize the outcome of (i) production, (ii) eco- N fertilization, a 3.5-fold increase in P fertilization, a nomic, and (iii) resource conservation goals using ecologically-based 1.7-fold increase of irrigated cropland, and a 1.1-fold management principles. Dynamic cropping systems are inherently increase of land under cultivation (Tilman, 1999). -
What Was the Effect of New Crops in the Agricultural Revolution? Evidence from an Arbitrage Model of Crop Rotation
What was the Effect of New Crops in the Agricultural Revolution? Evidence from an Arbitrage Model of Crop Rotation Liam Brunt1 Abstract In this paper we develop an arbitrage model of crop rotation that enables us to estimate the impact of crop rotation on wheat yields, using only the yields and prices of each crop employed in the rotation. We apply this technique to eighteenth century England to assess the importance of two new crops – turnips and clover – in raising wheat yields. Contrary to the received wisdom, we show that turnips substantially pushed up wheat yields but clover pushed down wheat yields. We confirm this result by comparing our estimates to both experimental data and production function estimates. Further detailed analysis facilitated by the new model enables us to explain this surprising result in terms of the management practices pursued by farmers. Keywords: agriculture, crop rotation, technological change. JEL Classification: N01, N53, O13, Q12. 1 I would like to thank James Foreman-Peck and Lucy White for helpful comments. Any remaining errors are my own responsibility. An arbitrage model of crop rotation 2 I. Introduction. The defining feature of the Industrial Revolution in England was the transfer of labour resources from agriculture to industry, which occurred exceptionally early by international standards.2 But England had to remain virtually self-sufficient in food production during the eighteenth century because very few exportable surpluses were being generated by other European countries.3 The adoption of new technology was a crucial factor that permitted England to attain a high level of agricultural labour productivity – which in turn facilitated labour release.4 The number and range of innovations coming into general use in the eighteenth century has prompted commentators to dub it the period of the ‘Agricultural Revolution’.5 There were new animal breeds (the Shire horse and the dairy short horn cow); new crops (turnips and clover); new machines (seed drills and threshers); and new hand tools (the cradle scythe). -
"Investigating the Potential of Applying Permaculture Principles to UK
“Can Arable Be Permacultural?” Federico Filippi, Postgraduate Researcher, Centre for Agroecology, Water and Resilience, Coventry University Brief Bio & Intro I have a background in world religions and classical philosophy, specializing in the ancient Indian traditions. I am a Researcher and part-time farmer whose interests include permaculture, agro-ecology, organic farming, urban horticulture and traditional farming systems from around the world. I manage a charity urban gardening project in London and farm with oxen at New Gokul, Hertfordshire. I am undertaking postgraduate research (MRes) at the Centre for Agroecology, Water and Resilience at Coventry University located at Ryton Organic Gardens in Warwickshire. Research Title: “Investigating the potential of applying permaculture principles and methods to UK arable farming.” Centre for Agroecology, Water and Resilience The Centre for Agroecology, Water and Resilience (CAWR) is driving innovative, transdisciplinary research on the understanding and development of resilient food and water systems internationally. Through its focus on food and water, the Centre’s research develops and integrates new knowledge in social, agroecological, hydrological and environmental processes, as well as the pivotal role that communities play in developing resilience. Arable, Agriculture: Definitions Agriculture from Latin ager, “field”, refers to the management of fields Arable from Latin arare, “to plough” (in modern Italian a plough is an “aratro”) Basic features of arable agriculture: • Involves tillage/cultivation of the soil • Field (as opposed to forest/wood/tree) based • Dominated by annual plants, especially grasses Permaculture: Definitions “A philosophy of working with, rather than against nature; of protracted and thoughtful observation rather than protracted and thoughtless labour; and of looking at plants and animals in all their functions, rather than treating elements as a single-product system” (Mollison, B. -
Diversity on the Farm How Traditional Crops Around the World Help to Feed Us All, and Why We Should Reward the People Who Grow Them
Diversity on the Farm How traditional crops around the world help to feed us all, and why we should reward the people who grow them. FORD FOUNDATION By Charles C. Mann POLITICAL ECONOMY RESEARCH INSTITUTE UNIVERSITY OF MASSACHUSETTS Maize Front cover, left: Hector Diaz Castellano, a Zapotec small-holder, on his farm in the hills of southern Mexico; right: an array of native maize varieties. Above and right: Post-harvest survey of native maize varieties at INIFAP, an agricultural-research institute outside the city of Oaxaca; inside left: making the maize drink atole in a country market; inside right: rinsing off the lime used to process maize kernels for hand-made tortillas in Ítanoni, an unusual gourmet tortillería in Oaxaca city that may serve as one model for saving agricultural biodiversity. By Charles C. Mann Photographs by Peter Menzel Diversity on the Farm Subhead if any goes here for the development of wild corn and Maize heirloom varieties At Ítanoni, hand-made tortillas 2 Mission Statements 17 From the Stomach 23 The Best Tortillas from single varieties of native maize to the Heart in Mexico are cooked on traditional circular 3 Foreword clay griddles called comales. 25 Notes 5 Introduction 19 What We Can Do: Five Approaches 28 Credits 7 Building the Roof with 1. LABELING Stones from the Foundation 2. CROP IMPROVEMENT 3. REMOVING PERVERSE INCENTIVES 11 Conserving Agricultural Biodiversity 4. PAYING FOR CURRENTLY Copyright 2004 UNCOMPENSATED SERVICES by the Ford Foundation all rights reserved. 13 A Community Effort 5. INCREASING SOCIAL CAPITAL Mission Statements FORD FOUNDATION The Ford Foundation is a resource for innovative people and institutions worldwide. -
Agriculture and Biodiversity in Latin America in Historical Perspective by Angus Wright, Ph.D
Agriculture and Biodiversity in Latin America in Historical Perspective By Angus Wright, Ph.D. Summary: Latin American is thought to be the world’s most biodiverse region, but the number of species and the size of their populations is generally in sharp decline, as in most of the world. Conservation biologists consider agriculture to be the most important cause of biodiversity decline. Historical literature is rich in implications for conservation research and practice, but the literature and its insights are not well known to most who practice in the field. Here, a necessarily generalized overview of the historical literature of greatest value to conservation policy with regard to biodiversity corrects some frequent errors made by conservationists and raises a number of important but unanswered historical questions about the significance of agriculture for biodiversity conservation. These questions are ripe for research. Keywords: biodiversity; Latin American agriculture; Columbian exchange; geography, agricultural technology; conservation policy; indigenous agriculture; export agriculture; agriculture and environment; landscape; anthropogenic landscapes; biodiversity and social organization The biodiversity crisis in Latin America: current controversies. The diversity of earth’s plant and animal species is in sharp decline on all continents. Latin America is considered the most species diverse region on the planet, with 40-50% of the world’s tropical forests, and a large variety of unique ecosystems ranging from coral reefs to extreme high alpine environments. Unfortunately, steep species decline in the region parallels global trends.1 Historical research provides significant insights into attempts to reduce the loss of species in Latin America. 1 There is strong agreement that agriculture in Latin America and elsewhere, including habitat change connected to expansion of agricultural activities, is the single most important of the many factors leading to species decline and extinction. -
Hopi Crop Diversity and Change
J. Ethtlobiol. 13(2);203-231 Winter 1993 HOPI CROP DIVERSITY AND CHANGE DANIELA SOLER I and DAVID A. CLEVELAND Center for People, Food, and Environment 344 South Third Ave. Thcson, AZ 85701 ABSTRACT.-There is increasing interest in conserving indigenous crop genetic diversity ex situ as a vital resource for industrial agriculture. However, crop diver sity is also important for conserving indigenously based, small-scale agriculture and the farm communities which practice it. Conservation of these resources may best be accomplished, therefore, by ensuring their survival in situ as part of local farming communities like the Hopi. The Hopi are foremost among Native Ameri can farmers in the United States in retaining their indigenous agriculture and folk crop varieties (FVs), yet little is known about the dynamics of change and persis tence in their crop repertoires. The purpose of our research was to investigate agricultural crop diversity in the form of individual Hopi farmers' crop reper toires, to establish the relative importance of Hopi FVs and non·Hopi crop vari eties in those repertoires, and to explore the reasons for change or persistence in these repertoires. We report data from a 1989 survey of a small (n "" 50), oppor tunistic sample of Hopi farmers and discuss the dynamics of change based on cross·sectional comparisons of the data on crop variety distribution, on farmers' answers to questions about change in their crop repertoires, and on the limited comparisons possible with a 1935 survey of Hopi seed sources. Because ours is a small, nonprobabilistic sample it is not possible to make valid extrapolations to Hopi farmers in general. -
Guidance for Designing a Compliant Crop Rotation
Guidance for Designing a Compliant Crop Rotation Crop rotation is an important cultural method for managing nutrients, combating pests, and protecting vital natural resources. Rotations designed using knowledge of plant biology, weed cycles, and nutrient cycling can boost yields and provide investments in soil fertility. It is important to consider, however, that while crop rotation has formal and informal meanings, NOP defines crop rotation as “the practice of certified organic operators are required to alternating the annual crops grown on a specific field in a planned pattern or sequence in create a crop rotation as defined through the successive crop years so that crops of the same National Organic Program (NOP). Certifiers, species or family are not grown repeatedly such as PCO, evaluate whether a crop rotation without interruption on the same field. Perennial is compliant with organic regulations based on cropping systems employ means such as alley the regulatory definition and several standards cropping, intercropping, and hedgerows to that refer to crop rotation (7 CFR 205.203, introduce biological diversity in lieu of crop 205.205 and 205.206). rotation.” (7 CFR 205.2) Crop rotation: a functional standard Crop rotation is a required practice in the NOP organic regulations. Generally, crop rotations are planned to take advantage of inherent crop characteristics that will benefit the land, the farmer, and subsequent crops. While there are multiple strategies and possibilities for rotating crops in a given field over time, there are specific functions that must be considered during its design and implementation. PCO will look at your rotation to determine whether it fulfills the following criteria: (1) Maintains or improves soil organic matter; (2) Assists with the management of pests in annual and perennial crops; (3) Manages deficient or excess plant nutrients; and (4) Provides erosion control. -
Aquaponics Greenhouses
© Copyright 2019 Ceres Greenhouse Solutions LLC ENERGY-EFFICIENT AQUAPONICS GREENHOUSES PRODUCTIVE & EFFICIENT • USE LESS & HARVEST MORE 23 x 40 FT. AQUAPONIC GREENHOUSE 30 x 52 FT. AQUAPONIC GREENHOUSE 30 x 96 FT. AQUAPONIC GREENHOUSE PRODUCES USES 150-200 heads of LETTUCE or LEAFY GREENS weekly 300-400 lbs. of FISH annually 450 lbs. of TOMATOES annually 270 MICROGREEN flats annually 50% less ENERGY compared to conventional greenhouses. Greenhouses can be self-heating with Ceres’ Ground to Air Heat Transfer (GAHT®) system 400-450 heads of LETTUCE or LEAFY GREENS weekly lbs. of FISH annually 600-650 50-100% more LIGHT 450 lbs of TOMATOES annually compared to a standard greenhouse. Ceres greenhouses are designed to have a reflective interior north wall. 520 MICROGREEN flats annually . 800-900 heads of LETTUCE or LEAFY GREENS weekly 90% 800-850 lbs. of FISH annually less WATER compared to conventional agriculture 900 lbs. of TOMATOES annually estimated production and resource use varies by crop selection, growing conditions and climate. MICROGREEN flats annually 620 *Plant production estimates are highly variable and depend on many factors such as but not limited to; climate, environmental con- trols, system management, water quality, pest management and more. These estimates are for planning purposes only. A COMPLETE SOLUTION Energy-Efficient GREENHOUSES ABUNDANT YEAR-ROUND GROWING Ceres HighYield® Greenhouse Kits use passive solar design principles, a fully insulated North wall, and triple layer polycarbonate glazing, making them the most energy-efficient commercial greenhouses on the market. HIGHER YIELDS Glazing materials have a light transmittance and light diffusion CROP DIVERSITY to create a superb growing environment for high-productivity Flourish Farm™ Aquaponic Systems year-round growing. -
Rotations for Soil Fertility
Do you have a problem with: • Soil crusting • Cloddy soil • Water stress (too wet or too dry) for crops • Soil erosion • Soil compaction • Low yields A crop rotation can help to manage your soil and Rotations need to include crops that provide good fertility, reduce erosion, improve your soil’s health, cover and root development to control erosion and and increase nutrients available for crops. improve soil health. Benefits of Crop Rotations: • Improve crop yields • Improve the workability of the soil • Reduce soil crusting • Increase water available for plants • Reduce erosion and sedimentation • Recycle plant nutrients in the soil • Provide better distribution of labor during the crop season by using different crops, planting dates, and harvest periods Rotations that include high residue crops build healthy • Reduce fertilizer & insecticide inputs soils and improve production. • More money in your pocket How much does it cost? There is little to no cost to implement this practice. Benefits Financial Benefits: •Reduced fertilizer inputs •Reduced pesticide inputs Costs Rotations for Soil Fertility Crop Rotation Planning Considerations: Practice Application: • Identify soil erosion, nutrient, and soil health • Using a map, lay out a rotation for the concerns. crops by year for the length of the rotation. • Soil test (every 1-3 years) for pH, organic • Plan the rotation for the operation to estab- matter, and nutrients. Use soil test lish a nearly equal acreage of each crop recommendations to adjust pH and nutrient each year. levels for optimum crop yields and quality. • Determine nutrient (fertilizer, manure, or composts) needs. Corn Grain - Yr 1 Oats - Yr 2 Field 1 Crops • Choose the crops/varieties to meet the 9.3 Hay - Yr 3 erosion, soil health, nutrient concerns, and Hay - Yr 4 other producer objectives. -
Definition Regenerative Agriculture Low
Regenerative Agriculture: A Definition Terra Genesis International terra-genesis.com/regenerative-agriculture regenerativeagriculturedefinition.com Regenerative Agriculture is a system of farming principles and practices that increases biodiversity, enriches soils, improves watersheds, and enhances ecosystem services. By capturing carbon in soil and aboveground biomass, Regenerative Agriculture aims to reverse global climate change. At the same time, it offers increased yields, resilience to climate instability, and higher health and vitality for farming communities. The system draws from decades of scientific and applied research by the global communities of organic farming, agroecology, holistic grazing, and agroforestry. Regenerative Agriculture Principles These principles are uniquely applied to each specific climate and bioregion PROGRESSIVELY CREATE CONTEXT- IMPROVE WHOLE SPECIFIC DESIGNS AGROECOSYSTEMS AND MAKE HOLISTIC (SOIL, WATER AND DECISIONS THAT BIODIVERSITY) EXPRESS THE ESSENCE OF EACH FARM 1 2 ENSURE AND 3 4 CONTINUALLY DEVELOP JUST AND GROW AND EVOLVE RECIPROCAL INDIVIDUALS, FARMS, RELATIONSHIPS AND COMMUNITIES AMONGST ALL STAKEHOLDERS Regenerative Agriculture Practices From the 4 Principles emerge a diversity of Practices This definition presents these most-explored Regenerative Agriculture Practices, leaving space to articulate Practices for the other Principles in the future. The Regenerative Agriculture Practices that can progressively improve whole agroecosystems are: Ensure reciprocal relationships Continually Grow Principles Design & Decide & Evolve Holistically Regenerative Agriculture Organic Annual Cropping Improve whole Holistically Managed Grazing agroecosystems No-Till Farming Animal Integration Practices Compost Biochar Perennial Crops Silvopasture Pasture Cropping Intercropping Compost Tea Agroforestry A comprehensive list and description of climate-specific Regenerative Agriculture Practices is available in The Carbon Farming Solution: A Global Toolkit of Regenerative Agriculture (Toensmeier, 2016).