Ship Weight Reduction and Efficiency Enghancement Through Combined
Total Page:16
File Type:pdf, Size:1020Kb
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2013 Ship Weight Reduction and Efficiency Enhancement Through Combined Power Cycles Michael J. Coleman Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ENGINEERING SHIP WEIGHT REDUCTION AND EFFICIENCY ENHANCEMENT THROUGH COMBINED POWER CYCLES By MICHAEL J. COLEMAN A Thesis submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of Master of Science Degree Awarded: Spring Semester, 2013 Michael J. Coleman defended this thesis on April 1, 2013. The members of the supervisory committee were: Juan C. Ordonez Professor Co-Directing Thesis Alejandro Rivera Professor Co-Directing Thesis Farrukh S. Alvi Committee Member Carl A. Moore, Jr. Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the thesis has been approved in accordance with university requirements. ii This thesis is dedicated in gratitude to my parents, Norwood Sr. and Alice Coleman. It is dedicated in loving memory to my grandparents Viola Smith, and Charles Frank Coleman. This thesis is dedicated to the prosperity of my daughter, Onyame Coleman, with respect to my brother, Norwood Coleman, Jr, and with thanks and gratitude to God. This thesis is also dedicated to all of my family, and friends, who are too numerous to mention here. This thesis is dedicated to the educators at every level who have influenced my life and career. Special thanks goes to my boss, Ferenc Bogdan, at the Center for Advanced Power Systems (CAPS), who has been very patient during this process, Steinar Dale, CAPS’ director, all of the facilities staff at CAPS, and all of my co-workers at CAPS. iii ACKNOWLEDGEMENTS Partial support for this work from the Office of Naval Research (ONR) and the Naval Engineering Education Center (NEEC) is greatly appreciated. I would also like to acknowledge Alejandro Rivera, Carl Moore, Juan Ordonez and Emanuel Collins, whose support and encouragement has been indispensible, as well as Leon Van Dommelen, and Anter El-Azab, who emphasized the role and importance of mathematics in the to me in the pursuit of scientific concepts. As always, I wish to acknowledge the love and support provided by Norwood Sr. and Alice Coleman, for their unwavering support at every stage of life, in every way possible. iv TABLE OF CONTENTS List of Tables ................................................................................................................................ vii List of Figures .............................................................................................................................. viii Abstract ........................................................................................................................................... x 1. MOTIVATION AND LITERATURE REVIEW ....................................................................... 1 1.1 Combined Cycles for All-Electric Ship Applications ........................................................... 1 1.2 Variations of Hybrid Electric Ship Configurations .............................................................. 4 1.3 Installed All-Electric Ship System ........................................................................................ 6 2. ANALYSIS OF A COMBINED CYCLE POWER PLANT ..................................................... 8 2.1 Overview of the Combined Cycle Power Plant .................................................................... 8 2.2 The Gas Turbine Prime Mover ........................................................................................... 10 2.3 The Steam Power Plant ....................................................................................................... 13 2.3.1 The Heat Recovery Steam Generator (HRSG) ........................................................... 13 2.3.2 The Steam Turbine ...................................................................................................... 17 2.3.3 The Condenser and the Pump ..................................................................................... 21 2.4 Design Strategy for the Combined Cycle Power Plant ....................................................... 23 2.4.1 Combined Cycle Power Plant Configuration Analysis ............................................... 23 2.4.2 Roadmap to Combined Gas and Steam Turbine Power Plant Configuration ............. 26 2.5. Summary ............................................................................................................................ 30 3. WEIGHT ANALYSIS .............................................................................................................. 31 3.1 Weight Considerations for the Combined Gas and Steam Turbine Power Plant ............... 31 3.2 Turbine Weight ................................................................................................................... 33 3.2.1 Gas Turbine Weight .................................................................................................... 36 3.2.2 Steam Turbine Weight ................................................................................................ 38 3.2.3 Electrical Generator .................................................................................................... 41 v 3.3 Heat Exchanger Weight and Heat Transfer Area ............................................................... 41 3.4 Fuel Volume and Weight .................................................................................................... 46 3.5 Summary ............................................................................................................................. 56 4. ANALYSIS RESULTS ............................................................................................................ 57 4.1 Case I – The Effects of Varying HRSG Exhaust Gas Temperature (T5) ............................ 59 4.2 Case II – The Effects of Varying Steam Quality (x8) ......................................................... 68 4.3 Case III – The Effects of Varying HRSG Pinch Point ........................................................ 73 4.4 Case IV – The Effects of Gas Turbine Performance .......................................................... 77 4.5 Analysis Summary .............................................................................................................. 80 5. CONCLUSIONS & FUTURE WORK ..................................................................................... 82 BIBLIOGRAPHY ......................................................................................................................... 85 BIOGRAPHICAL SKETCH ........................................................................................................ 87 vi LIST OF TABLES Table 1 – Typical Combined Cycle Model Constants .................................................................. 24 Table 2 – General Electric Gas Turbine Scale Factors Exponents ............................................... 35 Table 3 – Data for Commercial Gas Turbines .............................................................................. 37 Table 4 – Data for Commercial Steam Turbines .......................................................................... 40 Table 5 – Weight Distribution of Conventional Turbine-Generators ........................................... 42 Table 6 – FU Values for the Heat Exchangers in the Power Plant ............................................... 45 Table 7 – Notional Ship Power Specifications [3] ........................................................................ 49 Table 8 – Economical Transit Fuel and Volume Savings ............................................................. 53 Table 9 – Surge to Theater Fuel and Volume Savings ................................................................. 54 Table 10 – Operational Presence Fuel and Volume Savings ........................................................ 54 vii LIST OF FIGURES Figure 1 – Major Components of a Combined Cycle Power Plant............................................... 10 Figure 2 – Energy Flows Crossing the Gas Turbine’s Boundary ................................................. 11 Figure 3 – Rankine Cycle TS diagram .......................................................................................... 14 Figure 4 – Heat Recovery Steam Generator ................................................................................. 15 Figure 5 – Potential Pinch Point Visualization ............................................................................. 16 Figure 6 – Effects of superheated and high quality live steam ..................................................... 19 Figure 7 – Effects of low quality steam turbine exhaust on HRSG design .................................. 20 Figure 8 – Condenser and Pump ................................................................................................... 22 Figure 9 – Logic Flow for Combined Cycle Power Plant Configuration ..................................... 27 Figure 10 – Power versus Weight for known gas turbine ............................................................. 38 Figure 11 – Power to Change in Enthalpy Ratio versus Weight for known steam turbines ......... 40 Figure 12 – Heat exchanger notation for logarithmic mean calculations ....................................