Dendrochronology and Past Environmental Change
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Blue Intensity for Dendroclimatology: Should We Have the Blues?
Dendrochronologia 32 (2014) 191–204 Contents lists available at ScienceDirect Dendrochronologia jou rnal homepage: www.elsevier.com/locate/dendro ORIGINAL ARTICLE Blue intensity for dendroclimatology: Should we have the blues? Experiments from Scotland a,∗ b c c Milosˇ Rydval , Lars-Åke Larsson , Laura McGlynn , Björn E. Gunnarson , d d a Neil J. Loader , Giles H.F. Young , Rob Wilson a School of Geography and Geosciences, University of St Andrews, UK b Cybis Elektronik & Data AB, Saltsjöbaden, Sweden c Department of Physical Geography and Quaternary Geology, Stockholm University, Stockholm, Sweden d Department of Geography, Swansea University, Swansea, UK a r t i c l e i n f o a b s t r a c t Article history: Blue intensity (BI) has the potential to provide information on past summer temperatures of a similar Received 1 April 2014 quality to maximum latewood density (MXD), but at a substantially reduced cost. This paper provides Accepted 27 April 2014 a methodological guide to the generation of BI data using a new and affordable BI measurement sys- tem; CooRecorder. Focussing on four sites in the Scottish Highlands from a wider network of 42 sites Keywords: developed for the Scottish Pine Project, BI and MXD data from Scots pine (Pinus sylvestris L.) were used Blue intensity to facilitate a direct comparison between these parameters. A series of experiments aimed at identify- Maximum latewood density ing and addressing the limitations of BI suggest that while some potential limitations exist, these can Scots pine Dendroclimatology be minimised by adhering to appropriate BI generation protocols. The comparison of BI data produced using different resin-extraction methods (acetone vs. -
The Disclosure of Climate Data from the Climatic Research Unit at the University of East Anglia
House of Commons Science and Technology Committee The disclosure of climate data from the Climatic Research Unit at the University of East Anglia Eighth Report of Session 2009–10 Volume II Oral and written evidence Ordered by The House of Commons to be printed 24 March 2010 HC 387-II Published on 31 March 2010 by authority of the House of Commons London: The Stationery Office Limited £0.00 The Science and Technology Committee The Science and Technology Committee is appointed by the House of Commons to examine the expenditure, administration and policy of the Government Office for Science. Under arrangements agreed by the House on 25 June 2009 the Science and Technology Committee was established on 1 October 2009 with the same membership and Chairman as the former Innovation, Universities, Science and Skills Committee and its proceedings were deemed to have been in respect of the Science and Technology Committee. Current membership Mr Phil Willis (Liberal Democrat, Harrogate and Knaresborough)(Chair) Dr Roberta Blackman-Woods (Labour, City of Durham) Mr Tim Boswell (Conservative, Daventry) Mr Ian Cawsey (Labour, Brigg & Goole) Mrs Nadine Dorries (Conservative, Mid Bedfordshire) Dr Evan Harris (Liberal Democrat, Oxford West & Abingdon) Dr Brian Iddon (Labour, Bolton South East) Mr Gordon Marsden (Labour, Blackpool South) Dr Doug Naysmith (Labour, Bristol North West) Dr Bob Spink (Independent, Castle Point) Ian Stewart (Labour, Eccles) Graham Stringer (Labour, Manchester, Blackley) Dr Desmond Turner (Labour, Brighton Kemptown) Mr Rob Wilson (Conservative, Reading East) Powers The Committee is one of the departmental Select Committees, the powers of which are set out in House of Commons Standing Orders, principally in SO No.152. -
Volume 3: Process Issues Raised by Petitioners
EPA’s Response to the Petitions to Reconsider the Endangerment and Cause or Contribute Findings for Greenhouse Gases under Section 202(a) of the Clean Air Act Volume 3: Process Issues Raised by Petitioners U.S. Environmental Protection Agency Office of Atmospheric Programs Climate Change Division Washington, D.C. 1 TABLE OF CONTENTS Page 3.0 Process Issues Raised by Petitioners............................................................................................5 3.1 Approaches and Processes Used to Develop the Scientific Support for the Findings............................................................................................................................5 3.1.1 Overview..............................................................................................................5 3.1.2 Issues Regarding Consideration of the CRU E-mails..........................................6 3.1.3 Assessment of Issues Raised in Public Comments and Re-Raised in Petitions for Reconsideration...............................................................................7 3.1.4 Summary............................................................................................................19 3.2 Response to Claims That the Assessments by the USGCRP and NRC Are Not Separate and Independent Assessments.........................................................................20 3.2.1 Overview............................................................................................................20 3.2.2 EPA’s Response to Petitioners’ -
Temporal Scales and Signal Modeling in Dendroclimatology Joel Guiot
Temporal scales and signal modeling in dendroclimatology Joel Guiot To cite this version: Joel Guiot. Temporal scales and signal modeling in dendroclimatology. Past Global Changes Mag- azine, Past Global Changes (PAGES) project, 2017, 25 (3), pp.142-143. 10.22498/pages.25.3.142. insu-02269697 HAL Id: insu-02269697 https://hal-insu.archives-ouvertes.fr/insu-02269697 Submitted on 23 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 142 SCIENCE HIGHLIGHTS: CENTENNIAL TO MILLENNIAL CLIMATE VARIABILITY https://doi.org/10.22498/pages.25.3.142 Temporal scales and signal modeling in dendroclimatology Joël Guiot Tree rings are demonstrably good proxies for temperature or precipitation at timescales less than a century. Reconstruction based on multiple proxies and process-based modeling approaches are needed to estimate the climate signal at lower frequencies. Paleoclimatological proxies "represent component of the trend. Afterwards, the method is complex and needs a large records of climate that were generated tree leaf area stabilizes, and a fairly con- number of replicated series for the same through physical, chemical and/or biologi- stant quantity of xylem is distributed along species. No method is perfect and some cal processes. -
ART and ARCHAEOLOGY Vocabulary ART and ARCHAEOLOGY Vocabulary Version 1.1 (Last Updated: 2018-01-22)
- Institute for Scientific and Technical Information - ART and ARCHAEOLOGY Vocabulary ART and ARCHAEOLOGY Vocabulary Version 1.1 (Last updated: 2018-01-22) Controlled vocabulary used for indexing bibliographical records for the "Art and Archaeology" FRANCIS database (1972-2015, http://pascal-francis.inist.fr/ ). This resource contains 1960 entries grouped into 133 collections. A French version of this resource is also available. The resource is browsable online on the terminological portal Loterre: https://www.loterre.fr Legend • Syn: Synonym. • → : Corresponding Preferred Term. • FR: French Preferred Term. • ES: Spanish Preferred Term. • DE: German Preferred Term. • BT: Broader Term. • SC: Semantic Category. • DO: Subject Field. • URI: Concept's URI (link to the online view). This resource is licensed under a Creative Commons Attribution 4.0 International license: TABLE OF CONTENTS Alphabetical Index 4 Terminological Entries 5 List Of Entries 140 Collections 183 Alphabetical Index from 'Abd al-Samad to 'Abd al-Samad p. 6 -6 from 10th century AD to 1st millenium BC p. 9 -9 from 20th century AD to 2nd millenium BC p. 11 -11 from 30th century BC to 3rd millenium BC p. 12 -12 from 4th century AD to 4th millenium BC p. 13 -13 from 5th century AD to 5th millenium BC p. 14 -14 from 6th century AD to 6th dynasty p. 15 -15 from 7th century AD to 7th dynasty p. 16 -16 from 8th century AD to 8th dynasty p. 17 -17 from 9th century AD to 9th dynasty p. 18 -18 from Abassid dynasty to Aztec Civilization p. 19 -27 from baboon to Byzantium p. -
Global Dendroclimatology in Sight from A
780 Nature Vol. 287 30 October 1980 Global dendroclimatology in sight from A. Barrie Pittock Dendroclimatology, the systematic study pressure and that sampling should be con calibration and earlier instrumental and of past climates using tree growth centrated in regions which are historical data for verification, it should be characteristics as proxy climate data, is a climatologically important and/or where possible to produce a detailed and relatively young science. It is often there are gaps in coverage from instru continuous climate reconstruction from confused with the much older and related mental, historical or other proxy data. 1750. Because of the abundance of data for science of dendrochronology, the dating of There is growing confidence that with some calibration and verification, this could specimens by the use of tree-ring modification existing methods can extract prove the best continent-wide proxy sequences. Dendroclimatology has only useful climatic information from trees in climate data set in existence and Europe really developed as a science since the many different parts of the world. could become a test bed for refining 1940s, primarily as a result of the As dendroclimatology has expanded dendroclimatic methods. pioneering efforts of workers at the into new geographical areas over the last Five-hundred-year long chronologies Laboratory of Tree-Ring Research at the decade, techniques have been modified are available already from living conifers in University of Arizona. Elsewhere, the and refined. One example is the use of the Alps and at the northern tree-line and serious application of dendroclimatic density as well as ring-width measurements are expected from living oaks in Scotland, methods has only begun in the last five for climate reconstructions. -
Picture This: Five Centuries of Book Illustration, Which Will Give You a Glimpse of Our Rich Collections of Both Rare and Contemporary Illustrated Books
PictuRE n. o o c a c n e k Hi l T i S s e s o lo a The n um). chry i os salis sed m is enclo ra m u i e d i . s n I t h c F Cf e a a e e g d s r n o o a n s p e t h S n i e ( l s d e n e d e e g e r e r r g ( u C b e a e r l h e t x a D d i n v a i s , ) a B Ip w o r r a n e e r th a da nd ith rk gr , a w een li ack en ne along the b e r g s i r e l l i p a t a c e h T Five Centuries of Book Illustration An exhibit in the UC Irvine Langson Library’s Muriel Ansley Reynolds Exhibit Gallery November 2006 - May 2007 Curated by Ryan Hildebrand Special Collections librarian The UC Irvine Libraries • Irvine, California • 2006 Foreword Welcome to the UCI Libraries’ fall 2006 exhibit, Picture This: Five Centuries of Book Illustration, which will give you a glimpse of our rich collections of both rare and contemporary illustrated books. As we all know, today’s society greatly values visual information. We certainly see this among UCI’s undergraduates, who often seek visual resources in the context of their research. As a result, Special Collections and Archives places a particular emphasis on collecting pictorially interesting books, including contemporary examples of “artists’ books” and the art of the book. -
Application of Dendroclimatology in Evaluation of Climatic Changes
JOURNAL OF FOREST SCIENCE, 64, 2018 (3): 139–147 https://doi.org/10.17221/79/2017-JFS Application of dendroclimatology in evaluation of climatic changes Mohammad Reza KHALEGHI* Department of Watershed Management Engineering, Faculty of Natural Resources, Torbat-e-Jam Branch, Islamic Azad University, Torbat-e-Jam, Iran *Corresponding author: [email protected] Abstract Khaleghi M.R. (2018): Application of dendroclimatology in evaluation of climatic changes. J. For. Sci., 64: 139–147. The present study tends to describe the survey of climatic changes in the case of the Bojnourd region of North Kho- rasan, Iran. Climate change due to a fragile ecosystem in semi-arid and arid regions such as Iran is one of the most challenging climatological and hydrological problems. Dendrochronology, which uses tree rings to their exact year of formation to analyse temporal and spatial patterns of processes in the physical and cultural sciences, can be used to evaluate the effects of climate change. In this study, the effects of climate change were simulated using dendrochro- nology (tree rings) and an artificial neural network (ANN) for the period from 1800 to 2015. The present study was executed using the Quercus castaneifolia C.A. Meyer. Tree-ring width, temperature, and precipitation were the input parameters for the study, and climate change parameters were the outputs. After the training process, the model was verified. The verified network and tree rings were used to simulate climatic parameter changes during the past times. The results showed that the integration of dendroclimatology and an ANN renders a high degree of accuracy and ef- ficiency in the simulation of climate change. -
A Stable Isotope-Based Approach to Tropical Dendroclimatology
Geochimica et Cosmochimica Acta, Vol. 68, No. 16, pp. 3295–3305, 2004 Copyright © 2004 Elsevier Ltd Pergamon Printed in the USA. All rights reserved 0016-7037/04 $30.00 ϩ .00 doi:10.1016/j.gca.2004.01.006 A stable isotope-based approach to tropical dendroclimatology 1, 2 MICHAEL N. EVANS * and DANIEL P. SCHRAG 1Laboratory of Tree-Ring Research, The University of Arizona, 105 W. Stadium, Tucson, AZ 85721, USA 2Department of Earth and Planetary Sciences, Harvard University, 20 Oxford St., Cambridge, MA 02138, USA (Received June 6, 2003; accepted in revised form January 6, 2004) Abstract—We describe a strategy for development of chronological control in tropical trees lacking demon- strably annual ring formation, using high resolution ␦18O measurements in tropical wood. The approach applies existing models of the oxygen isotopic composition of alpha-cellulose (Roden et al., 2000), a rapid method for cellulose extraction from raw wood (Brendel et al., 2000), and continuous flow isotope ratio mass spectrometry (Brenna et al., 1998) to develop proxy chronological, rainfall and growth rate estimates from tropical trees lacking visible annual ring structure. Consistent with model predictions, pilot datasets from the temperate US and Costa Rica having independent chronological control suggest that observed cyclic isotopic signatures of several permil (SMOW) represent the annual cycle of local rainfall and relative humidity. Additional data from a plantation tree of known age from ENSO-sensitive northwestern coastal Peru suggests that the 1997-8 ENSO warm phase event was recorded as an 8‰ anomaly in the ␦18Oof␣-cellulose. The results demonstrate reproducibility of the stable isotopic chronometer over decades, two different climatic zones, and three tropical tree genera, and point to future applications in paleoclimatology. -
Progress in Australian Dendroclimatology: Identifying Growth Limiting Factors in Four Climate Zones
Progress in Australian dendroclimatology: Identifying growth limiting factors in four climate zones Author Haines, Heather A, Olley, Jon M, Kemp, Justine, English, Nathan B Published 2016 Journal Title Science of the Total Environment Version Accepted Manuscript (AM) DOI https://doi.org/10.1016/j.scitotenv.2016.08.096 Copyright Statement © 2016 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial- NoDerivatives 4.0 International Licence which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited. Downloaded from http://hdl.handle.net/10072/100111 Griffith Research Online https://research-repository.griffith.edu.au Progress in Australian dendroclimatology: Identifying growth limiting factors in four climate zones Heather A. Hainesa1, Jon M. Olleya, Justine Kempa, Nathan B. Englishb a Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan, QLD, 4101, Australia b School of Medical and Applied Sciences, Central Queensland University, 538 Flinders Street West, Townsville, QLD, 4810, Australia 1 Corresponding author. email address: [email protected] Abstract: Dendroclimatology can be used to better understand past climate in regions such as Australia where instrumental and historical climate records are sparse and rarely extend beyond 100 years. Here we review 36 Australian dendroclimatic studies which cover the four major climate zones of Australia; temperate, arid, subtropical and tropical. We show that all of these zones contain tree and shrub species which have the potential to provide high quality records of past climate. Despite this potential only four dendroclimatic reconstructions have been published for Australia, one from each of the climate zones: A 3592 year temperature record for the SE-temperate zone, a 350 year rainfall record for the Western arid zone, a 140 year rainfall record for the northern tropics and a 146 year rainfall record for SE-subtropics. -
ABSTRACT Branching Into the Past: Using Dendrochronology and Pinus
ABSTRACT Branching into the Past: Using Dendrochronology and Pinus echinata to Examine Drought in East Texas Victoria Rose Director: Jacquelyn Duke Ph.D. With a rapidly changing climate, it is more important than ever to understand climate conditions of the past in order to anticipate the climate conditions of the future. This study focuses on the information tree cores can uncover about past climate through the field of dendrochronology. Dendrochronology takes advantage of the fact that most trees produce annual rings with yearly variation in the width due to limiting factors such as rainfall and temperature. This work investigates the ability of Pinus echinata (shortleaf pine) from East Texas to act as proxy data for drought in the region. Thirty- three tree core samples were taken at the Sam Houston State University Center for Biological Field Studies and processed using standard dendrochronology methods. The master chronology created was then compared to the average Palmer Drought Severity Index for each growing season. No statistical correlation was found between the two, but a six-year moving average revealed that the growth of the trees was influenced by land management practices through time. APPROVED BY DIRECTOR OF HONORS THESIS Dr. Jacquelyn Duke, Department of Biology APPROVED BY THE HONORS PROGRAM Dr. Elizabeth Corey, Director DATE: BRANCHING INTO THE PAST: USING DENDROCHRONOLOGY AND PINUS ECHINATA TO EXAMINE DROUGHT IN EAST TEXAS A Thesis Submitted to the Faculty of Baylor University In Partial Fulfillment of the Requirements for the Honors Program By Victoria Rose Waco, Texas May 2017 TABLE OF CONTENTS Acknowledgements……………………………………………….iii CHAPTER ONE. -
PALEOCLIMATOLOGY Reconstructing Climates of the Quaternary
PALEOCLIMATOLOGY Reconstructing Climates of the Quaternary THIRD EDITION RAYMOND S. BRADLEY University of Massachusetts, Amherst, Massachusetts AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Contents Acknowledgments xi 4. Dating Methods II Front Cover Photograph xiii Paleomagnetism 103 Foreword xv The Earth’s Magnetic Field 104 Preface to the Third Edition xix Magnetization of Rocks and Sediments 105 The Paleomagnetic Timescale 107 Geomagnetic Excursions 108 1. Paleoclimatic Reconstruction Relative Paleointensity Variations 110 Secular Variations of the Earth’s Magnetic Field 111 Introduction 1 Dating Methods Involving Chemical Changes 111 Sources of Paleoclimatic Information 4 Amino Acid Dating 113 Levels of Paleoclimatic Analysis 9 Obsidian Hydration Dating 124 Modeling in Paleoclimatic Research 10 Tephrochronology 125 Biological Dating Methods 129 2. Climate and Climatic Variation Lichenometry 129 Dendrochronology 135 The Nature of Climate and Climatic Variation 13 5. Ice Cores The Climate System 16 Feedback Mechanisms 24 Introduction 137 Energy Balance of the Earth and Its Stable Isotope Analysis 141 Atmosphere 27 Stable Isotopes in Water: Measurement and Timescales of Climatic Variation 33 Standardization 143 Variations of the Earth’s Orbital Parameters 36 Oxygen-18 Concentration in Atmospheric Solar Forcing 46 Precipitation 144 Volcanic Forcing 50 Factors Affecting the Stable Isotope Record in Ice Cores 145 3. Dating