Ocean Monitoring Using L-Band Microwave Radiometry and GNSS-R

Total Page:16

File Type:pdf, Size:1020Kb

Ocean Monitoring Using L-Band Microwave Radiometry and GNSS-R PhD. Thesis Ocean Monitoring Using L-Band Microwave Radiometry and GNSS-R Enric Valencia i Dom`enech Advised by Dr. Adriano Camps June 15, 2012 Passive Remote Sensing Laboratory Departament de Teoria del Senyal i Comunicacions Universitat Polit`ecnicade Catalunya Preface The knowledge of sea surface salinity (SSS) is a key issue to understand and monitor the Earth's water cycle. Accurate and systematic measurement of SSS was not possible until the ESA's Soil Moisture and Ocean Salinity (SMOS) mission was launched in 2009. The SMOS mission uses L-band microwave radiometry to infer SSS from measurements of the ocean's emis- sivity. However, the ocean surface emissivity is not only dependent on SSS, but also on sea surface temperature (SST), incidence angle, polarization, and sea surface roughness (i.e. sea-state). While the dependence on most of these parameters is well-known, and can be properly accounted for, the accurate estimation and correction of the sea surface roughness contribution remains a challenge. The Passive Advanced Unit (PAU) project was born in 2003 with the main objective of studying how to correct ocean L-band brightness temperature for the sea-state effect by using an emerging technology such as reflectome- try of opportunity GNSS signals (GNSS-R). GNSS-R is based on measuring the forward scattered GNSS signals so as to infer geophysical properties of the scattering surface. Particularly, the PAU project proposed to use direct observables from the reflected signal's Delay-Doppler Map (DDM) to parame- terize sea surface roughness, and link those observables to the brightness tem- perature variations induced by sea-state, without using scattering/emissivity models. In this line, prior work was performed by J.F. Marchan-Hernandez in his PhD. Thesis (UPC, Barcelona, 2009). In that work, a first version of the PAU GNSS-R receiver was developed, and first experimental results were obtained that supported the hypothesis that direct GNSS-R observables can be used to describe sea-state. This PhD. Thesis follows on that research, and steps into the use of GNSS- R observables for estimation of the sea-state contribution to the ocean L-band brightness temperature. The work presented here was undertaken between 2008 and 2012, and comprises contributions to three main fields: GNSS-R 1 hardware development, experimental results, and theoretical studies. Firstly, the PAU GNSS-R instrument was re-designed and re-implemented for im- proved sensitivity and stability. Secondly, results from ground-based and airborne experiments were obtained, that prove the hypothesis that GNSS-R observables can be used to successfully correct L-band brightness tempera- ture for the sea-state effect, resulting in an improvement in the SSS retrieval accuracy. Finally, theoretical studies to foresee the performance of the PAU concept in a future spaceborne mission were conducted, along with the de- velopment of a new technique to obtain ocean surface scattering coefficient images from measured DDMs. 2 Contents Preface1 Contents3 List of Figures9 List of Tables 21 List of Acronyms 23 1 Introduction 27 1.1 Sea surface salinity within the Earth processes . 27 1.2 Measuring sea surface salinity from space: the SMOS mission . 30 1.3 The PAU concept . 34 1.4 This PhD. Thesis . 36 2 Theoretical background 39 2.1 Microwave radiometry . 39 2.1.1 Thermal emission . 39 2.1.2 Contributions to the brightness temperature measured by a radiometer . 41 2.1.3 Brightness temperature of the ocean surface . 42 2.2 Scatterometry using GNSS signals of opportunity . 47 2.2.1 The GPS signal . 48 2.2.2 Principles of GNSS-R over the ocean . 51 I GNSS-R Hardware Development 57 3 griPAU: The GPS Reflectometer Instrument for PAU 59 3.1 Introduction . 59 3 CONTENTS 3.2 Instrument description . 62 3.2.1 Principle of operation . 62 3.2.2 Antenna and RF front-end . 64 3.2.3 Signal processor . 66 3.2.4 Clocking scheme . 72 3.2.5 Data output . 73 3.3 Instrument performance and trade-offs . 73 3.3.1 Delay estimation . 73 3.3.2 Delay-Doppler Map size and resolution . 74 3.3.3 Instrument sensitivity and stability . 77 3.4 Conclusions . 80 II Experimental Results 83 4 ALBATROSS 2009: The Advanced L-BAnd emissiviTy and Reflectivity Observations of the Sea Surface field experiment 85 4.1 Introduction . 85 4.2 The ALBATROSS field experiment . 88 4.2.1 Measurement site . 88 4.2.2 Instruments overview . 88 4.2.2.1 GPS Reflectometer Instrument for PAU (gri- PAU) ...................... 88 4.2.2.2 L-band Total Power Radiometer . 90 4.2.3 Measurement setup and ground truth data . 91 4.3 GNSS-R sea state direct descriptors . 93 4.4 GNSS-R observables relationship with the brightness temper- ature variations . 99 4.5 Experimental determination of the sea correlation time . 103 4.5.1 Methodology . 103 4.5.2 Results . 104 4 CONTENTS 4.6 Conclusions . 110 5 The CoSMOS field experiment 111 5.1 Introduction . 111 5.2 Available radiometric, GNSS-R and ground-truth data . 113 5.2.1 Radiometric data . 113 5.2.2 GNSS-R data . 115 5.2.3 Ground-truth data . 117 5.3 Brightness temperature correction using GNSS-R data . 118 5.4 Sea surface salinity retrieval . 124 5.5 Comparison with the WISE correction approach . 127 5.6 Conclusions . 129 6 Wind direction retrieval from airborne measurements 131 6.1 Introduction . 131 6.2 Observation of measured data and validation of the P2EPS simulator . 134 6.3 Modeling the DDM asymmetry . 136 6.4 Validation of the skewness angle model using real data . 143 6.5 Wind direction retrieval . 145 6.6 Conclusions . 150 7 The PARIS Interferometric Technique - Proof of Concept experiment 153 7.1 Introduction . 153 7.2 Hardware development . 157 7.2.1 Antennas . 157 7.2.2 RF front-end and calibration subsystem . 164 7.3 Study of the sea surface roughness within the PIT-PoC Ex- periment . 168 7.3.1 Experimental setup . 168 5 CONTENTS 7.3.1.1 Ground truth data . 168 7.3.1.2 L-band Radiometer . 169 7.3.1.3 GNSS-R receiver . 170 7.3.2 Measurements and results . 170 7.3.2.1 Ground-truth data . 171 7.3.2.2 Radiometric measurements . 171 7.3.2.3 GNSS-R measurements . 173 7.4 Conclusions . 179 III Towards Spaceborne Sea State Monitoring Using GNSS-R Techniques 181 8 On the use of direct GNSS-R observables for sea state mon- itoring from space 183 8.1 Introduction . 183 8.2 Simulation setup . 185 8.2.1 Considered observation geometries . 185 8.2.2 Considered Delay-Doppler Mapping conditions . 186 8.3 Comparison of the observation geometry's impact on direct GNSS-R observables . 188 8.4 Performance assessment of the normalized DDM volume . 192 8.4.1 Impact of the scenario . 192 8.4.1.1 Transmitter's flying direction effect . 192 8.4.1.2 Local incidence angle effect . 193 8.4.1.3 Receiver's flying direction and wind direction effects . 195 8.4.2 Impact of noise on the normalized DDM volume per- formance . 198 6 CONTENTS 8.4.3 Relationship with brightness temperature variations in- duced by the sea-state . 201 8.5 Conclusions . 205 9 Ocean surface imaging from DDM deconvolution 209 9.1 Introduction . 209 9.2 Theoretical background . 213 9.3 GNSS-R imaging of the ocean surface . 214 9.3.1 DDM deconvolution . 214 9.3.2 Unambiguous retrieval of the scattering coefficient dis- tribution . 214 9.4 Method evaluation . 217 9.5 Application to oil slick detection . 224 9.5.1 Oil slick modeling . 225 9.5.2 Simulation results . 226 9.6 Conclusions . 233 10 Conclusions and future research lines 235 10.1 Conclusions . 235 10.1.1 GNSS-R ocean scatterometry . 236 10.1.2 L-band brightness temperature correction for the sea- state effect using GNSS-R . 238 10.2 Future work lines . 239 Appendices 241 Appendix A GNSS-R Delay-Doppler Maps over land: Results of the GRAJO field experiment 243 A.1 Introduction . 243 A.2 Measurement setup . 245 A.3 Soil moisture retrieval . 246 A.4 Conclusions . 250 7 CONTENTS List of Publications 251 Bibliography 255 8 List of Figures 1.1 The Earth's water cycle [1]. ................... 28 1.2 Thermohaline circulation acts as a global conveyor belt that redistributes heat throughout the whole planet [2]. 29 1.3 Existing SSS measurements (scale in PSU). Gray areas repre- sent absence of data [5]. ..................... 30 1.4 Global SSS map retrieved by the SMOS Barcelona Expert Center from SMOS data (www.smos-bec.icm.csic.es). 31 1.5 SMOS observation geometry. The field of view has a hexagon- like shape of 1000 km approximately [1]. 33 1.6 Conceptual topology of an elementary PAU receiver. 35 2.1 Components of the apparent temperature Tap [22]. 42 2.2 Ocean brightness temperature as a function of SST and SSS for a flat sea surface [23]. Average salinity in open ocean is around 35 psu. 45 2.3 Sensitivities of the ∆TB term as a function of the sea state described by: a) wind speed [K/(m/s)], and b) significant wave height [K/m] [27]. ........................ 46 2.4 Radio Navigation Satellite Service band distribution after the World Radio Conference, Istambul, 8 May-2 June 2000, which discussed the allocation of the GALILEO signal spectrum. E and C bands (blue) are assigned to GALILEO, L bands (green) are for GPS, and G bands (red) are reserved for the GLONASS signals [29]. ............................ 47 2.5 a) Autocorrelation, and b) spectrum of the GPS C/A code.
Recommended publications
  • Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on Behalf of the Satellite Industry Association1
    Spectrum & the Technological Transformation of the Satellite Industry Spectrum and the Technological Transformation of the Satellite Industry Prepared by Strand Consulting on behalf of the Satellite Industry Association1 1 AT&T, a member of SIA, does not necessarily endorse all conclusions of this study. Page 1 of 75 Spectrum & the Technological Transformation of the Satellite Industry 1. Table of Contents 1. Table of Contents ................................................................................................ 1 2. Executive Summary ............................................................................................. 4 2.1. What the satellite industry does for the U.S. today ............................................... 4 2.2. What the satellite industry offers going forward ................................................... 4 2.3. Innovation in the satellite industry ........................................................................ 5 3. Introduction ......................................................................................................... 7 3.1. Overview .................................................................................................................. 7 3.2. Spectrum Basics ...................................................................................................... 8 3.3. Satellite Industry Segments .................................................................................... 9 3.3.1. Satellite Communications ..............................................................................
    [Show full text]
  • Airborne L-Band Radio Frequency Interference Observations from the SMAPVEX08 Campaign and Associated Flights James Park, Student Member, IEEE, J
    This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1 Airborne L-Band Radio Frequency Interference Observations From the SMAPVEX08 Campaign and Associated Flights James Park, Student Member, IEEE, J. T. Johnson, Fellow, IEEE, Ninoslav Majurec, Noppasin Niamsuwan, Member, IEEE, Jeffrey R. Piepmeier, Member, IEEE, Priscilla N. Mohammed, Member, IEEE, Christopher S. Ruf, Fellow, IEEE, Sidharth Misra, Simon H. Yueh, Fellow, IEEE, and Steve J. Dinardo, Member, IEEE Abstract—Statistics of radio frequency interference (RFI) ob- The current experience of significant RFI corruption of the served in the band 1398–1422 MHz during an airborne campaign observations of the SMOS radiometer [8], as well as the up- in the United States are reported for use in analysis and forecasting coming deployment of the Aquarius and SMAP missions [11], of L-band RFI for microwave radiometry. The observations were [12] motivate studies of the properties of the RFI environment conducted from September to October 2008, and included approx- imately 92 h of flight time, of which approximately 20 h of “tran- as well as the performance of a variety of RFI detection and sit” or dedicated RFI observing flights are used in compiling the mitigation approaches. statistics presented. The observations used include outbound and A recent work [7] has reported results from an airborne return flights from Colorado to Maryland, as well as RFI surveys L-band RFI observing system in Europe and Australia. The over large cities. The Passive Active L-Band Sensor (PALS) ra- hardware utilized in [7] was capable of implementing algo- diometer of NASA Jet Propulsion Laboratory augmented by three rithms for pulsed RFI detection using either a “pulse” or a dedicated RFI observing systems was used in these observations.
    [Show full text]
  • A Layman's Interpretation Guide L-Band and C-Band Synthetic
    A Layman’s Interpretation Guide to L-band and C-band Synthetic Aperture Radar data Version 2.0 15 November, 2018 Table of Contents 1 About this guide .................................................................................................................................... 2 2 Briefly about Synthetic Aperture Radar ......................................................................................... 2 2.1 The radar wavelength .................................................................................................................... 2 2.2 Polarisation ....................................................................................................................................... 3 2.3 Radar backscatter ........................................................................................................................... 3 2.3.1 Sigma-nought .................................................................................................................................................. 3 2.3.2 Gamma-nought ............................................................................................................................................... 3 2.4 Backscatter mechanisms .............................................................................................................. 4 2.4.1 Direct backscatter ......................................................................................................................................... 4 2.4.2 Forward scattering ......................................................................................................................................
    [Show full text]
  • DVB-SCENE Issue 21 Lo Res.Indd
    Edition No.21 March 2007 DVB-SCENE Tune in to Digital Convergence Tune 21 The Standard for the Digital World I want This issue’s highlights > Convergence Utopia > IPTV Analysis & Update my > HDTV Update > Future Focus on DVB-T > DVB-H Interoperability > Introducing DVB-SH > A Look at Latin America > Market Watch IPTV Unique Broadband Systems Ltd. is the world’s leading designer and manufacturer of complete DVB-T/H system solutions for Mobile Media Operators and Broadcasters DVB-H IP Encapsulator DVB-T/H Gateway DVE 6000 DVE 7000 / DVE-R 7000 What makes DVE 6000 the best product on the market today? The DVE 7000 DVB-H Satellite Gateway is the core of highly optimized, efficient and cost effective mobile Dynamic Time SlicingTM Technique delivering DVB-H architecture. A single DVE 7000 device unprecedented bandwidth utilization and processes, distributes and manages global and local network efficiency (Statistical Multiplexing) content grouped in packages to multiple remote SFN DVB-SCENE : 02 Internal SI/PSI table editor, parser, compiler & MFN networks through a satellite link and drasti- and generator (UBS SI/PSI TDL) cally improves satellite link efficiency. The DVE-R 7000 Internal SFN Adapter satellite receiver demultiplexes the content specific to it’s location. Internal stream recorder and player IP DVB-S2 ASI Single compact unit DVE-R 7000 SFN1 DVE 6000 NetManager Application MODULATOR 1 SFN3 SFN2 MODULATOR 3 DVB-T/H Modulator MODULATOR 2 DVM 5000 Fully DVB-H Compliant 30 MHz to 1 GHz RF Output (L-band version available) Web Browser
    [Show full text]
  • Wide-Band, Low-Frequency Pulse Profiles of 100 Radio Pulsars With
    A&A 586, A92 (2016) Astronomy DOI: 10.1051/0004-6361/201425196 & c ESO 2016 Astrophysics Wide-band, low-frequency pulse profiles of 100 radio pulsars with LOFAR M. Pilia1,2, J. W. T. Hessels1,3,B.W.Stappers4, V. I. Kondratiev1,5,M.Kramer6,4, J. van Leeuwen1,3, P. Weltevrede4, A. G. Lyne4,K.Zagkouris7, T. E. Hassall8,A.V.Bilous9,R.P.Breton8,H.Falcke9,1, J.-M. Grießmeier10,11, E. Keane12,13, A. Karastergiou7 , M. Kuniyoshi14, A. Noutsos6, S. Osłowski15,6, M. Serylak16, C. Sobey1, S. ter Veen9, A. Alexov17, J. Anderson18, A. Asgekar1,19,I.M.Avruch20,21,M.E.Bell22,M.J.Bentum1,23,G.Bernardi24, L. Bîrzan25, A. Bonafede26, F. Breitling27,J.W.Broderick7,8, M. Brüggen26,B.Ciardi28,S.Corbel29,11,E.deGeus1,30, A. de Jong1,A.Deller1,S.Duscha1,J.Eislöffel31,R.A.Fallows1, R. Fender7, C. Ferrari32, W. Frieswijk1, M. A. Garrett1,25,A.W.Gunst1, J. P. Hamaker1, G. Heald1, A. Horneffer6, P. Jonker20, E. Juette33, G. Kuper1, P. Maat1, G. Mann27,S.Markoff3, R. McFadden1, D. McKay-Bukowski34,35, J. C. A. Miller-Jones36, A. Nelles9, H. Paas37, M. Pandey-Pommier38, M. Pietka7,R.Pizzo1,A.G.Polatidis1,W.Reich6, H. Röttgering25, A. Rowlinson22, D. Schwarz15,O.Smirnov39,40, M. Steinmetz27,A.Stewart7, J. D. Swinbank41,M.Tagger10,Y.Tang1, C. Tasse42, S. Thoudam9,M.C.Toribio1,A.J.vanderHorst3,R.Vermeulen1,C.Vocks27, R. J. van Weeren24, R. A. M. J. Wijers3, R. Wijnands3, S. J. Wijnholds1,O.Wucknitz6,andP.Zarka42 (Affiliations can be found after the references) Received 20 October 2014 / Accepted 18 September 2015 ABSTRACT Context.
    [Show full text]
  • Mobile TV Technologies Zahid Ghadialy March 2006
    Mobile TV Technologies Zahid Ghadialy March 2006 © 2006 Zahid Ghadialy What is Mobile TV Mobile TV Broadcasting allows the user to watch their favourite TV programs such as dramas, news, music, sports and documentaries on their mobile device. The service works by receiving a specialised digital TV broadcast signal from the air in much the same way as televisions at home will do in future. Channel guides will also be broadcast allowing users to keep abreast of the latest programs on air. It is not the same as a streaming video service over 3G or GPRS, but one which is optimised for longer period TV viewing by large numbers of simultaneous users with high picture quality and low battery power consumption. Mobile TV Technologies BCMCS: BroadCast MultiCast Services (3GPP2) DVB-H: Digital Video Braodcasting-Handheld (ETSI) ISDB-T: Integrated Service Digital Broadcasting – Terrestrial (ARIB) T-DMB: Terrestrial Digital Multimedia Broadcasting (Korean Standard) MediaFLO: Media Forward Link Only (Qualcomm proprietary) MBMS is not Mobile TV MBMS uses existing 3G Spectrum whereas Mobile TV needs new frequency spectrum Channel switching is faster using Mobile TV technologies compared to MBMS Very little number of channels using MBMS are possible as compared to Mobile TV technologies Battery life is much less if MBMS is used as compared to Mobile TV technologies Higher coverage possible with Mobile TV technologies Mobile TV Technologies In Depth Analysis Qualcomm has pulled together The FLO Forum, (Forward Link Only) which is pushing to standardize this Qualcomm’s technology for transmitting multimedia content to mobile devices. MediaFLO Qualcomm proprietary It uses unidirectional COFDM (Coded Orthogonal Frequency Division Multiplexing) Its under the process of standardisation Interested parties include LG, Sanyo, Sharp, Huawei In US, MediaFLO will deliver 29 channels on TV channel 55.
    [Show full text]
  • An Elementary Approach Towards Satellite Communication
    AN ELEMENTARY APPROACH TOWARDS SATELLITE COMMUNICATION Prof. Dr. Hari Krishnan GOPAKUMAR Prof. Dr. Ashok JAMMI AN ELEMENTARY APPROACH TOWARDS SATELLITE COMMUNICATION Prof. Dr. Hari Krishnan GOPAKUMAR Prof. Dr. Ashok JAMMI AN ELEMENTARY APPROACH TOWARDS SATELLITE COMMUNICATION WRITERS Prof. Dr. Hari Krishnan GOPAKUMAR Prof. Dr. Ashok JAMMI Güven Plus Group Consultancy Inc. Co. Publications: 06/2021 APRIL-2021 Publisher Certificate No: 36934 E-ISBN: 978-605-7594-89-1 Güven Plus Group Consultancy Inc. Co. Publications All kinds of publication rights of this scientific book belong to GÜVEN PLUS GROUP CONSULTANCY INC. CO. PUBLICATIONS. Without the written permission of the publisher, the whole or part of the book cannot be printed, broadcast, reproduced or distributed electronically, mechanically or by photocopying. The responsibility for all information and content in this Book, visuals, graphics, direct quotations and responsibility for ethics / institutional permission belongs to the respective authors. In case of any legal negativity, the institutions that support the preparation of the book, especially GÜVEN PLUS GROUP CONSULTANCY INC. CO. PUBLISHING, the institution (s) responsible for the editing and design of the book, and the book editors and other person (s) do not accept any “material and moral” liability and legal responsibility and cannot be taken under legal obligation. We reserve our rights in this respect as GÜVEN GROUP CONSULTANCY “PUBLISHING” INC. CO. in material and moral aspects. In any legal problem/situation TURKEY/ISTANBUL courts are authorized. This work, prepared and published by Güven Plus Group Consultancy Inc. Co., has ISO: 10002: 2014- 14001: 2004-9001: 2008-18001: 2007 certificates. This work is a branded work by the TPI “Turkish Patent Institute” with the registration number “Güven Plus Group Consultancy Inc.
    [Show full text]
  • Potential of Different Optical and SAR Data in Forest and Land Cover Classification to Support REDD+ MRV
    remote sensing Article Potential of Different Optical and SAR Data in Forest and Land Cover Classification to Support REDD+ MRV Laura Sirro 1,*, Tuomas Häme 1, Yrjö Rauste 1, Jorma Kilpi 1 ID , Jarno Hämäläinen 2, Katja Gunia 2, Bernardus de Jong 3 and Fernando Paz Pellat 4 1 VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, VTT FI-02044, Finland; tuomas.hame@vtt.fi (T.H.); yrjo.rauste@vtt.fi (Y.R.); jorma.kilpi@vtt.fi (J.K.) 2 Arbonaut Ltd., Kaislakatu 2, Joensuu FI-80130, Finland; [email protected] (J.H.); [email protected] (K.G.) 3 El Colegio de la Frontera Sur, Av. Rancho Polígono 2-A, Parque Industrial Lerma, Campeche, Campeche CP 24500, Mexico; [email protected] 4 Colegio de Postgraduados, Km 36.5 Carretera México-Texcoco, Texcoco 56230, Mexico; [email protected] * Correspondence: laura.sirro@vtt.fi; Tel.: +358-40-538-7769 Received: 9 May 2018; Accepted: 11 June 2018; Published: 14 June 2018 Abstract: The applicability of optical and synthetic aperture radar (SAR) data for land cover classification to support REDD+ (Reducing Emissions from Deforestation and Forest Degradation) MRV (measuring, reporting and verification) services was tested on a tropical to sub-tropical test site. The 100 km by 100 km test site was situated in the State of Chiapas in Mexico. Land cover classifications were computed using RapidEye and Landsat TM optical satellite images and ALOS PALSAR L-band and Envisat ASAR C-band images. Identical sample plot data from Kompsat-2 imagery of one-metre spatial resolution were used for the accuracy assessment.
    [Show full text]
  • Mobile Tv: a Technical and Economic Comparison Of
    MOBILE TV: A TECHNICAL AND ECONOMIC COMPARISON OF BROADCAST, MULTICAST AND UNICAST ALTERNATIVES AND THE IMPLICATIONS FOR CABLE Michael Eagles, UPC Broadband Tim Burke, Liberty Global Inc. Abstract We provide a toolkit for the MSO to assess the technical options and the economics of each. The growth of mobile user terminals suitable for multi-media consumption, combined Mobile TV is not a "one-size-fits-all" with emerging mobile multi-media applications opportunity; the implications for cable depend on and the increasing capacities of wireless several factors including regional and regulatory technology, provide a case for understanding variations and the competitive situation. facilities-based mobile broadcast, multicast and unicast technologies as a complement to fixed In this paper, we consider the drivers for mobile line broadcast video. TV, compare the mobile TV alternatives and assess the mobile TV business model. In developing a view of mobile TV as a compliment to cable broadcast video; this paper EVALUATING THE DRIVERS FOR MOBILE considers the drivers for future facilities-based TV mobile TV technology, alternative mobile TV distribution platforms, and, compares the Technology drivers for adoption of facilities- economics for the delivery of mobile TV based mobile TV that will be considered include: services. Innovation in mobile TV user terminals - the We develop a taxonomy to compare the feature evolution and growth in mobile TV alternatives, and explore broadcast technologies user terminals, availability of chipsets and such as DVB-H, DVH-SH and MediaFLO, handsets, and compression algorithms, multicast technologies such as out-of-band and Availability of spectrum - the state of mobile in-band MBMS, and unicast or streaming broadcast standardization, licensing and platforms.
    [Show full text]
  • Raytheon Missile Systems Application to Renew WF2XLI File No: 0036-EX-CR-2017
    Raytheon Missile Systems Application to Renew WF2XLI File No: 0036-EX-CR-2017 Explanation of Experiments and Need for Experimental License for use of Several Frequency Bands for Lab and Factory Missile Communications Testing Overview: Raytheon Missile Systems builds and sells missiles to the US military. As a part of the engineering development and production process, RMS tests communications systems in its products to make sure they meet customer specifications. Currently, RMS holds a license for operations in Tucson, Arizona and Camden, Arkansas, WF2XLI, for the ongoing operations it is requesting to renew. The ongoing experimental operations are for testing command and control systems in the lab and for factory missile communications testing. The four radio systems are used in the field by Raytheon’s customers for Range Safety. The four radio systems used for testing are the Flight Terminate Receiver (UHF), the L- band telemetry transmitter, the S-Band telemetry transmitter, and the C-Band transponder. These systems must be tested and retested as part of the production process for the Range Flight Safety System. This license uses the systems installed on missiles that will be tested at government ranges. Prior to delivery of the product to the customer, the product must be tested as part of engineering development and production testing. The actual missile flight testing is conducted at government test and training ranges using federal frequency assignments. Since the lab and production testing is ongoing at Raytheon’s facilities, and because some of the work being done is actually internal to Raytheon as part of independent research and development, it is necessary to renew this experimental authorization to allow for the proper, licensed operation of the missile during development and production testing.
    [Show full text]
  • VHF and L-Band Scintillation Characteristics Over an Indian Low Latitude Station, Waltair (17.7◦ N, 83.3◦ E)
    Annales Geophysicae, 23, 2457–2464, 2005 SRef-ID: 1432-0576/ag/2005-23-2457 Annales © European Geosciences Union 2005 Geophysicae VHF and L-band scintillation characteristics over an Indian low latitude station, Waltair (17.7◦ N, 83.3◦ E) P. V. S. Rama Rao, S. Tulasi Ram, K. Niranjan, D. S. V. V. D. Prasad, S. Gopi Krishna, and N. K. M. Lakshmi Space Physics Laboratories, Department of Physics, Andhra University, Visakhapatnam 530 003, India Received: 30 April 2005 – Revised: 6 August 2005 – Accepted: 10 August 2005 – Published: 14 October 2005 Abstract. Characteristics of simultaneous VHF (244 MHz) tures in the Range-Time-Intensity (RTI) images of HF radars, and L-band (1.5 GHz) scintillations recorded at a low- intensity bite-outs in airglow intensity measurements and latitude station, Waltair (17.7◦ N, 83.3◦ E), during the low scintillations on amplitude, as well as the phase of VHF and sunspot activity year of March 2004 to March 2005, sug- UHF signals from satellites, and are commonly referred to as gest that the occurrence of scintillations is mainly due to two Equatorial Spread-F irregularities (ESF). The ESF is mostly types, namely the Plasma Bubble Induced (PBI), which max- confined to the equatorial belt of ±20◦ magnetic latitudes, imizes during the post sunset hours of winter and equinoctial encompassing the Equatorial Ionization Anomaly (EIA) re- months, and the Bottom Side Sinusoidal (BSS) type, which gion. maximizes during the post-midnight hours of the summer Woodman and Lahoz (1976) classified the irregularities solstice
    [Show full text]
  • L- and X-Band Like- and Cross-Polarized Synthetic Aperture Radar for Investigating ! Urban Environments
    BARRYN. HMCK* Regional Remote Sensing Facility Nairobi, Kenya L- and X-Band Like- and Cross-Polarized Synthetic Aperture Radar for Investigating ! Urban Environments The X-band like-polarized data were the most useful, the L-band cross- polarized data were the least useful, and the texture calculations used in this study did not contribute toward urban cover type delineations. 1982) and texture analysis (Fasler, 1980); and for different environments, i.e., geology (Ford, 1980), HE EXAMINATION of radar data for the mapping agriculture (Ulaby and Bare, 1980), land use (Hen- T and analysis of Earth surface features has con- derson, 1979), and urban (Bryan, 1979). The pur- siderably increased in the last few years. Much of pose of this study was to examine two synthetic ap- this increase is a function of the recent availability erture radar (SAR)bands, L-band and X-band, at both of these data. The increase is also due to the aware- like- and cross-polarizations in order to assess their ness that radar has unique attributes, such as its all- usefulness for urban land-cover delineations. Rather weather and night and day capabilities, which may than a visual analysis of images as has been done make it a very useful tool for resource inventory and previously with similar data, this study examined ABSTRACT:Four synthetic aperture airborne radar data sets, L- and x-band like- and cross-polarizations, were spatially registered to a common map base for a portion of the Los Angeles basin. Texture calculations for the four SAR data sets were also obtained.
    [Show full text]