Crop Residue Management

Total Page:16

File Type:pdf, Size:1020Kb

Crop Residue Management AGRONOMIC DESIGN INSIGHTSBrought to you by CASE IH CROP RESIDUE MANAGEMENT WHAT’S INSIDE Growers can improve yield potential by focusing on seven key agronomic aspects of the The Crop Residue crop production cycle: crop residue management, soil tilth, seed bed conditions, seed Management Challenge . 1 placement accuracy, plant food availability, crop protection and harvest quality. Crop residue decomposition is largely a biological process. The rate of decomposition Unlocking the Nutritive increases with warm temperatures, adequate moisture and abundant bacteria, fungi, Value of Residue . 2 insects, earthworms, bugs, and other creatures to dig and digest. Minerals and Maintaining Soil Organic Matter . 2 nutrients are recycled back into the production of crops. This fact sheet addresses crop residue management: the agronomic and economic Challenges Posed by Hybrid Vigor . 3 benefits of utilizing residue in the soil; the challenges and opportunities associated with liberating the nutritive value of crop residue from today’s tough hybrids; and Equipment Considerations When how the right equipment can help producers maximize the cycling and availability of Managing Residue . 3 nutrients in residue and improve the soil’s organic matter. THE CROP RESIDUE MANAGEMENT CHALLENGE By Dr. Rob Zemenchik, Case IH Global Marketing Manager – Agronomy With commercial fertilizer prices on the rise in recent years, the nutrient value of crop residue has become both a significant economic and agronomic consideration. Corn stalks, soybean stubble and wheat straw can be baled and sold for livestock feed or bedding or biofuel production. And some crops are harvested as forage or silage, reducing crop residue in the field. In the Bt corn era, reduced decomposition time has emerged because of extended ear-fill periods that leave stay-green residues and fewer warm post-harvest days—all complicating crop residue management. In addition, increased lignin content of plant tissues expressed in some hybrids and Agronomic Needs for Successful Stands THE CROP RESIDUE MANAGEMENT CHALLENGE [CONT.] varieties slows decomposition as plants are tougher and healthier. Increased ethanol production has encouraged a change in crop rotations toward more corn-on-corn, where carbon-to- nitrogen ratios are higher and decomposition rates slower. In more northern latitudes, residue decomposition also tends to slow with less heat. In addition, proposed cellulosic ethanol production removes significant portions of crop residues from the production system, raising serious questions about long-term soil organic matter levels, nitrogen fertilization requirements, and In mulch tillage, crop residue reduces soil erosion from water and wind and protects the soil’s future production capacity. erosion potential. All of these factors encourage more judicious the next growing season. This can reduce the nutrient holding capacity and buffer against management of crop residues than in the past, crop’s dependency on purchased fertilizer, changes in soil pH. Mechanically sizing and including the need to speed decomposition improve cash flow and profitability, improve incorporating stalks helps this transformation rates. Recent interest in cover crops as a the crop growing environment and, as a result, and allows farmers to avoid operational and strategy shows potential, but must also be increase yield potential for the next season. planting challenges the following spring. n evaluated in terms of competition for water Studies show that when optimally-sized and available heat units for crop development residue is incorporated into the soil in the in northern latitudes. presence of sufficient oxygen, moisture MAINTAINING SOIL By sizing and mixing crop residue into the soil and temperature, it will decompose and ORGANIC MATTER profile after harvest, producers can liberate partly remain as stable organic matter. Such By Dr. Rob Zemenchik, Case IH Global Marketing vital nutrients and make them available during transformations enhance the soil’s water and Manager – Agronomy Corn residue can be a significant contributor UNLOCKING THE NUTRITIVE VALUE OF RESIDUE in building soil organic matter. Soil- By Tim Nix, Case IH Tillage Marketing Manager incorporated organic matter acts as a nutrient Nutrient values of corn crop stover are the University of Arkansas, a ton of soybean source for plants and microbes. That organic estimated to be as much as 175 pounds of stubble provides 12 pounds of N, 9 pounds of matter also behaves like a sponge. potash (K20) and 25 pounds of phosphorus K20 and 4 pounds of P205 (see figure 2). According to the Journal of Soil and Water per acre (see figure 1). Determining the measureable return on Conservation, as organic matter content Another common measurement of crop investment of adequate residue management increases from 0.5 to 3 percent, available residue’s nutrient value is expressed as pounds depends on the current market value of the water capacity of the soil more than per ton. The Ohio State University reports nutrients in the crop residue. There’s no good doubles. In a dry year on sandy soils, this that a ton of wheat straw would provide way to put a dollar value on the organic matter can mean the difference between crop approximately 11 pounds of nitrogen (N), 3 added to the soil – it’s invaluable – but we can success and failure. In addition, as organic matter accumulates in the soil, the nutrient pounds of phosphate (P2O5) and 20 pounds estimate a price for nutrients. For instance, holding capacity of the soil increases for of K2O. Michigan State University pegs the if we assume N is 65 cents per pound, the averages at 13 pounds of N, 3.3 pounds of nutrient value of N in soybean stubble is $7.80 both macro- and micro-nutrients. P205 and 23 pounds of K20. According to per ton (12 lbs. N/ton x $0.65). n Recent research from the University of Illinois finds that a number of long-term figure 1 figure 2 studies indicating that no-till practices lbs N per ton of lbs K O per ton lbs P O per ton always build soil organic matter were wrong. Potential Nutrient Availability Crop Stubble 2 2 5 stubble of stubble of stubble in Corn Residue Both tillage and no-till cropping systems 200 Rice 20 24 6 will reduce soil organic matter over time if 180 growers don’t manage the soil and the crop 160 Corn 20 25 6 140 residue for higher yields. Good management 120 Lbs. practices include: Planting cover crops • 100 Soybean 12 9 4 80 K Rotating crops • Fertilizing crops to increase 60 plant growth above and below ground • 40 Peanut 34 41 7 Sizing and mixing crop residue. n 20 P 0 Trenton Roberts, Research Assistant Professor, Crop, Soil & Environmental *Based on 200 bu./ac. corn crop Sciences, University of Arkansas, September 11, 2012. 2 CHALLENGES POSED BY HYBRID VIGOR Incorporating crop residue and encouraging figure 4 decomposition has gotten more challenging as populations have increased and corn Identifying Late Emerging Plants hybrids, in particular, have gotten stronger and more vigorous. While Bt corn hybrids are Full Potential – Plants at the same growth stage, bred to stay greener longer – which helps the where they should be. ear fill period and yield potential – they’re also higher in lignin (fiber). As a result, they tend Partial Potential – Plants one to two leaves behind are to resist decomposition and can persist in the actually half “weed.” They do not add to productivity, seed bed for several seasons. and they take nutrients from 100% plants. Some studies show as much as a 20- to No Potential or Weeds – Any plants that are three or 30-percent increase in lignin in today’s stalks more leaves behind. (see figure 3). figure 3 The potentially higher stem lignin content and at seven locations and included more than wiry root crowns and root balls associated 2 million hand-collected data points. Stem Lignin Content with Bt corn can all pose problems during Using advanced data mining techniques, 30 planting the following spring if they haven’t the Case IH research team learned that by 25 been properly sized and mixed beforehand. better managing residue, soil fracture and Stand variability (see figure 4) results from 20 the size of holes and clods left behind, yield 28% uneven planting conditions, irregular in-row potential could be significantly improved. 15 more seed spacing and seed depth, and variable lignin Large holes collect water, and in combination 10 18% moisture and soil temperature levels. more with large clods, they increase the variability 5 lignin In more than five years of extensive field of soil temperatures. The holes and clods 0 research, Case IH found that up to 10 make accurate seed placement at planting Two Bt hybrids compared to their percent of seeds planted failed to emerge or impossible, even with freeze-thaw cycles non-Bt isolines develop a full ear at harvest if residue was not and subsequent field cultivator passes in the handled properly and the clods and valleys spring. Surface residue from corn can be Source: Poerschmann J. et al., 2005 Aug. 9 Journal of Environmental Quality 34:1508-1518. left behind were too big for a planter to work especially problematic, as spring soils warm properly. This research was done in five states more slowly in the northern Corn Belt. n EQUIPMENT CONSIDERATIONS WHEN MANAGING RESIDUE By Nathan Weinkauf, Case IH Combine Marketing Manager Managing residue starts at harvest and continues through planting or seeding the crop. Harvest Considerations Consider combines with a range of residue management options to match each field’s needs, and headers that allow uniform feeding and residue distribution out the back. In tough Bt corn crops, a chopping corn head will simultaneously harvest corn and chop the stalks. Processing above- ground plant parts starts the process of Axial-Flow® combines offer the widest range of residue-management features on the market today.
Recommended publications
  • Circular Bioeconomy Research for Development in Sub-Saharan Africa: Innovations, Gaps, and Actions
    sustainability Article Circular Bioeconomy Research for Development in Sub-Saharan Africa: Innovations, Gaps, and Actions Shiferaw Feleke 1,* , Steven Michael Cole 1,* , Haruna Sekabira 2 , Rousseau Djouaka 3 and Victor Manyong 1 1 Social Science and Agribusiness, International Institute of Tropical Agriculture (IITA), Dar es Salaam 34441, Tanzania; [email protected] 2 Natural Resource Management, International Institute of Tropical Agriculture (IITA), Kigali 1269, Rwanda; [email protected] 3 Plant Production and Plant Health, International Institute of Tropical Agriculture (IITA), Cotonou 0932, Benin; [email protected] * Correspondence: [email protected] (S.F.); [email protected] (S.M.C.); Tel.: +255-222700092 (S.F.) Abstract: The International Institute of Tropical Agriculture (IITA) has applied the concept of ‘circular bioeconomy’ to design solutions to address the degradation of natural resources, nutrient-depleted farming systems, hunger, and poverty in sub-Saharan Africa (SSA). Over the past decade, IITA has implemented ten circular bioeconomy focused research for development (R4D) interventions in several countries in the region. This article aims to assess the contributions of IITA’s circular bioeconomy focused innovations towards economic, social, and environmental outcomes using the outcome tracking approach, and identify areas for strengthening existing circular bioeconomy R4D interventions using the gap analysis method. Data used for the study came from secondary sources available in the public domain. Results indicate that IITA’s circular bioeconomy interventions led to ten technological innovations (bio-products) that translated into five economic, social, and Citation: Feleke, S.; Cole, S.M.; environmental outcomes, including crop productivity, food security, resource use efficiency, job Sekabira, H.; Djouaka, R.; Manyong, V.
    [Show full text]
  • Water Quality & Agriculture: It's Your Responsibility
    Water Quality & AgricultureIT’S YOUR RESPONSIBILITY A Landowner’s Guide to Oregon’s Agricultural Water Quality Program Photo courtesy of USDA NRCS Water Quality & Agriculture IT’S YOUR RESPONSIBILITY Agricultural Water Quality Program In 1972, the federal Clean Water Act was passed to clean up water pollution from human activities such as forestry, factories, wastewater treatment plants, and agriculture. Oregon’s Agricultural Water Quality Management Act (Act) was passed in 1993 with the input and support of the agricultural industry and the Oregon Board of Agriculture. The Act is the foundation of the Oregon Department of Agriculture’s (ODA) Agricultural Water Quality Management Program (Program). The Act directed ODA to assist the industry in preventing and controlling pollution from agricultural sources. Working in partnership with Oregon’s 45 local Soil and Water Conservation Districts (SWCDs), ODA identified 38 watershed-based Agricultural Water Quality Management Areas (Management Areas) throughout the state. ODA Water Quality Specialists work with the agricultural landowners, and other stakeholders, who serve as Local Advisory Committee (LAC) members for each Management Area. Each LAC identifies local agricultural water quality problems and opportunities for improvement. Agricultural Water Quality Management Area Plans (Area Plans) address agricultural water quality issues in Oregon. As the LACs helped create the Area Plans, they also helped write Area Rules (regulations) for that Management Area. The Area Rules ensure that all landowners do their part to prevent and control water pollution. The Program is designed to help anyone engaged in agricultural activities prevent water pollution. How might my activities affect water quality? The primary water quality issues related to agriculture are excessive sediment, nutrients, stream temperature, and bacteria.
    [Show full text]
  • Socio-Demographic and Economic Characteristics, Crop-Livestock Production Systems and Issues for Rearing Improvement: a Review
    Available online at http://www.ifgdg.org Int. J. Biol. Chem. Sci. 12(1): 519-541, February 2018 ISSN 1997-342X (Online), ISSN 1991-8631 (Print) Review Paper http://ajol.info/index.php/ijbcs http://indexmedicus.afro.who.int Socio-demographic and economic characteristics, crop-livestock production systems and issues for rearing improvement: A review Daniel Bignon Maxime HOUNDJO1, Sébastien ADJOLOHOUN1*, Basile GBENOU1, Aliou SAIDOU2, Léonard AHOTON2, Marcel HOUINATO1, Soumanou SEIBOU TOLEBA1 and Brice Augustin SINSIN3 1Département de Production Animale, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, 03 BP 2819 Jéricho, Cotonou, Benin. 2Département de Production Végétale, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, 03 BP 2819 Jéricho, Cotonou, Benin. 3Département de l’Aménagement et Gestion des Ressources Naturelles, Faculté des Sciences Agronomiques, Université d’Abomey-Calavi, 03 BP 2819 Jéricho, Cotonou, Benin. *Corresponding author; E-mail : [email protected]; Tél: (+229) 97 89 88 51 ABSTRACT This paper reviews some characteristics of crop-livestock production systems in Benin with a special focus on the issues for enhance pasture production and nutritive value which in turn will increase animal productivity. Benin is located in the Gulf of Guinea of the Atlantic Ocean in West Africa and covers 114,763 km2. The population estimated in 2017 is 10,900,000 inhabitants with an annual population growth rate of 3.5%. The country is primarily an agro-based economy, characterized by subsistence agricultural production that employs more than 70%. The climate ranges from the bimodal rainfall equatorial type in the south to the tropical unimodal monsoon type in the north.
    [Show full text]
  • Crop Residue Management: Solution to Achieve Better Air Quality
    DISCUSSION PAPER January 2020 CROP RESIDUE MANAGEMENT: SOLUTION TO ACHIEVE BETTER AIR QUALITY CROP RESIDUE MANAGEMENT: SOLUTION TO ACHIEVE BETTER AIR QUALITY © COPYRIGHT The material in this publication is copyrighted. Content from this position paper may be used for non-commercial purposes, provided it is attributed to the source. Authors Arindam Datta, Fellow, Centre for Environmental Studies, TERI Mrinal A. Emmanuel, Project Associate, Centre for Environmental Studies, TERI N. K. Ram, Senior Fellow & Area Convenor, Renewable Energy Technology Applications, TERI Sunil Dhingra, Senior Fellow & Associate Director, Renewable Energy Technology Applications, TERI Reviewers Sumit Sharma, Senior Fellow & Director, Centre for Environmental Studies, TERI Ajay Shankar, Distinguished Fellow, Director-General’s Office, TERI Acknowledgements Authors greatly acknowledge the support received from Bloomberg Philanthropies. Suggested Format for Citation Datta, A, M A Emmanuel, N K Ram and S Dhingra. 2020. Crop Residue Management: Solution To Achieve Better Air Quality. New Delhi: TERI Design Sushmita Ghosh, Sudeep Pawar, TERI Press PUBLISHED BY The Energy and Resources Institute (TERI) FOR MORE INFORMATION Centre for Sustainable Mobility, TERI, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi 110 003, India | Tel.: +91 11 2468 2100 or 2468 2111 | Fax: +91 11 2468 2144 or 2468 2145 Email: [email protected] | Web: www.teriin.org TABLE OF CONTENTS Introduction 1 Current Status of the Sector 2 Prescribed Strategy 5 Acknowledgement 8 References 8 iv DISCUSSIONPOLICY BRIEF PAPER INTRODUCTION Residents of different cities (probably villages too) of sugarcane (12.0) > maize (11.2) > cotton (9.8) > rice (9.3) India breathe some of the least healthy air of the globe.
    [Show full text]
  • Water Quality Effects of Crop Residue Removal for Cellulosic Ethanol Production
    Water quality effects of crop residue removal for cellulosic ethanol production Ian KenneyA, Humberto Blanco-CanquiB, DeAnn PresleyA, Charles RiceA, Nathan NelsonA, Brian OlsonC D and Keith Janssen AKansas State University, Department of Agronomy. 2004 Throckmorton Plant Sciences Center, Manhattan, KS 66506. BKansas State University, Western Kansas Agricultural Research Center-Hays. 1232 240th Ave., Hays, KS 67601. CKansas State University, Northwest Research Extension Center-Colby. 105 Experiment Farm Rd., Colby, KS 67701. DKansas State University, East Central Kansas Experiment Field-Ottawa. 2149 Montana Rd., Ottawa, KS 66067. Abstract Crop residues have been identified as a prime feedstock for large-scale cellulosic ethanol production. Therefore, understanding the impacts of widespread residue harvest on soil and environment is essential to establish soil-specific residue harvest rates. We assessed the effects of variable levels of corn residue removal on runoff and soil erosion on a regional scale across three locations (Colby, Hugoton, and Ottawa) in Kansas. Five residue treatments that consisted of removing 0, 25, 50, 75, and 100% of corn residue after harvest were studied for losses of runoff, sediment, soil organic carbon (SOC), total N and P, NO3-N, NH4- N, and PO4-P. Simulated rainfall at a rate of 76.2 mm/h in Colby and Hugoton, and 91.4 mm/h in Ottawa was applied for 30 min. Results of this regional study showed that runoff volume, SOC, and total N and P concentrations increased with increase in residue removal at all locations. In contrast, NO3-N, NH4-N, and PO4-P concentrations in runoff increased with decrease in residue removal rate, most likely due to nutrient leaching from residues.
    [Show full text]
  • Crop Residues and Livestock Residues
    BIOENERGY AND FOOD SECURITY RAPID APPRAISAL (BEFS RA) User Manual CROP RESIDUES AND LIVESTOCK RESIDUES 1 BEFS Rapid Appraisal Natural Resources Module __________________________________ Agricultural Residues Component Crop Residues and Livestock Residues User Manual 2 Acknowledgements The BEFS Rapid Appraisal was the result of a team effort to which the following authors, listed in alphabetical order, contributed1: Giacomo Branca (Tuscia University, Viterbo), Luca Cacchiarelli (Tuscia University, Viterbo), Carlos A. Cardona (National University of Colombia at Manizales), Erika Felix, Arturo Gianvenuti, Ana Kojakovic, Irini Maltsoglou, Jutamanee Martchamadol, Luis Rincon, Andrea Rossi, Adriano Seghetti, Florian Steierer, Heiner Thofern, Andreas Thulstrup, Michela Tolli, Monica Valencia (National University of Colombia at Manizales) and Stefano Valle (Tuscia University, Viterbo). Inputs and contributions were also received from Renato Cumani, Amir Kassam, Harinder Makkar, Walter Kollert, Seth Meyer, Francesco Tubiello and his team, Alessio d’Amato (University of Rome, Tor Vergata) and Luca Tasciotti. We would like to thank the Bioenergy and Food Security Working Group in Malawi2 as well as the National Biofuels Board3 and its Technical Working Group in the Philippines for their involvement in the pilot testing of the BEFS Rapid Appraisal and the useful feedback provided. We also wish to extend our appreciation to Rex B. Demafelis and his team from University of the Philippines Los Baños for their valuable support in the pilot testing exercise.
    [Show full text]
  • Harvesting Crop Residue
    United States Department of Agriculture Harvesting Crop Residue: What is it worth? Iowa Fact Sheet Natural Resources Conservation Service Des Moines, Iowa October 2016 Dollar Value of Crop Residue The plant residue left in the Fertilizer Value of Nutrients in One Ton of Corn Residue* field after harvest is a valuable Element Concentration Pound/ton Fertilizer Value of resource. Increasing demand in residue (%) nutrient price nutrients in for harvested crop residue has ($/.lb)** residue left many producers wondering ($/ton) whether they should bale and sell c = (b/100) x a b d e = c x d their crop residue or leave it in the 2,000 field. To help make that decision producers should consider the N 1.85 37 .40 $14.80 following: P205 .175 3.5 .45 $1.58 K 0 1.65 33 .35 $11.55 Cost of harvesting the residue 2 Based on a custom baling price Total Value $33.05 of $13 per large round bale ($22/ *Based on Table 1 from Al-Kaisi, et al, 2008. The Effect of Residue Management on Soil and Water ton) and custom raking at $3/ton, Quality. **Based on 2016 Crop Production Costs from Iowa State University. Substitute current prices it costs about $25/ton (based on in column d and multiply by column c to get value of each nutrient per ton of corn residue. 1,200 lb bales) to harvest residue. Value of removed nutrients Based on data from the Agricultural Research Service’s (ARS) National Soil Tilth Lab, a ton of corn residue contains about 37 lbs.
    [Show full text]
  • Agriculture: a Glossary of Terms, Programs, and Laws, 2005 Edition
    Agriculture: A Glossary of Terms, Programs, and Laws, 2005 Edition Updated June 16, 2005 Congressional Research Service https://crsreports.congress.gov 97-905 Agriculture: A Glossary of Terms, Programs, and Laws, 2005 Edition Summary The complexities of federal farm and food programs have generated a unique vocabulary. Common understanding of these terms (new and old) is important to those involved in policymaking in this area. For this reason, the House Agriculture Committee requested that CRS prepare a glossary of agriculture and related terms (e.g., food programs, conservation, forestry, environmental protection, etc.). Besides defining terms and phrases with specialized meanings for agriculture, the glossary also identifies acronyms, abbreviations, agencies, programs, and laws related to agriculture that are of particular interest to the staff and Members of Congress. CRS is releasing it for general congressional use with the permission of the Committee. The approximately 2,500 entries in this glossary were selected in large part on the basis of Committee instructions and the informed judgment of numerous CRS experts. Time and resource constraints influenced how much and what was included. Many of the glossary explanations have been drawn from other published sources, including previous CRS glossaries, those published by the U.S. Department of Agriculture and other federal agencies, and glossaries contained in the publications of various organizations, universities, and authors. In collecting these definitions, the compilers discovered that many terms have diverse specialized meanings in different professional settings. In this glossary, the definitions or explanations have been written to reflect their relevance to agriculture and recent changes in farm and food policies.
    [Show full text]
  • A Beginning Farmer's Guide to Agriculture Words, Terms and Definitions
    W 941 A Beginning Farmer’s Guide to Agriculture Words, Terms and Definitions A Beginning Farmer’s Guide to Agriculture Words, Terms and Defnitions l A Compiled by: Mitchell Mote, Extension Agent, Rutherford County Andrew P. Griffth, Associate Professor, Department of Agriculture and Resource Economics Kevin Rose, Extension County Director, Giles County Troy Dugger, Program Coordinator, Center for Proftable Agriculture INTRODUCTION This document is designed as a guide to help new or beginning farmers understand agriculture terminology. There are many terms related to different aspects of agriculture that may not be known to those who have not been involved in farming or have very little farming experience. Many of these terms and their meaning can be found in this document. While this list is not exhaustive of all the terms used in the feld of agriculture, it is prepared with the hope that the terms found in this guide will be useful and provide new and beginning farmers a foundation to better understand agriculture. How to “Talk” Farming Avian HOW TO TALK FARMING A beginning farmer's guide to Agriculture Words, Terms and Definitions Acidic: A soil pH of less than 7.0. The Apiary: A place where honeybees are Avian: Pertaining to poultry and/or fowl. lower the number, the more acidic the kept; colonies of bees in hives. soil will be. The pH scale ranges from Backgrounding: The feeding and 0 to 14, with 7 as neutral. Aquaculture: The commercial management of meat animals from production of aquatic plants or animals the time they are weaned as calves Acre: U.S.
    [Show full text]
  • Greater EPA Leadership Needed to Reduce Nonpoint Source Pollution I Illill 142637
    WATER POLLUTION Greater EPA Leadership Needed to Reduce Nonpoint Source Pollution i IllIll 142637 BBSIBIcI’ED--- Not to be released outside the * General Accounting OiYice unless specifically appmved by the Off’lce of Congressional Ii-e-iations* - RELEASED ^. ._. “... ” ., .., ,. ,“, .._.,” . ..- 1-- -.... --.- -.--_---~ ..-“- Resources, Community, and Economic Development Division B-236683 October 16,199O The Honorable Glenn M. Anderson Chairman, Subcommittee on Investigations and Oversight Committee on Public Works and Transportation House of Representatives The Honorable Bob McEwen Ranking Minority Member, Subcommittee on Investigations and Oversight Committee on Public Works and Transportation House of Representatives As requested by the former Chairman and former Ranking Minority Member, we have reviewed whether federal programs and activities are inhibiting state and local efforts to control nonpoint source pollution. Specifically, this report discusses (1) the barriers that may be inhibiting state and local nonpoint control efforts, noting in particular federal programs that may be contributing to the problem, and (2) what actions EPAcan take to better focus federal efforts on reducing nonpoint source pollution. As arranged with your offices, unless you publicly announce its contents earlier, we will make no further distribution of this report until 30 days after the date of this letter. At that time, we will send copies to other appropriate congressional committees; the Administrator, EPA;and the Director, Office of Management and Budget. We will also make copies available to other interested parties, This work was performed under the direction of Richard L. Hembra, Director, Environmental Protection Issues, who may be reached at (202) 275-6111. Other major contributors to this report are listed in appendix I.
    [Show full text]
  • Estimating Nutrient Loss from Crop Residue Fires Ron Gelderman South Dakota State University
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Extension Extra SDSU Extension 6-1-2009 Estimating Nutrient Loss from Crop Residue Fires Ron Gelderman South Dakota State University Follow this and additional works at: http://openprairie.sdstate.edu/extension_extra Recommended Citation Gelderman, Ron, "Estimating Nutrient Loss from Crop Residue Fires" (2009). Extension Extra. Paper 366. http://openprairie.sdstate.edu/extension_extra/366 This Other is brought to you for free and open access by the SDSU Extension at Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Extension Extra by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. ExEx8164 June 2009 Plant Science 3 pages South Dakota State University / College of Agriculture & Biological Sciences / USDA Estimating Nutrient Loss from Crop Residue Fires Ron Gelderman, professor, Plant Science Department In spring and during some fall harvests, there can be of 75%, P losses of 21%, and K losses of 35%. N, P, K, accidental fires that burn the crop residue from a field or and S were the primary nutrients measured. The researchers from part of a field. Although corn residue is most suscep- speculated that the P and K lost resulted from smoke and tible to accidental burning, wheat residue is also vulnerable, ash that escaped from the burn container. In a field burn, and to a lesser extent so is soybean residue. Dry, windy some of this ash may be redeposited onto the field, depend- conditions, along with large amounts of residue, provide ing on wind and other environmental factors.
    [Show full text]
  • Management of Crop Residues for Sustainable Crop Production
    IAEA-TECDOC-1354 Management of crop residues for sustainable crop production Results of a co-ordinated research project organized by the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture 1996–2001 May 2003 The originating Section of this publication in the IAEA was: Soil and Water Management & Crop Production Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria MANAGEMENT OF CROP RESIDUES FOR SUSTAINABLE CROP PRODUCTION IAEA, VIENNA, 2003 IAEA-TECDOC-1354 ISBN 92–0–104203–5 ISSN 1011–4289 © IAEA, 2003 Printed by the IAEA in Austria May 2003 FOREWORD It is well recognized that the organic matter content of a soil is a key attribute of fertility. The beneficial effects of organic matter on the physical, chemical, and biological properties of soil are well documented. Decline in organic matter content in intensive cropping systems is considered to be the major problem in maintaining agricultural productivity in the tropics. Additions of organic materials such as crop residues play an important role in the recycling of nutrients. More than one half of all dry matter in the global harvest is in the form of residues, and in most developing countries the amounts of nutrients in residues are often several orders of magnitude higher than the quantities applied as fertilizers. Thus, proper management of crop residues for the maintenance of soil fertility cannot be overstressed. This Co-ordinated Research Project (CRP) focused on countries where crop production and soil fertility can be sustained by the better management of crop residues. As a result of recommendations formulated at a consultants meeting organized by the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, 4–7 September 1995, a Co-ordinated Research Project on “The Use of Isotope Techniques in Studies on the Management of Organic Matter and Nutrient Turnover for Increased Sustainable Agricultural Production and Environmental Preservation” was implemented between 1996 and 2001.
    [Show full text]