Temporal Scales and Signal Modeling in Dendroclimatology Joel Guiot

Total Page:16

File Type:pdf, Size:1020Kb

Temporal Scales and Signal Modeling in Dendroclimatology Joel Guiot Temporal scales and signal modeling in dendroclimatology Joel Guiot To cite this version: Joel Guiot. Temporal scales and signal modeling in dendroclimatology. Past Global Changes Mag- azine, Past Global Changes (PAGES) project, 2017, 25 (3), pp.142-143. 10.22498/pages.25.3.142. insu-02269697 HAL Id: insu-02269697 https://hal-insu.archives-ouvertes.fr/insu-02269697 Submitted on 23 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 142 SCIENCE HIGHLIGHTS: CENTENNIAL TO MILLENNIAL CLIMATE VARIABILITY https://doi.org/10.22498/pages.25.3.142 Temporal scales and signal modeling in dendroclimatology Joël Guiot Tree rings are demonstrably good proxies for temperature or precipitation at timescales less than a century. Reconstruction based on multiple proxies and process-based modeling approaches are needed to estimate the climate signal at lower frequencies. Paleoclimatological proxies "represent component of the trend. Afterwards, the method is complex and needs a large records of climate that were generated tree leaf area stabilizes, and a fairly con- number of replicated series for the same through physical, chemical and/or biologi- stant quantity of xylem is distributed along species. No method is perfect and some cal processes. reconstructions of climate a circle of increasing diameter. This is the of them reduce the low-frequency signal rest on attempts to turn this around in geometry factor. Other low-frequency ef- excessively, while others introduce spuri- order to get back to the climate informa- fects may occur during the tree’s lifespan, ous low-frequency variations. For these tion" (Hughes et al. 2010). In most cases such as competition variations, changes in reasons, climate reconstructions tend to these reconstructions are obtained as nutriment availability and carbon concen- be biased, with either too little or too much chronological series, which are character- tration in the atmosphere, fires, infesta- low-frequency variability. ized by a time resolution depending on the tions, diseases, or genetic variability – and sedimentation or growth processes. These climate changes. All these factors result Climate reconstructions processes act as a low-pass filter and in a complex combination of low and mid climate reconstruction consists of calculat- determine the resolution of the climatic frequency signals, which should be under- ing a regression between climate series signal. Here, I focus specifically on tree- stood and modeled to produce indices for and tree-ring series on the period where ring series. climate reconstructions. both are available (usually the last century) and to extrapolate the regression, also Pre-processing of tree-ring series The classical approach, called the stan- called transfer function, to tree-ring series Tree-ring series reproduce annual vari- dardization, consists of detrending tree- of previous centuries. These reconstruc- ability of the climate with relatively good ring time series before calibration with tions may be affected by the so-called reliability, but tree growth is the result of meteorological time series. Numerous "divergence problem". From the 1970s, numerous complex processes. Hence, like methods exist, but it is difficult to distin- the tree-ring series no longer appears to all biological proxies, tree rings record a guish the low-frequency signals related be correlated with summer temperature, combination of several climate variables. to climate from other factors (cook and especially in the high latitudes and in some At low frequencies, the signal is affected Kairiukstis 1990). The standardization cases in the high elevations (D’Arrigo et by an age-related trend, which includes produces indices, which are defined as the al. 2008). The correlation shifts towards both geometrical and physiological fac- ratio between the raw tree ring and a theo- the summer precipitation or other climate tors. During its young phase, the tree retical model of (low-frequency) growth, factors. The shift may be caused by a builds its architectural model and leaf either calculated by nonlinear functions, change of limiting factors (climate becom- system, and then reaches its reproductive smoothing, autoregressive models or a ing warmer, trees are lacking water), an maturity with a progressive increase of bio- function based on the biological age of effect of cO2 fertilization, air pollution, soil mass production. This is the physiological the tree (briffa and Melvin 2011). The latter composition change (increase of nitrate), or insolation. This induces a calibration bias: if the transfer function is calibrated on the most recent period (after the 1970s), it should not be used to estimate climate variations before the 1970s. This problem triggered some worries about the value of the climate reconstructions. Despite these risks of biases, and likely be- cause of them, numerous statistical recon- struction methods have been introduced after the pioneer paper to deconvolve the climatic signal (Fritts et al. 1971). Tree rings are indeed an interesting material for statisticians because the time series have annual resolution and they are also well replicated (a site tree-ring series is based on 20 to 50 cores). The climate signal calibration is often based on multiple regression, but the Diagram of the process-based approach and comparison with the standard transfer function. In the Figure 1: low-frequency signal may differ depend- process-based approach, the initial probability distribution of the climate (needed to initiate the iterations) may be given by educated guess, as it is done with the class of methods called inverse modeling, or by simulation of ing on the stationarity of the time series, climate models, as it is done with the class of data assimilation methods. The standard transfer function uses the on the calibration period, the use, or not, tree-ring series as input and the climate as output. The stream is opposite to the causal relationships. of the principal components, the rescaling PAGES MAGAZINE ∙ VOLUME 25 ∙ NO 3 ∙ DEcembEr 2017 CC-BY SCIENCE HIGHLIGHTS: CENTENNIAL TO MILLENNIAL CLIMATE VARIABILITY 143 Figure 2: Summer temperature and precipitation reconstructions at Fontainebleau, France, obtained from the inversion of the multiproxy biophysical model MAIDENiso (boucher et al. 2014), i.e. the MAIDEN model with an isotope simulation module. red curves are obtained when the inversion is forced by cO2 fixed at preindustrial levels (280 ppmv) and black curves are obtained from increasing values of cO2 from 280 ppmv in 1850, 320 ppmv in 1960 to 360 ppmv in 2000. Straight lines with corresponding colors represent the trends. Adapted from boucher et al. (2014). done after the calibration and other varia- done separately in the low-, medium- and Conclusion tions (bürger et al. 2006). Pseudo-proxy high-frequency bands with the appropriate In conclusion, tree-ring series have an ex- method is an interesting method to study proxies. cellent time control and an annual resolu- the behavior of the reconstruction method. tion, and are good proxies for temperature It consists (i) in generating proxy series Process-based approaches or precipitation variations (depending on from climate model simulation to which Finally, one may model the formation of their geographical position and species) at are added white noises of progressively the record by representing explicitly the sub-century timescales. At lower frequen- increased variance, (ii) in calibrating the chain of physical and biological processes cies, literature is extensive on the difficul- reconstruction method on the pseudo which lie between the climatic information ties coming from (i) the standardization proxy series, and (iii) analyzing the per- and the observed signal. Such a model procedure (age-related factors), (ii) the formance of the method in function of the may be used in "forward mode", forced by selection of model relating tree growth noise variance. A difficulty is that these climatic or other environmental data (Fig. and climate, and (iii) the calibration of the pseudo-proxies should mimic as best as 1). It may also be inverted to estimate cli- model itself. Proposed solutions are based possible the physics of the proxies used mate from observations, as in the MAIDEN on multiproxy approaches, use of appro- (christiansen and Ljungqvist 2016). or VS-light models (boucher et al. 2014; priate treatment of low frequencies, and, Tolwinski-Ward et al. 2014). The inverse finally, mechanistic tree-growth models. Other variables may be measured on problem is solved with a bayesian method, tree rings and used for estimating past which estimates the posterior probabilistic AFFILIATIONS climates. They have not the same biases distribution of the climate parameters pro- cErEGE, cNrS, Aix-en-Provence, France but can have others. The tree-ring maxi- viding the observed tree growth. When the mum density has proved to be quite useful processes generating the low-frequency cONTAcT Joël Guiot: [email protected] to reconstruct the summer temperature
Recommended publications
  • Blue Intensity for Dendroclimatology: Should We Have the Blues?
    Dendrochronologia 32 (2014) 191–204 Contents lists available at ScienceDirect Dendrochronologia jou rnal homepage: www.elsevier.com/locate/dendro ORIGINAL ARTICLE Blue intensity for dendroclimatology: Should we have the blues? Experiments from Scotland a,∗ b c c Milosˇ Rydval , Lars-Åke Larsson , Laura McGlynn , Björn E. Gunnarson , d d a Neil J. Loader , Giles H.F. Young , Rob Wilson a School of Geography and Geosciences, University of St Andrews, UK b Cybis Elektronik & Data AB, Saltsjöbaden, Sweden c Department of Physical Geography and Quaternary Geology, Stockholm University, Stockholm, Sweden d Department of Geography, Swansea University, Swansea, UK a r t i c l e i n f o a b s t r a c t Article history: Blue intensity (BI) has the potential to provide information on past summer temperatures of a similar Received 1 April 2014 quality to maximum latewood density (MXD), but at a substantially reduced cost. This paper provides Accepted 27 April 2014 a methodological guide to the generation of BI data using a new and affordable BI measurement sys- tem; CooRecorder. Focussing on four sites in the Scottish Highlands from a wider network of 42 sites Keywords: developed for the Scottish Pine Project, BI and MXD data from Scots pine (Pinus sylvestris L.) were used Blue intensity to facilitate a direct comparison between these parameters. A series of experiments aimed at identify- Maximum latewood density ing and addressing the limitations of BI suggest that while some potential limitations exist, these can Scots pine Dendroclimatology be minimised by adhering to appropriate BI generation protocols. The comparison of BI data produced using different resin-extraction methods (acetone vs.
    [Show full text]
  • The Disclosure of Climate Data from the Climatic Research Unit at the University of East Anglia
    House of Commons Science and Technology Committee The disclosure of climate data from the Climatic Research Unit at the University of East Anglia Eighth Report of Session 2009–10 Volume II Oral and written evidence Ordered by The House of Commons to be printed 24 March 2010 HC 387-II Published on 31 March 2010 by authority of the House of Commons London: The Stationery Office Limited £0.00 The Science and Technology Committee The Science and Technology Committee is appointed by the House of Commons to examine the expenditure, administration and policy of the Government Office for Science. Under arrangements agreed by the House on 25 June 2009 the Science and Technology Committee was established on 1 October 2009 with the same membership and Chairman as the former Innovation, Universities, Science and Skills Committee and its proceedings were deemed to have been in respect of the Science and Technology Committee. Current membership Mr Phil Willis (Liberal Democrat, Harrogate and Knaresborough)(Chair) Dr Roberta Blackman-Woods (Labour, City of Durham) Mr Tim Boswell (Conservative, Daventry) Mr Ian Cawsey (Labour, Brigg & Goole) Mrs Nadine Dorries (Conservative, Mid Bedfordshire) Dr Evan Harris (Liberal Democrat, Oxford West & Abingdon) Dr Brian Iddon (Labour, Bolton South East) Mr Gordon Marsden (Labour, Blackpool South) Dr Doug Naysmith (Labour, Bristol North West) Dr Bob Spink (Independent, Castle Point) Ian Stewart (Labour, Eccles) Graham Stringer (Labour, Manchester, Blackley) Dr Desmond Turner (Labour, Brighton Kemptown) Mr Rob Wilson (Conservative, Reading East) Powers The Committee is one of the departmental Select Committees, the powers of which are set out in House of Commons Standing Orders, principally in SO No.152.
    [Show full text]
  • Volume 3: Process Issues Raised by Petitioners
    EPA’s Response to the Petitions to Reconsider the Endangerment and Cause or Contribute Findings for Greenhouse Gases under Section 202(a) of the Clean Air Act Volume 3: Process Issues Raised by Petitioners U.S. Environmental Protection Agency Office of Atmospheric Programs Climate Change Division Washington, D.C. 1 TABLE OF CONTENTS Page 3.0 Process Issues Raised by Petitioners............................................................................................5 3.1 Approaches and Processes Used to Develop the Scientific Support for the Findings............................................................................................................................5 3.1.1 Overview..............................................................................................................5 3.1.2 Issues Regarding Consideration of the CRU E-mails..........................................6 3.1.3 Assessment of Issues Raised in Public Comments and Re-Raised in Petitions for Reconsideration...............................................................................7 3.1.4 Summary............................................................................................................19 3.2 Response to Claims That the Assessments by the USGCRP and NRC Are Not Separate and Independent Assessments.........................................................................20 3.2.1 Overview............................................................................................................20 3.2.2 EPA’s Response to Petitioners’
    [Show full text]
  • Global Dendroclimatology in Sight from A
    780 Nature Vol. 287 30 October 1980 Global dendroclimatology in sight from A. Barrie Pittock Dendroclimatology, the systematic study pressure and that sampling should be con­ calibration and earlier instrumental and of past climates using tree growth centrated in regions which are historical data for verification, it should be characteristics as proxy climate data, is a climatologically important and/or where possible to produce a detailed and relatively young science. It is often there are gaps in coverage from instru­ continuous climate reconstruction from confused with the much older and related mental, historical or other proxy data. 1750. Because of the abundance of data for science of dendrochronology, the dating of There is growing confidence that with some calibration and verification, this could specimens by the use of tree-ring modification existing methods can extract prove the best continent-wide proxy sequences. Dendroclimatology has only useful climatic information from trees in climate data set in existence and Europe really developed as a science since the many different parts of the world. could become a test bed for refining 1940s, primarily as a result of the As dendroclimatology has expanded dendroclimatic methods. pioneering efforts of workers at the into new geographical areas over the last Five-hundred-year long chronologies Laboratory of Tree-Ring Research at the decade, techniques have been modified are available already from living conifers in University of Arizona. Elsewhere, the and refined. One example is the use of the Alps and at the northern tree-line and serious application of dendroclimatic density as well as ring-width measurements are expected from living oaks in Scotland, methods has only begun in the last five for climate reconstructions.
    [Show full text]
  • Application of Dendroclimatology in Evaluation of Climatic Changes
    JOURNAL OF FOREST SCIENCE, 64, 2018 (3): 139–147 https://doi.org/10.17221/79/2017-JFS Application of dendroclimatology in evaluation of climatic changes Mohammad Reza KHALEGHI* Department of Watershed Management Engineering, Faculty of Natural Resources, Torbat-e-Jam Branch, Islamic Azad University, Torbat-e-Jam, Iran *Corresponding author: [email protected] Abstract Khaleghi M.R. (2018): Application of dendroclimatology in evaluation of climatic changes. J. For. Sci., 64: 139–147. The present study tends to describe the survey of climatic changes in the case of the Bojnourd region of North Kho- rasan, Iran. Climate change due to a fragile ecosystem in semi-arid and arid regions such as Iran is one of the most challenging climatological and hydrological problems. Dendrochronology, which uses tree rings to their exact year of formation to analyse temporal and spatial patterns of processes in the physical and cultural sciences, can be used to evaluate the effects of climate change. In this study, the effects of climate change were simulated using dendrochro- nology (tree rings) and an artificial neural network (ANN) for the period from 1800 to 2015. The present study was executed using the Quercus castaneifolia C.A. Meyer. Tree-ring width, temperature, and precipitation were the input parameters for the study, and climate change parameters were the outputs. After the training process, the model was verified. The verified network and tree rings were used to simulate climatic parameter changes during the past times. The results showed that the integration of dendroclimatology and an ANN renders a high degree of accuracy and ef- ficiency in the simulation of climate change.
    [Show full text]
  • A Stable Isotope-Based Approach to Tropical Dendroclimatology
    Geochimica et Cosmochimica Acta, Vol. 68, No. 16, pp. 3295–3305, 2004 Copyright © 2004 Elsevier Ltd Pergamon Printed in the USA. All rights reserved 0016-7037/04 $30.00 ϩ .00 doi:10.1016/j.gca.2004.01.006 A stable isotope-based approach to tropical dendroclimatology 1, 2 MICHAEL N. EVANS * and DANIEL P. SCHRAG 1Laboratory of Tree-Ring Research, The University of Arizona, 105 W. Stadium, Tucson, AZ 85721, USA 2Department of Earth and Planetary Sciences, Harvard University, 20 Oxford St., Cambridge, MA 02138, USA (Received June 6, 2003; accepted in revised form January 6, 2004) Abstract—We describe a strategy for development of chronological control in tropical trees lacking demon- strably annual ring formation, using high resolution ␦18O measurements in tropical wood. The approach applies existing models of the oxygen isotopic composition of alpha-cellulose (Roden et al., 2000), a rapid method for cellulose extraction from raw wood (Brendel et al., 2000), and continuous flow isotope ratio mass spectrometry (Brenna et al., 1998) to develop proxy chronological, rainfall and growth rate estimates from tropical trees lacking visible annual ring structure. Consistent with model predictions, pilot datasets from the temperate US and Costa Rica having independent chronological control suggest that observed cyclic isotopic signatures of several permil (SMOW) represent the annual cycle of local rainfall and relative humidity. Additional data from a plantation tree of known age from ENSO-sensitive northwestern coastal Peru suggests that the 1997-8 ENSO warm phase event was recorded as an 8‰ anomaly in the ␦18Oof␣-cellulose. The results demonstrate reproducibility of the stable isotopic chronometer over decades, two different climatic zones, and three tropical tree genera, and point to future applications in paleoclimatology.
    [Show full text]
  • Progress in Australian Dendroclimatology: Identifying Growth Limiting Factors in Four Climate Zones
    Progress in Australian dendroclimatology: Identifying growth limiting factors in four climate zones Author Haines, Heather A, Olley, Jon M, Kemp, Justine, English, Nathan B Published 2016 Journal Title Science of the Total Environment Version Accepted Manuscript (AM) DOI https://doi.org/10.1016/j.scitotenv.2016.08.096 Copyright Statement © 2016 Elsevier. Licensed under the Creative Commons Attribution-NonCommercial- NoDerivatives 4.0 International Licence which permits unrestricted, non-commercial use, distribution and reproduction in any medium, providing that the work is properly cited. Downloaded from http://hdl.handle.net/10072/100111 Griffith Research Online https://research-repository.griffith.edu.au Progress in Australian dendroclimatology: Identifying growth limiting factors in four climate zones Heather A. Hainesa1, Jon M. Olleya, Justine Kempa, Nathan B. Englishb a Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan, QLD, 4101, Australia b School of Medical and Applied Sciences, Central Queensland University, 538 Flinders Street West, Townsville, QLD, 4810, Australia 1 Corresponding author. email address: [email protected] Abstract: Dendroclimatology can be used to better understand past climate in regions such as Australia where instrumental and historical climate records are sparse and rarely extend beyond 100 years. Here we review 36 Australian dendroclimatic studies which cover the four major climate zones of Australia; temperate, arid, subtropical and tropical. We show that all of these zones contain tree and shrub species which have the potential to provide high quality records of past climate. Despite this potential only four dendroclimatic reconstructions have been published for Australia, one from each of the climate zones: A 3592 year temperature record for the SE-temperate zone, a 350 year rainfall record for the Western arid zone, a 140 year rainfall record for the northern tropics and a 146 year rainfall record for SE-subtropics.
    [Show full text]
  • ABSTRACT Branching Into the Past: Using Dendrochronology and Pinus
    ABSTRACT Branching into the Past: Using Dendrochronology and Pinus echinata to Examine Drought in East Texas Victoria Rose Director: Jacquelyn Duke Ph.D. With a rapidly changing climate, it is more important than ever to understand climate conditions of the past in order to anticipate the climate conditions of the future. This study focuses on the information tree cores can uncover about past climate through the field of dendrochronology. Dendrochronology takes advantage of the fact that most trees produce annual rings with yearly variation in the width due to limiting factors such as rainfall and temperature. This work investigates the ability of Pinus echinata (shortleaf pine) from East Texas to act as proxy data for drought in the region. Thirty- three tree core samples were taken at the Sam Houston State University Center for Biological Field Studies and processed using standard dendrochronology methods. The master chronology created was then compared to the average Palmer Drought Severity Index for each growing season. No statistical correlation was found between the two, but a six-year moving average revealed that the growth of the trees was influenced by land management practices through time. APPROVED BY DIRECTOR OF HONORS THESIS Dr. Jacquelyn Duke, Department of Biology APPROVED BY THE HONORS PROGRAM Dr. Elizabeth Corey, Director DATE: BRANCHING INTO THE PAST: USING DENDROCHRONOLOGY AND PINUS ECHINATA TO EXAMINE DROUGHT IN EAST TEXAS A Thesis Submitted to the Faculty of Baylor University In Partial Fulfillment of the Requirements for the Honors Program By Victoria Rose Waco, Texas May 2017 TABLE OF CONTENTS Acknowledgements……………………………………………….iii CHAPTER ONE.
    [Show full text]
  • PALEOCLIMATOLOGY Reconstructing Climates of the Quaternary
    PALEOCLIMATOLOGY Reconstructing Climates of the Quaternary THIRD EDITION RAYMOND S. BRADLEY University of Massachusetts, Amherst, Massachusetts AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Contents Acknowledgments xi 4. Dating Methods II Front Cover Photograph xiii Paleomagnetism 103 Foreword xv The Earth’s Magnetic Field 104 Preface to the Third Edition xix Magnetization of Rocks and Sediments 105 The Paleomagnetic Timescale 107 Geomagnetic Excursions 108 1. Paleoclimatic Reconstruction Relative Paleointensity Variations 110 Secular Variations of the Earth’s Magnetic Field 111 Introduction 1 Dating Methods Involving Chemical Changes 111 Sources of Paleoclimatic Information 4 Amino Acid Dating 113 Levels of Paleoclimatic Analysis 9 Obsidian Hydration Dating 124 Modeling in Paleoclimatic Research 10 Tephrochronology 125 Biological Dating Methods 129 2. Climate and Climatic Variation Lichenometry 129 Dendrochronology 135 The Nature of Climate and Climatic Variation 13 5. Ice Cores The Climate System 16 Feedback Mechanisms 24 Introduction 137 Energy Balance of the Earth and Its Stable Isotope Analysis 141 Atmosphere 27 Stable Isotopes in Water: Measurement and Timescales of Climatic Variation 33 Standardization 143 Variations of the Earth’s Orbital Parameters 36 Oxygen-18 Concentration in Atmospheric Solar Forcing 46 Precipitation 144 Volcanic Forcing 50 Factors Affecting the Stable Isotope Record in Ice Cores 145 3. Dating
    [Show full text]
  • The Manuscript Reviews Recent Development of Isotopic Dendroclimatology, Addressing Possible Divergence Problem in Tree-Ring D13c and D18o
    The manuscript reviews recent development of isotopic dendroclimatology, addressing possible divergence problem in tree-ring d13C and d18O. In my opinion, this kind work is very important when isotopic dendroclimatology has been paid more attention and plays more important role in high- resolution paleoclimate reconstruction. However, the current manuscript should be reorganized and concentrated in d13C. Physiological mechanisms between tree-ring d13C and d18O are quite different, therefore, comparing with tree-ring d13C, tree-ring d18O did not show recognizable effects from rising pCO2 (Lines 240-241) and pollution (Lines 424-425). Just as the authors said in Lines 514-515, tree-ring d18O is a more appropriate proxy for climate reconstruction. And, the phenomenon of divergence between the d18O and climate is really few worldwide. I also suggest the authors adding one section discussing uncertainty. Isotopic dendroclimatology is a subject based on chemical experiment. Unlike tree-ring width or density, the result of tree-ring d13C or d18O measurements are different to verified again from their core or disk samples, due to time consuming and great expense. It is possible to introduce mistakes during many steps of experiments, for example, impure cellulose and unreliable measurements caused by bad condition of the isotope ratio mass spectrometer. Some other uncertainties also exist. First is sampling strategy. We should understand what kind of tree could be used for climate reconstruction. As recommended by classical “The principle of limiting factors” (Fritts 1976), site selection is very important when one would employ trees to infer climate change. It is also important to isotopic dendroclimatology.
    [Show full text]
  • Tree Rings Reveal Climate Change Past, Present, and Future1
    Tree Rings Reveal Climate Change Past, Present, and Future1 KEVIN J. ANCHUKAITIS Associate Professor School of Geography and Development Laboratory of Tree-Ring Research University of Arizona Introduction Earth’s climate system exhibits variability in both temperature and hydroclimate across a range of spatial and temporal scales covering several orders of magnitude. However, existing observations of the climate system from weather stations and satellites are too short or too sparse to completely characterize this variability, particularly at decadal, multidecadal, and centennial time scales. And yet these modes of variability are critical for short- and medium-term natural resources management, climate policy, and economic planning. This natural vari- ability in the climate system is also superimposed on the trends and changes caused by the anthropogenic emission of greenhouse gases, complicating straightforward detection and attribution of human modification of Earth’s climate system (Solomon et al. 2011) and leaving a lacuna in our knowledge of the complete range of variability in temperature and hydroclimate. A more complete understanding of internal variability in the climate system is necessary for decadal predic- tion, vulnerability reduction, and long-term adaptation to climate vari- ability and change (Meehl et al. 2009; Vera et al. 2010). Paleoclimatology addresses the limitations of the instrumental era by extending climate information back into the past using “proxies,” and tree rings are one of the most important sources of information about the climate of the last several thousand years. The various phys- ical and chemical characteristics of the annual rings reflect past climate and environmental conditions, prior to our modern period of moni- toring and measuring the Earth system, and as such effectively allow us to recover observations of the past.
    [Show full text]
  • Time-Delayed Response of the Solar Total Irradiance Variation to Long
    No. 101 Proc. Japan Acad., 72, Ser. B (1996) 197 Time-Delayed Response of the Solar Total Irradiance Variation to Long-Term Solar Magnetic Cycle Amplitude Modulation as Inferred by Sunspot Relative Number and Isotope Data of 10Be in the Greenland Ice Core and Land Air Temperature Variation of the Earth By Hirokazu YOSHIMURA Department of Astronomy, University of Tokyo, Tokyo 113 (Communicated by Yoshio FUJITA, M.J. A., Dec. 12, 1996) Abstract : We found that the time profile of the land air temperature anomalies followed the time profile of the magnetic field variation with remarkable similarity and delay time of about 200 years for both cases of the instrumentally measured temperature data and the data reconstructed from tree ring growth rates of the northern north American continent and the polar Ural mountains of northern Siberia. If this is indeed the case, (i) the present global warming will turn to global cooling in near future. If we assume that the land air temperature anomalies can be a good proxy of the solar total irradiance variation, the present result means that (ii) the present global warming of the Earth is a result of release of heat which has been stored in the solar convection zone in the Maunder Minimum in the 17th century. Key words : Solar total irradiance; solar cycle; dendroclimatology. Introduction. The solar total irradiance is a solar magnetic field on the surface of the Sun, it was relatively new terminology to describe total photon taken for granted that the STI variation is in direct output of the Sun received at the mean orbital distance correlation with the solar magnetic field variation.
    [Show full text]