Hydrogen Revolution: Growth, Jobs, Security & Sustainability
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Introduction Agata Godula-Jopek
1 1 Introduction Agata Godula-Jopek We find ourselves on the cusp of a new epoch in history, where every pos- sibility is still an option. Hydrogen, the very stuff of the stars and our own sun, is now being seized by human ingenuity and harnessed for human ends. Charting the right course at the very beginning of the journey is essential if we are to make the great promise of a hydrogen age a viable reality for our children and a worthy legacy for the generations that will come after us. Jeremy Rifkin [1]. Hydrogen is being considered as an important future energy carrier, which means it can store and deliver energy in a usable form. At standard temperature and pressure (0 ∘C and 1013 hPa), hydrogen exists in a gaseous form. It is odourless, colourless, tasteless, non-toxic and lighter than air. The stoichiometric fraction of hydrogen in air is 29.53 vol%. Abundant on earth as an element, hydrogen is present everywhere, being the simplest element in the universe representing 75 wt% or 90 vol% of all matter. As an energy carrier, hydrogen is not an energy source itself; it can only be produced from other sources of energy, such as fossil fuels, renewable sources or nuclear power by different energy conversion processes. Exothermic combustion reaction with oxygen forms water (heat of combustion 1.4 × 108 Jkg−1) and no greenhouse gases containing carbon are emitted to the atmosphere. Selected physical properties of hydrogen based on Van Nostrand are presented in Table 1.1 [2]. The energy content of hydrogen is 33.3 kWh kg−1, corresponding to 120 MJ kg−1 (lower heating value, LHV), and 39.4 kWh kg−1, corresponding to 142 MJ kg−1 (upper heating value, UHV). -
Vehicle Applicatons, Future of IC Engines
Part 10: Vehicle Applications, Future of IC Engines Reciprocating Internal Combustion Engines Prof. Rolf D. Reitz Engine Research Center University of Wisconsin-Madison 2014 Princeton-CEFRC Summer School on Combustion Course Length: 15 hrs (Mon.- Fri., June 23 – 27, 2014) Copyright ©2014 by Rolf D. Reitz. This material is not to be sold, reproduced or distributed without prior written permission of the owner, Rolf D. Reitz. 1 1 CEFRC9 CEFRC5 June-10, 29, 2014 2012 Part 10: Vehicle Applications, Future of IC Engines Short course outine: Engine fundamentals and performance metrics, computer modeling supported by in-depth understanding of fundamental engine processes and detailed experiments in engine design optimization. Day 1 (Engine fundamentals) Part 1: IC Engine Review, 0, 1 and 3-D modeling Part 2: Turbochargers, Engine Performance Metrics Day 2 (Combustion Modeling) Part 3: Chemical Kinetics, HCCI & SI Combustion Part 4: Heat transfer, NOx and Soot Emissions Day 3 (Spray Modeling) Part 5: Atomization, Drop Breakup/Coalescence Part 6: Drop Drag/Wall Impinge/Vaporization/Sprays Day 4 (Engine Optimization) Part 7: Diesel combustion and SI knock modeling Part 8: Optimization and Low Temperature Combustion Day 5 (Applications and the Future) Part 9: Fuels, After-treatment and Controls Part 10: Vehicle Applications, Future of IC Engines 2 CEFRC5-10, 2014 Part 10: Vehicle Applications, Future of IC Engines Kokjohn, IJER 2011, SAE 2011, SAE 2009 Light- & heavy-duty engine RCCI Heavy Light Duty Duty HD and LD engines compared over Engine CAT GM 1.9 L IMEP (bar) 9 gasoline/diesel fuel ratio sweep at 9 Engine speed (rev/min) 1300 1900 bar IMEP Mean piston speed (m/s) 7.2 5.7 LD engine intake temperature and Total fuel mass (mg) 94 20.2 pressure adjusted in to match HD EGR (%) 41 compression stroke Premixed gasoline (%) 82 to 89 81 to 84 Diesel SOI 1 (°ATDC) -58 -56 Engine size scaling laws do not provide Diesel SOI 2 (°ATDC) -37 -35 a scaling parameter for engine speed Diesel inj. -
Safety Consideration on Liquid Hydrogen
Safety Considerations on Liquid Hydrogen Karl Verfondern Helmholtz-Gemeinschaft der 5/JULICH Mitglied FORSCHUNGSZENTRUM TABLE OF CONTENTS 1. INTRODUCTION....................................................................................................................................1 2. PROPERTIES OF LIQUID HYDROGEN..........................................................................................3 2.1. Physical and Chemical Characteristics..............................................................................................3 2.1.1. Physical Properties ......................................................................................................................3 2.1.2. Chemical Properties ....................................................................................................................7 2.2. Influence of Cryogenic Hydrogen on Materials..............................................................................9 2.3. Physiological Problems in Connection with Liquid Hydrogen ....................................................10 3. PRODUCTION OF LIQUID HYDROGEN AND SLUSH HYDROGEN................................... 13 3.1. Liquid Hydrogen Production Methods ............................................................................................ 13 3.1.1. Energy Requirement .................................................................................................................. 13 3.1.2. Linde Hampson Process ............................................................................................................15 -
Comparison of Hydrogen Powertrains with the Battery Powered Electric Vehicle and Investigation of Small-Scale Local Hydrogen Production Using Renewable Energy
Review Comparison of Hydrogen Powertrains with the Battery Powered Electric Vehicle and Investigation of Small-Scale Local Hydrogen Production Using Renewable Energy Michael Handwerker 1,2,*, Jörg Wellnitz 1,2 and Hormoz Marzbani 2 1 Faculty of Mechanical Engineering, University of Applied Sciences Ingolstadt, Esplanade 10, 85049 Ingolstadt, Germany; [email protected] 2 Royal Melbourne Institute of Technology, School of Engineering, Plenty Road, Bundoora, VIC 3083, Australia; [email protected] * Correspondence: [email protected] Abstract: Climate change is one of the major problems that people face in this century, with fossil fuel combustion engines being huge contributors. Currently, the battery powered electric vehicle is considered the predecessor, while hydrogen vehicles only have an insignificant market share. To evaluate if this is justified, different hydrogen power train technologies are analyzed and compared to the battery powered electric vehicle. Even though most research focuses on the hydrogen fuel cells, it is shown that, despite the lower efficiency, the often-neglected hydrogen combustion engine could be the right solution for transitioning away from fossil fuels. This is mainly due to the lower costs and possibility of the use of existing manufacturing infrastructure. To achieve a similar level of refueling comfort as with the battery powered electric vehicle, the economic and technological aspects of the local small-scale hydrogen production are being investigated. Due to the low efficiency Citation: Handwerker, M.; Wellnitz, and high prices for the required components, this domestically produced hydrogen cannot compete J.; Marzbani, H. Comparison of with hydrogen produced from fossil fuels on a larger scale. -
Clean Energy Partnership
CLEAN ENERGY 2002–2016 PARTNERSHIP Clean Energy Partnership c/o be: public relations gmbh Phone: +49 (0)40 238 05 87 90 Fax: +49 (0)40 238 05 87 96 Email: [email protected] www.cleanenergypartnership.de/en www.facebook.com/cleanenergypartnership www.youtube.com/cleanenergypartner HYDROGEN – WHAT KEPT US MOVING 2002–2016 CONTENT Foreword............................................................................................................................................................ 04 Fourteen years of hydrogen mobility....................................................................................................... 06 Knowledge and project management...................................................................................................... 08 Developing.solutions.together..................................................................................................................... 08 The.focus.is.on.customer.friendliness......................................................................................................... 08 What.we.are.talking.about............................................................................................................................ 09 Production and storage..................................................................................................................................10 Crude.glycerol.pyrolysis...................................................................................................................................12 Reforming.process............................................................................................................................................12 -
Ahydrogen Economy
AHYDROGEN ECONOMY • Will motorists someday fill up theirtanks with hydrogen? Many complex challenges must be overcome before a hydrogen·fueled future can become a reality. Using hydrogen to fuel cars may eventually slash oil consumption and carbon emissions, but it will take some time BY JOAN OGDEN Developing cleaner power sources els. Liquid fuels derived from woody for transportation is perhaps the tricki plants or synthesized from tar sands or est piece of the energy puzzle. The dif coal may play important roles. Over the ficulty sterns from two discouraging long term, however, the most feasible facts. First, the number of vehicles ways to power vehicles with high effi worldwide, now 750 million, is expect ciency and zero emissions are through ed to triple by 2050, thanks largely to connections to the electric grid or the use the expanding buying power of custom of hydrogen as a transportation fuel. ers in China, India and other rapid Iy de Unfortunately, the commercializa veloping countries. And second, 97 per tion of electric vehicles has been stymied OVERVIEW cent of transportation fuel currently by a daunting obstacle: even large ar i,; Hydrogen fuel·cell comes from crude oil. rays of batteries cannot store enough cars could become In the near term, improving fuel charge to keep cars running for distanc commercially feasi economy is the best way to slow the rise es comparable to gasoline engines. For ble ifauto makers succeed In develop in oil use and greenhouse gas emissions this reason, most auto companies have ingsafe, Inexpen from cars and trucks. But even if auto abandoned the technology. -
The Case for Hydrogen Internal Combustion Engines Adam Campisi, Kyle Bartosik Stephen Poppa, Casey Rivera Advisor: Professor Brian Savilonis
Hydrogen Powered Vehicle The Case for Hydrogen Internal Combustion Engines Adam Campisi, Kyle Bartosik Stephen Poppa, Casey Rivera Advisor: Professor Brian Savilonis Abstract HICE vs. Fuel Cells Hydrogen Fuel Cell Hydrogen powered vehicles have been in development for the past decade. While hydrogen fuel cells HICE Vs. Current Fuel Cells have been receiving the majority of the attention, they will not be ready for mass production for fifteen to twenty-five years. Hydrogen internal combustion engines may prove to be the most Now Widespread Availability 15-25 Years effective solution for the immediate future. This project explores the feasibility of making hydrogen internal combustion engines in mass produced vehicles. We researched the different methods for $5000 to convert ICE to Cost >$100,000 producing hydrogen, storing it in vehicles and converting traditional internal combustion to burn HICE hydrogen instead of gasoline. Through this research we investigated the advantages of hydrogen BMW Hydrogen 7 HICE internal combustion engines over hydrogen fuel cells. 65% Efficiency 50% Power output compared to Up to 120% 80% gas None, runs effectively in all Difficulties running in Condition Limits conditions freezing temperatures Production Methods •Electrolysis is the separation of water into oxygen and hydrogen by running a direct electric current through the water. •It is the simplest and cleanest way of producing hydrogen, because the hydrogen that comes out of the process is 99.999% pure. •The total land area of Class 4 (medium purple color 50-100 thousand kg/sq. km year) and higher wind areas is approximately 568 944 square kilometers. If http://geothermal.marin.org/geopresentation/sld117.htm we assume the output of these areas to be 5 megawatts/sq kilometer (MW/km 2), the calculated potential for the United States becomes 2,845,000 MW. -
Goddard Unveils New Antenna Network in White Sands
National Aeronautics and Space Administration www.nasa.gov Volume 3 Issue 16 November 2007 View Goddard Unveils New Antenna Network in White Sands Pg 2 Employees Participate in Tree Planting as Part of the GSFC Sustainability Program Pg 6 The BMW Hydrogen 7 Visits Goddard Pg 8 Goddard 02 Goddard Unveils New Antenna Table of Contents Network in White Sands GoddardUpdates By Rob Garner Goddard Unveils New Antenna Network in White Sands - 2 SDO Instrument to Peer Inside the Sun Arrives at Goddard - 4 NESC Honors Goddard Employees and Partners for Technical Excellence - 5 Updates Daniel Glavin Wins Center’s First IRAD Innovator of the Year Award - 5 Employees Participate in Tree Planting as Part of the GSFC Sustainability Program - 6 The BMW Hydrogen 7 Visits Goddard - 8 GSFC Replaces Standard Government Sedan With a Neighborhood Electric Vehicle - 9 NASA Warms Up to Maryland’s Trash - 10 Employee Spotlight Fred Pierce - 12 Goddard Cover: White Sands Test Facility Team posing in front of one of the Ka-band antenna’s. Photo credit: Bill Gardner Photo credit: Bill Gardner Caption: Dr. Weiler gives remarks before cutting the ribbon to dedicate NASA’s new Ka-band antennas at the White Sands facility in New Mexico. GoddardView Info Goddard engineers showcased the new 18-meter Ka-band An- tenna Network, the first such system in Agency history, during a Goddard View is an official publication of the Goddard Space ribbon-cutting ceremony at the White Sands Test Facility in New Flight Center. It is published biweekly by the Office of Public Mexico on November 8. -
The Cleanest Cars: Well-To
THE CLEANEST CARS: WELL-TO-WHEELS EMISSIONS COMPARISONS Updated May 2008 by Sherry Boschert, author of Plug-in Hybrids: The Cars That Will Recharge America (New Society Publishers, 2006) Contents - Guide to acronyms - Summary of findings - Emissions using U.S. grid mix: Studies that include PHEVs - Emissions using U.S. grid mix: Studies that include EVs but not PHEVs - Emissions using California grid mix - Canadian study of emissions - Others - Hydrogen-only comparisons Guide to acronyms Vehicle acronyms: ICE = gasoline car (internal combustion engine) HEV = hybrid gas-electric car (uses gasoline to recharge batteries) PHEV = plug-in hybrid (can be plugged in or use gasoline to recharge batteries) PHEV20, PHEV40, PHEV60 = plug-in hybrids with all-electric ranges of 20, 40, or 60 miles PRIUS+ PHEV = CalCars PHEV conversion with real-world data EV = electric vehicle (plugs in to recharge batteries) HFCEV = hydrogen fuel cell electric vehicle W2W = well-to-wheels analyses of emissions from both the vehicle operation and fuel source Greenhouse gas acronyms: GHG = greenhouse gases CO2 = carbon dioxide CH4 = methane N2O = nitrous oxide HC = hydrocarbons Criteria air pollutant acronyms: CO = carbon monoxide VOC = volatile organic compounds ROG = reactive organic gases SOx = sulfur oxides NOx = nitrogen oxides PM = particulate matter PM2.5 = particulate matter with a mean aerodynamic diameter of 2.5 microns or less PM10 = particulate matter with a mean aerodynamic diameter of 10 microns or less SUMMARY: This is an overview of all the analyses that I could find as of September 2007 looking at emissions produced by vehicles with electric drive and by their power sources (called well-to-wheels analyses). -
What Do You Know About Alternative Energy? Development and Use of a Diagnostic Instrument for Upper Secondary School Science
What do you know about alternative energy? Development and use of a diagnostic instrument for upper secondary school science Abstract The need for renewable and non-fossil fuels is now recognised by nations throughout the world. Consequently, an understanding of alternative energy is needed both in schools and in everyday life-long learning situations. This study developed a two-tier instrument to diagnose students’ understanding and alternative conceptions about alternative energy in terms of: sources of alternative energy, greenhouse gas emission, as well as advantages, and disadvantages. Results obtained with Year 10 and 11 students (n = 491) using the 12-item two-tier instrument (α = 0.61) showed that students’ understanding of alternative energy was low (M = 7.03; SD = 3.90). The 23 alternative conceptions about alternative energy sources that could be identified from the instrument are reported. The implications for teaching and learning about alternative energy and suggestions for further development and improvement of the instrument are presented. Keywords: Alternative energy; Environmental education; Alternative conceptions; Two-tier test items; Diagnostic assessment Introduction The world’s population is rapidly increasing causing a rise in the demand for energy use. Conventionally, the sources of energy used worldwide are coal, oil, and other fossil fuels such as natural gas. However, concerns about the depletion of these fossil fuels, particularly of oil, and their impact on the environment and sustainability is so huge that groups of countries have developed environmental protection policies, such as the Kyoto Protocol, to curb the contribution to global warming through Clean Development Mechanisms (CDM), carbon emission trading, and joint implementation (UNFCCC, 2011a). -
Environmentally Themed Books for Adults*
Environmentally Themed Books for Adults* *The City of Roanoke does not endorse any books on this list; they are provided merely as a starting point for your own investigation. Collected from various sources, 2015. NON-FICTION Desert Solitaire: A Season in the Wilderness by Edward Abbey Biohazard: The Chilling True Story of the Largest Covert Biological Weapons Program in the World - Told from Inside by the Man Who Ran It by Ken Alibek The Bleeding of the Stone by Ibrahim al-Koni Enviro-Capitalists: Doing Good While Doing Well by Terry Lee Anderson and Donald R. Leal Free Market Environmentalism by Terry L. Anderson and Donald R. Leal Babylon's Ark: The Incredible Wartime Rescue of the Baghdad Zoo by Lawrence Anthony and Graham Spence Earth from the Air by Yann Arthus-Bertrand Our Angry Earth: A Ticking Ecological Bomb by Isaac Asimov and Frederik Pohl State of the World 2010: Transforming Cultures: From Consumerism to Sustainability by Erik Assadourian et al Wild Solutions: How Biodiversity is Money in the Bank by Andrew Beattie and Paul R. Ehrlich Environmental Principles and Policies: An Interdisciplinary Introduction by Sharon Beder Global Spin: The Corporate Assault on Environmentalism by Sharon Beder Ecology: From Individuals to Ecosystems by Michael Begon et al The Coming Global Superstorm by Art Bell and Whitley Strieber Fundamentals of Stack Gas Dispersion (4th edition) by Milton R. Beychok Aqueous Wastes from Petroleum and Petrochemical Plants by Milton R. Beychok Putting Biodiversity on the Map: Priority Areas for Global Conservation -
Liquid Organic Hydrogen Carriers (LOHC): an Auspicious Al- Ternative to Conventional Hydrogen Storage Technologies
Liquid Organic Hydrogen Carriers (LOHC): An auspicious al- ternative to conventional hydrogen storage technologies J. von Wild, T. Friedrich, A. Cooper, B. Toseland, G. Muraro, W. TeGrotenhuis, Y. Wang, P. Humble, A. Karim This document appeared in Detlef Stolten, Thomas Grube (Eds.): 18th World Hydrogen Energy Conference 2010 - WHEC 2010 Parallel Sessions Book 4: Storage Systems / Policy Perspectives, Initiatives and Co- operations Proceedings of the WHEC, May 16.-21. 2010, Essen Schriften des Forschungszentrums Jülich / Energy & Environment, Vol. 78-4 Institute of Energy Research - Fuel Cells (IEF-3) Forschungszentrum Jülich GmbH, Zentralbibliothek, Verlag, 2010 ISBN: 978-3-89336-654-5 Proceedings WHEC2010 189 Liquid Organic Hydrogen Carriers (LOHC): An auspicious alternative to conventional hydrogen storage technologies J. von Wild, T. Friedrich, BMW Group Research and Technology, Germany A. Cooper, B. Toseland, G. Muraro, Air Products & Chemicals Ward TeGrotenhuis, Yong Wang, Paul Humble, Ayman Karim, Pacific Northwest National Laboratory, USA 1 Introduction Due to the limited availability of fossil fuels – the finite nature and instability of fossil fuel sup- ply and limited production rate – mankind is facing increasing pressure to establish a sus- tainable alternative energy economy. At least since the so-called “oil crises” in the 1970’s, the automotive industry has started to strive towards a possible substitution of an oil-based energy carrier. As the optimum long-term solution, hydrogen has been identified as an en- ergy carrier, produced on the basis of renewable energy sources (water, sun, wind, biomass) and distributed and stored within adapted infrastructure with new or modified facilities for car refueling. The realistic implementation of this vision, among others, has been pursued at BMW for more than 30 years in the framework of the “CleanEnergy” program [1].