European Nitrogen Assessment

Total Page:16

File Type:pdf, Size:1020Kb

European Nitrogen Assessment COMMENT ENVIRONMENT Worse than BIOTECHNOLOGY Biohackers ECOLOGY Libyan revolution OBITUARY Simon van der Meer, Deepwater would be an take biology into the might protect bluefin tuna, who enabled the discovery of Arctic oil spill p.162 garage p.167 with trawlers grounded p.169 W and Z particles p.170 J. EVESON/FLPA/PHOTOLIBRARY Applying liquid manure more precisely than this would be cleaner, reduce odour and emit less ammonia. Too much of a good thing Curbing nitrogen emissions is a central environmental challenge for the twenty-first century, argue Mark Sutton and his colleagues. n analysis published this week outcome of the five-year European Nitrogen calculates that excess nitrogen in Assessment, which has drawn together 200 SUMMARY the environment costs the Euro- experts, including ourselves, to understand ● Nitrogen pollution costs the European Apean Union (EU) between €70 billion the sources, processes and impacts of nitro- Union between €70 billion and €320 (US$100 billion) and €320 billion per year1. gen as a basis to inform policy. billion per year. It is the first time that an economic value has Excess reactive nitrogen threatens the ● Policies should address farming, meat been placed on the threats posed by nitrogen quality of air, soil and water. It affects consumption, use of human sewage and pollution, including contributions to climate ecosystems and biodiversity, and alters the fossil-fuel burning. change and biodiversity loss. To put that into balance of greenhouse gases. Existing cli- ● The Gothenburg Protocol is an perspective, this cost is more than double the mate and air-pollution policies that aim to opportunity to further reduce emissions. value that nitrogen fertilizers are estimated reduce energy consumption and fossil-fuel ● A global inter-convention nitrogen to add to European farm income. burning, such as the Gothenburg Protocol, protocol is needed. This economic valuation is just one are helping to cap nitrogen emissions 14 APRIL 2011 | VOL 472 | NATURE | 159 © 2011 Macmillan Publishers Limited. All rights reserved COMMENT At the same time, nitrogen emissions tend to DAMAGE COSTS OF NITROGEN POLLUTION MAIN NITROGEN SOURCES cool the planet: by reducing the atmospheric Agriculture and fossil-fuel burning load the environment life-time of methane; by forming particulate with reactive nitrogen, aecting water, soils and air. matter that reflects light back into space; and 120 by acting as a fertilizer, increasing the growth WATER NH Reactive nitrogen RUNOFF 3 of forests. Overall, the assessment finds that 100 runo in water these effects tend to balance out. Efforts need NH3 released to air NO released to air to focus on reducing the warming effects, 80 x N2O released to air while recognizing that the adverse effects of particulate matter and nitrogen deposition 60 on human health and biodiversity may more NO x N20 than outweigh their climate benefits. 40 COSTS AND BENEFITS 20 It is hard to tally up all the costs and benefits Cost to European Union (billion €) Agriculture Sewage Fossil-fuel burning Other of reactive-nitrogen production. The direct 0 Industry Human health Ecosystems Climate and indirect effects influence everything from population growth and energy produc- tion to the manufacture of nitrogen-based from transport and industry. Together But the mass production of reactive products such as nylon, polyurethane and with policies on nitrates in drinking water nitrogen has come with costs. Nitrogen- hydrazine rocket fuel. and reductions in cattle numbers, these have based explosives killed 100 million people The benefits of nitrogen can be seen from led to a modest drop in European nitrogen in armed conflicts during the twentieth its largest use: agricultural fertilizers. Manu- pollution since the 1980s. century2. Their use in mining has opened factured fertilizer adds 11 million tonnes of But existing policies are piecemeal, and up fossil-fuel reserves, the burning of which reactive nitrogen annually to fields in the EU. there has been little attempt to integrate has released carbon dioxide and more reac- This produces a direct benefit to European the effects of the different nitrogen threats. tive nitrogen into the atmosphere. About farmers, in terms of crops grown, of €20 bil- Nitrogen pollution poses an even greater half of the nitrogen added to farm fields in lion to €80 billion per year, when the long- challenge than carbon, because the element Europe ends up as pollution, or is wasted by term benefits are included1. On top of that, has many complex effects as it cascades denitrification back to N2 (ref. 1). biological fixation and recycled sources of through many chemical forms. There is a In water, excess reactive nitrogen causes nitrogen — including plant residues, animal need for new policies that cover these con- algal blooms that can kill fish, and nitrate manures and atmospheric deposition — add cerns and encourage changes in farming, in drinking water can harm human health, 17 million tonnes, giving a total direct ben- diet and even what we do with human waste. increasing the risk of bowel cancer. About efit of €25 billion to €130 billion, even before 80% of European fresh waters exceed a value is added during the food-supply chain. THE DAMAGE DONE threshold for high risk to biodiversity of But half of the nitrogen in fertilizers and Nitrogen can be divided into two classes. 1.5 milligrams of nitrogen per litre. Com- manures is lost to the surrounding envi- Unreactive nitrogen (N2) makes up 78% bined with the effects of too much phos- ronment. In economic terms, this amounts of Earth’s atmosphere. Reactive nitrogen phorus, the resulting proliferation of algae in to a loss of potential includes every other form of the element, coastal areas gives new meaning to the idea “The effects benefits to farmers of including nitrogen oxides (NOx), nitrous of ‘green’ bathing. of airborne €13 billion to €65 bil- oxide (N2O), ammonia (NH3) and nitrate In the air, reactive nitrogen adds to par- particles take lion per year. On these (NO3). All biological systems need reac- ticulate matter and ground-level ozone, six months grounds alone, there is tive nitrogen, but historically it has been in created when nitrogen oxides react with off the life a strong case for using short supply. Until the end of the nineteenth organic compounds, causing respiratory expectancy nitrogen more effi- century, the main agricultural source was and cardiovascular disease. The effects of of at least ciently. fixation of N2 by symbiotic bacteria in leg- airborne particles take six months off the life half of all These numbers, umes planted for that purpose, combined expectancy of at least half of all Europeans. Europeans.” however, are much with careful recycling of the limited amount In forests, ammonia pollution encourages lower than the esti- of nitrogen in manure. the growth of algal slime that can suffocate mated cost of the damage from reactive- By 1900, there was a worrying shortage of tree-living plants such as mosses and lichens nitrogen emissions. The assessment gauges reactive nitrogen, as fertilizers were needed (see picture) to such an extent that it would these costs by looking at society’s readiness to feed a growing population and nitrogen- be easy to think this were natural in agricul- to pay for longer and healthier life, for nature based explosives were wanted for weaponry. tural areas of northwest Europe. The assess- restoration, or for climate stability. The grand The solution came in 1908 with the Haber– ment estimates that NH3 and NOx emissions total of €70 billion to €320 billion per year is Bosch process, allowing cheap ammonia to have reduced forest biodiversity by more equivalent to 1–4% of the average disposable be made from N2 and energy on an industrial than 10% over two-thirds of Europe. per capita income of European citizens. scale. This process was so successful that, Nitrogen deposition also threatens the abil- Of the total cost of damage from reactive- within a century, human production of reac- ity of peatlands to store carbon by killing the nitrogen emissions, 75% comes from the tive nitrogen had more than doubled global bog-building moss Sphagnum. effects of NOx and NH3 on human health rates of nitrogen fixation. Without it, around Importantly, we now have a first estimate and ecosystems. The effect of N2O emis- half of humanity would not be alive2. As an of how the different climate warming and sions on climate warming accounts for only intentional strategy to address the world’s cooling effects of nitrogen add up across around 5%. Although N2O has recently been shortage of reactive nitrogen, the Haber– Europe. Nitrogen tends to warm the planet heralded as the main cause of stratospheric 3 Bosch process is arguably the greatest single by forming N2O and ground-level ozone, ozone depletion , this represents only 1% of experiment ever made in geo­engineering. both of which are powerful greenhouse gases. the damage costs. Climate change and ozone 160 | NATURE | VOL 472 | 14 APRIL 2011 © 2011 Macmillan Publishers Limited. All rights reserved COMMENT thinning are important, but the threats to crop and maximizes NH3 emissions. Apply- billion to €105 billion per year (see graphic), health and ecosystems are an even stronger ing manure in bands cuts emissions by the environmental benefits of mitigation are argument for taking action on nitrogen. 30–60%, decreases odours, leaves the crop therefore around 20 (range of 6 to 42) times Clearly nitrogen is one of the major envi- clean and reduces the farmer’s fertilizer bill. the costs, even without counting the other ronmental challenges of the twenty-first By improving nitrogen-use efficiency in this benefits this gives in reducing N2O emis- century. way, measures to decrease NH3 emissions sions and nitrogen runoff.
Recommended publications
  • INI2016 De Vries Wim1
    Impacts of dietary changes on global scale nitrogen losses to air and water Wim de Vries1,2, Jia Wei1, Hans Kros1, David Windhorst3 and Lutz Breuer3 1Alterra, Wageningen University and Research Centre (WUR), PO Box 47, 6700 AA Wageningen, The Netherlands 2Environmental Systems Analysis Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands 3Justus-Liebig University of Giessen, Heinrich-Buff-Ring 26, 35392 Gießen, Germany Abstract A simple fast calculation approach has been developed that gives insight in the overall effects of dietary changes on nitrogen (N) emission to air and water by 2050 for ten identified world regions. The impact of dietary change on N fertilizer and N manure applications and related emissions was based on the consumption of crop and animal commodities, making use of the FAO data from 1961 to 2005 and extrapolating the data towards 2050 in response to five dietary change scenarios. Scenarios included a ‘North American Diet’ (NAD), a ‘Same Diet’ (SD), a ‘Business-as-Usual’ (BAU) diet; a ‘Demitarian Diet’ (DD) and a ‘Vegan Diet’ (VD). The calculated N2O and NH3 emissions and N leaching/runoff for the reference year (i.e. 2005) showed good agreement with various literature estimates. N2O was the most persistent problem, even increasing under the VD scenario, due to the increased use of N fertilizer to cultivate food crops and the assumed high contribution of N fertilizer to N2O emission. NH3 emissions increased three times in the NAD scenario, while it decreased by 13% in the VD scenario. This happens because NH3 emissions mainly follow the N manure trends.
    [Show full text]
  • The Influence of Food Choices on Nitrogen Emissions and the European Environment
    ‘Nitrogen on the Table’ assesses the influence of food choices on nitrogen Table on the Nitrogen pollution, greenhouse gas emissions and land use in Europe. The European Nitrogen Assessment (ENA) identified agriculture as a major source of nitrogen losses. Nitrogen The current total loss of reactive nitrogen from European Union agriculture amounts to an estimated 6.5 - 8 million tonnes per year, representing around 80 % of reactive nitrogen emissions to the EU environment. These nitrogen losses affect our air quality (through ammonia and its links to particulate matter), water quality (through nitrates), biodiversity and soil quality (through increased nitrogen deposition) and greenhouse gas balance (through the release of nitrous oxide). Assessment Nitrogen European the of Report Special A on the Table The present ENA Special Report has been prepared by the Expert Panel on Nitrogen and Food of the UNECE Task Force on Reactive Nitrogen. It examines nitrogen and other pollution losses from the food system and assesses the potential impacts of alternative diets on emissions of nitrogen to air and water. It then considers the potential impacts on land-use change and associated greenhouse gas emissions. The influence of food choices The study finds that reductions in reactive nitrogen emissions associated with decreased intake of meat and dairy products would have substantial benefits, not only within the EU, but also at continental and on nitrogen emissions and the global scales. The scenarios also match to consumption patterns that are better
    [Show full text]
  • Processes Controlling Biosphere Atmosphere Interactions of Ammonia
    Controlling environmental nitrogen: How can it be done? How will it reduce impacts? Mark Sutton TFRN EXPO Milan 10 July 2015 The innocent polluters The innocent polluters Feedlots with 100,000 cattle Chicken farms with 2,000,000 Global Nr production & dispersion Human Nr 60 Production: 30 10 -1 (Tg yr ) 9 8 1860: 15 7 1995: 156 6 5 2005: 191 4 3 2 2005 sources: 1 0.75 Haber Bosch: 120 0.5 Biol N fixn: 50 0.25 0.1 -2 -1 NOx emission: 40 AtmosphericAtmospheric Nr Nr deposition deposition (mg (mg N N m m-2yearyear-)1) 0 Galloway et al. Science (2008) Simplified view of the Nitrogen Cascade Greenhouse gas balance Stratospheric High temperature ozone loss combustion & industry Nitrous Oxide Tropospheric (N2O) ozone formation Urban air Particulate quality Matter Nitrogen oxides Ammonium nitrate (NOx) in rain (NH4NO3) Fertilizer manufacture Further emission Ammonia of NOx & N2O (NH ) carrying on Nr 3 the cascade Crop biological nitrogen fixation Crops for food & animal feed Eventual Intended denitrification N flow to N2 Terrestrial Eutrophication Livestock farming N in Unintended r for food Natural ecosystems N flows manure Soil acidification N form in Leached Nitrate Nitrate in streams, the cascade (NO -) 3 groundwater & Freshwater Eutrophication coastal seas Environmental concern from Nr Marine Eutrophication Five key threats The WAGES of too much nitrogen Water quality Air quality Greenhouse balance Ecosystems Soil quality Plus better food & energy supply European Nitrogen Assessment, 2011 Lichen: Cladonia uncialis Ammonia contributes substantially to particulate matter (PM) concentrations • Reduced visibility • Human heath impacts Castell’ Arquato, near Parma, Italy NH3 emission Nitrogen Damage Costs & Sources EU Damage cost: 70 - 320 billion € / year Nature 14 April 2011 EU benefit-cost ratios: NH3 & NOx mitigation UNECE Air Convention: Task Force on Reactive Nitrogen NH3 NOx Van Grinsven et al.
    [Show full text]
  • The Challenge to Produce More Food and Energy with Less Pollution
    Our Nutrient World The challenge to produce more food and energy with less pollution Prepared by the Global Partnership on Nutrient Management Global Overview on Nutrient Management on Nutrient Global Overview in collaboration with the International Nitrogen Initiative Our Nutrient World_reflowed.indd 1 30/01/2013 10:26:10 Published by the Centre for Ecology and Hydrology (CEH), Edinburgh UK, on behalf of the Global Partnership on Nutrient Management (GPNM) and the International Nitrogen Initiative (INI). ISBN: 978-1-906698-40-9 © Centre for Ecology and Hydrology, 2013. This publication is in copyright. It may be quoted and graphics reproduced subject to appropriate citation. Recommended citation: Sutton M.A., Bleeker A., Howard C.M., Bekunda M., Grizzetti B., de Vries W., van Grinsven H.J.M., Abrol Y.P., Adhya T.K., Billen G.,. Davidson E.A, Datta A., Diaz R., Erisman J.W., Liu X.J., Oenema O., Palm C., Raghuram N., Reis S., Scholz R.W., Sims T., Westhoek H. & Zhang F.S., with contributions from Ayyappan S., Bouwman A.F., Bustamante M., Fowler D., Galloway J.N., Gavito M.E., Garnier J., Greenwood S., Hellums D.T., Holland M., Hoysall C., Jaramillo V.J., Klimont Z., Ometto J.P., Pathak H., Plocq Fichelet V., Powlson D., Ramakrishna K., Roy A., Sanders K., Sharma C., Singh B., Singh U., Yan X.Y. & Zhang Y. (2013) Our Nutrient World: The challenge to produce more food and energy with less pollution. Global Overview of Nutrient Management. Centre for Ecology and Hydrology, Edinburgh on behalf of the Global Partnership on Nutrient Management and the International Nitrogen Initiative.
    [Show full text]
  • Tackling the Nitrogen Management Challenge: from Global to Local Scales
    Home Search Collections Journals About Contact us My IOPscience Synthesis and review: Tackling the nitrogen management challenge: from global to local scales This content has been downloaded from IOPscience. Please scroll down to see the full text. 2016 Environ. Res. Lett. 11 120205 (http://iopscience.iop.org/1748-9326/11/12/120205) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 80.82.78.170 This content was downloaded on 14/01/2017 at 03:19 Please note that terms and conditions apply. You may also be interested in: Impacts of European livestock production: nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity Adrian Leip, Gilles Billen, Josette Garnier et al. Nitrogen-neutrality: a step towards sustainability Adrian Leip, Allison Leach, Patrick Musinguzi et al. Nitrogen use in the global food system: past trends and future trajectories of agronomic performance, pollution, trade, and dietary demand Luis Lassaletta, Gilles Billen, Josette Garnier et al. A vast range of opportunities for feeding the world in 2050: trade-off between diet, N contamination and international trade Gilles Billen, Luis Lassaletta and Josette Garnier Yield-scaled mitigation of ammonia emission from N fertilization: the Spanish case A Sanz-Cobena, L Lassaletta, F Estellés et al. Potential of extensification of European agriculture for a more sustainable food system, focusing on nitrogen Hans J M van Grinsven, Jan Willem Erisman, Wim de Vries et al. Policies for agricultural nitrogen management—trends, challenges and prospects for improved efficiency in Denmark Tommy Dalgaard, Birgitte Hansen, Berit Hasler et al.
    [Show full text]
  • Nitrogen: Grasping the Challenge
    Nitrogen Grasping the Challenge A Manifesto for Science-in-Action through the International Nitrogen Management System Summary Report i Published by the Centre for Ecology & Hydrology (CEH), Edinburgh, UK on behalf of the International Nitrogen Management System (INMS). © Centre for Ecology & Hydrology, 2019. Recommended Citation: Sutton M.A., Howard C.M., Adhya T.K., Baker E., Baron J., Basir A., Brownlie W., Cordovil C., de Vries W., Eory V., Green R., Harmens H., Hicks K.W., Jeffery R., Kanter D., Lassaletta L., Leip A., Masso C., Misselbrook T.H., Nemitz E., Nissanka S.P., Oenema O., Patra S., Pradhan M., Ometto J., Purvaja R., Raghuram N., Ramesh R., Read N., Reay D.S., Rowe E., Sanz- Cobena A., Sharma S., Sharp K.R. Skiba U., Smith J.U., van der Beck I., Vieno M., and van Grinsven H.J.M. (2019) Nitrogen - Grasping the Challenge. A Manifesto for Science-in-Action through the International Nitrogen Management System. Summary Report. Centre for Ecology & Hydrology, Edinburgh, UK. This summary report is available on-line at: www.inms.international About INMS: The International Nitrogen Management System (INMS) is a global science-support system for international nitrogen policy development established as a joint activity of the United Nations Environment Programme (UNEP) and the International Nitrogen Initiative (INI). It is supported with funding through the Global Environment Facility (GEF) and around 80 project partners through the ‘Towards INMS’ project (2016-2022). INMS provides a cross-cutting contribution to multiple programmes
    [Show full text]
  • Institute of Terrestrial Ecology
    FULL LIST OF PUBLICATIONS MARK A. SUTTON Contents 1. Summary 1 2. Books and Published Reports 1 3. Peer Review Journal Papers 4 4. Peer Review Chapters 20 5. Other Chapters 22 6. Contract and other reports 39 7. Policy Documents for United Nations and others 63 8. Web materials and software 66 9. Theses 67 10. Media (press, radio, TV and other) 68 1. Summary H-index: 53 (Web of Science), 56 (Scopus), 68 (Google Scholar). Publications: Total of 906 publications: 37 published books and reports, 242 peer-review journal papers, 24 peer reviewed chapters, 229 non-peer reviewed chapters, 334 contract and other reports, 40 United Nations and other policy documents. Media: c. 660 media reports including newspapers, radio and TV. 2. Books and Published Reports 2015 B.37. Stahel W.R., Saritas O., Damianova Z., van den Hove S., Knudsen L.E., Kurppa S., Laurent L., Mueller A., Nieuwenhuijsen M.J., Nonhebel S., Sutton M.A. and Watson K. (2015) The Junction of Health, Environment and Bioeconomy: Foresight and Implications for European Research & Innovation Policies. Brussels: European Commission [ISBN: 978-92-79-44579-8] http://ec.europa.eu/research/foresight/ B.36. Oenema O., Billen G., Lassaletta L., Brentrup F., Lammel J., Bascou P., Dobermann A., Erisman J.W., Garnett T., Hammel M., Haniotis T., Hoxha A., Jensen L.S., Oleszek W., Pallière C., Powlson D., Quemada M., Sutton M.A., Vallejo A., Van Grinsven H.J.M., Winiwarter W. (2015) Nitrogen Use Efficiency (NUE) - an indicator for the utilization of nitrogen in food systems. (EU Nitrogen Expert Panel).
    [Show full text]
  • ÉCLAIRE Key Messages for Policy Makers July 2014
    Informal document n° 4 ÉCLAIRE Key Messages for Policy Makers July 2014 Start Date of Project: 01/10/2011 Duration: 48 months Services) Commission Services) Contents Executive Summary 1. Progress in answering the Key Questions 2. Specific Objectives of ÉCLAIRE 3. Deviations and reasons 4. Key Meetings 5. Selected Press 6. Selected Publications Books Journal Papers Additional documents related to specific policy processes 2 Executive Summary 1. This report provides a summary of the main scientific messages that are emerging from ÉCLAIRE in relation to the Key Questions that were set out at the start of the project. It provides an update on the messages reported last year, and will be further updated before the end of the project. 2. The main scientific messages described are set out particularly as these are relevant to policy makers. ÉCLAIRE has a strong focus in delivering scientific support for air pollution policy development, including substantial engagement with the UNECE Convention on Long-range Transboundary Air Pollution (CLRTAP) and with the European Commission, DG Environment, especially providing science input to support revision of the EU Air Quality Package, including proposed revision of the National Emissions Ceilings Directive (NECD). 3. The central goal of ÉCLAIRE is to assess how future climate change may alter the extent to which air pollutants have adverse effects on terrestrial ecosystems. The emerging message is that climate change will worsen the threat of air pollutants on Europe’s ecosystems: Climate warming is estimated to increase the emissions of many trace gases, such as ammonia (NH3), soil emissions of nitrogen oxides (NOx) and biogenic volatile organic compounds (BVOCs).
    [Show full text]
  • National Advisory Council on Innovation
    Strategic Plan 2019-2024 Strategic Plan 2020-2025 Private Bag X 894, Pretoria, 0001, South Africa Contact Tel: +27 (0) 12 843 6511 Fax: +27 (0) 12 843 6511 Email: [email protected] Website: www.naci.org.za STRATEGIC PLAN 2020-2025 AND ANNUAL PERFORMANCE PLAN 2020-2021 INNOVATION FOR A BETTER FUTURE FOREWORD On behalf of the National Advisory Council on Innovation (NACI), and in the context of policy refl ection and renewal in South Africa, I am honoured to present NACI’s 2020- 2021 Annual Performance Plan (APP). Government has been reviewing what it has achieved and not achieved since 1994, with the aim of guiding the enhancement of policy to address the persistent challenges of unemployment, inequality and poverty. The 2020-2025 Strategic Plan identifi es strategic outcome-oriented goals to contribute to the realisation of the National Development Plan (Vision 2030) and the 2019 White Paper on Science Technology and Innovation (STI). Recently, the Council completed a review of the 1996 White Paper on Science and Technology, including a performance analysis of the national system of innovation (NSI) over a 20-year period, and submitted this as input into the draft new White Paper on STI. It also conducted foresight exercise whose outputs will inform the development of new decadal plan for STI. The Council continues to review the 2002 National Research and Development Strategy (NRDS) and Ten-Year Innovation Plan. NACI will continue to improve the quality, relevance and effi cacy of its advice to the Minister of Higher Education, Science and Technology and, through the Minister, to the Cabinet.
    [Show full text]
  • Analysing the Global Effects of Changing Diets on Nitrogen and Phosphorus Runoff to Surface Waters
    Analysing the global effects of changing diets on nitrogen and phosphorus runoff to surface waters Marloes Fröling MSc Thesis in Environmental Sciences 2016, June F. Lamiot (2005) Supervised by: Prof. Dr. Ir. W (Wim) de Vries and Dr. Ir. J (Hans) Kros Course code: ESA-80426 Environmental Systems Analysis Analysing the global effects of changing diets on nitrogen and phosphorus runoff to surface waters Marloes Fröling MSc Thesis in Environmental Sciences 2016, June "No part of this thesis may be reproduced without contacting the Environmental Systems Analysis Group" Supervisor(s): Examiners: 1) Prof. Dr. Ir. W (Wim) de Vries (ESA) 1st: Prof. Dr. Ir. W (Wim) de Vries [email protected] 2) Dr. Ir. J (Hans) Kros (Alterra) 2nd: Prof. Dr. HBJ (Rik) Leemans [email protected] Preface This thesis has been carried out from November 2015 till May 2016. The research proposal was already written in June 2015, due to the inclusion of other university courses in between. The whole thesis process has taken place at Wageningen University and research centre (WUR) at the Environmental System Analysis (ESA) department in the Lumen building. The thesis subject partially originated through my interest in different human diets and their influence on the global environment, due to my personal dietary choice of being a vegetarian since 2002. My supervisors, Wim de Vries (WUR) and Hans Kros (Alterra), motivated me to include different dietary scenarios to analyse the effects on phosphorus flows, focusing on runoff into surface waters, while working with a fast diet calculator. This calculator, originally focussing on nitrogen flows, was developed earlier by Alterra with a former MSc student (Jia Wei) in cooperation with German researchers (Lutz Breuer and David Windhorst).
    [Show full text]
  • Re-Fashioning Food Systems with Sustainable Diet Guidelines: Towards a SDG2 Strategy
    Re-fashioning food systems with sustainable diet guidelines: towards a SDG2 strategy By Tim Lang, Professor of Food Policy, Centre for Food Policy, City, University of London, UK for Friends of the Earth March 2017 1 Acknowledgements I have discussed the ideas reflected in this paper with many people over recent years. Especial thanks to Duncan McLaren for editing and additional text, and to Vicki Hird, Mike Childs and Clare Oxborrow from Friends of the Earth for comments, suggestions and encouragement to write this in the first place back in 2014. Also to Dr Pamela Mason with whom I have been writing a forthcoming book on Sustainable Diets which spells out some of these ideas in more detail. I am grateful, too, to many colleagues in the UK and around the world and at the Centre for Food Policy for years of discussions about what policy-makers could and should do to improve public health and environmental stewardship through dietary change. The UK is blessed with a particularly vibrant culture of people working on the issues discussed here through organisations such as the Food Climate Research Network, the Eating Better coalition and the Food Research Collaboration. These are testament to the wealth of academics, civil society organisations and citizens that we have in the UK who see the need to promote the public good in food systems and who see the importance of facing the unsustainability of current food consumption patterns. This is dedicated to them and their work. They and we all have much more to do, not least in these politically interesting and tricky times when we are all engaged in defending while redesigning what is meant by progress.
    [Show full text]
  • Reactive Nitrogen Requirements to Feed the World in 2050 and Potential to Mitigate Nitrogen Pollution
    ARTICLE Received 31 Oct 2013 | Accepted 11 Apr 2014 | Published 13 May 2014 DOI: 10.1038/ncomms4858 Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution Benjamin Leon Bodirsky1,2, Alexander Popp1, Hermann Lotze-Campen1, Jan Philipp Dietrich1, Susanne Rolinski1, Isabelle Weindl1, Christoph Schmitz1, Christoph Mu¨ller1, Markus Bonsch1, Florian Humpeno¨der1, Anne Biewald1 & Miodrag Stevanovic1 Reactive nitrogen (Nr) is an indispensable nutrient for agricultural production and human alimentation. Simultaneously, agriculture is the largest contributor to Nr pollution, causing severe damages to human health and ecosystem services. The trade-off between food availability and Nr pollution can be attenuated by several key mitigation options, including Nr efficiency improvements in crop and animal production systems, food waste reduction in households and lower consumption of Nr-intensive animal products. However, their quantitative mitigation potential remains unclear, especially under the added pressure of population growth and changes in food consumption. Here we show by model simulations, that under baseline conditions, Nr pollution in 2050 can be expected to rise to 102–156% of the 2010 value. Only under ambitious mitigation, does pollution possibly decrease to 36–76% of the 2010 value. Air, water and atmospheric Nr pollution go far beyond critical environ- mental thresholds without mitigation actions. Even under ambitious mitigation, the risk remains that thresholds are exceeded. 1 Potsdam Institute for Climate Impact Research, Telegrafenberg C4, PO Box 60 12 03, D-14412 Potsdam, Germany. 2 International Center for Tropical Agriculture, Apartado Ae´reo 6713, Cali, Colombia. Correspondence and requests for materials should be addressed to B.L.B.
    [Show full text]