Mars Together and FIRE & ICE (

Total Page:16

File Type:pdf, Size:1020Kb

Mars Together and FIRE & ICE ( / ( Mars Together and FIRE & ICE 00 N O u_ ,-4 I " _0 U u_ 0, t- O Z _ O o- Report of the Q cO Z O. Joint U.S./Russian ZCJ Technical Working Groups T--) _t_Z I,,- Q¢ u.o u303_ O_ ,,1- _ T ,,,0 ¢0 ), UJ _o_k- C3. October 1994 o_ CS b-4 _ _)ZtO __= Mars Together and FIRE & IC Report of the Joint U.S./Russian Technical Working Groups October 1994 Table of Contents Summary Introduction ........................................................................................................... 1 April 1994 Agreement ............................................................................................ 1 Study Group Results ............................................................................................. 2 Conclusions ......................................................................................................... 11 Recommendations ................................................................................................ 11 Summary of Discussion--US/Russia Space Science Meeting ................................. 13 Chapter One: Mars Together 1.1 Introduction and Background .................................................................. 17 1.2 The US and Russian National Programs ................................................. 19 1.3 Rationale for Mars Together 1998 Mission ............................................. 22 1.4 Technical Options for MT-98 .................................................................. 23 1.5 Recommended Option ............................................................................. 26 1.6 Scientific Payload for MT-98 Mission .................................................... 27 1.7 Schedule for MT-98 ................................................................................ 28 1.8 Open Issues on MT-98 ............................................................................ 29 1.9 Beyond 1998 ........................................................................................... 30 1.10 Conclusion ............................................................................................... 30 1.11 List of Supplements ................................................................................. 31 1.12 Membership ............................................................................................. 31 Chapter Two: FIRE: The Solar Probe 2.1 Introduction and Background .................................................................. 33 2.2 Science Objectives and Payloads for Joint Mission ................................. 34 2.3 Mission Options ...................................................................................... 39 2.4 Selected Mission Design and Rationale ................................................... 42 2.5 Selected Launch Configuration ................................................................ 43 2.6 The Russian Spacecraft Concept .............................................................. 50 2.7 US Spacecraft Concept ............................................................................ 53 2.8 Open Issues ............................................................................................. 61 2.9 Future Program Plan ................................................................................ 63 2.10 Membership ............................................................................................. 63 iii Chapter Three: ICE: The Pluto Mission 3.1 Introduction and Background .................................................................. 65 3.2 The Pluto Program ................................................................................... 66 3.3 Rationale for a Joint Mission ................................................................... 72 3.4 Options Studied ....................................................................................... 76 3.5 Recommended Option and Rationale ....................................................... 87 3.6 Open Issues ............................................................................................. 88 3.7 Recommended Next Steps ....................................................................... 89 3.8 Membership ............................................................................................. 89 Chapter Four: Launch Vehicles 4.1 Introduction and Background .................................................................. 91 4.2 Proton Launch Vehicle ............................................................................. 91 4.3 Launch Approval Considerations ............................................................. 94 4.4 Mars Together Mission Description ........................................................ 95 4.5 ICE Mission Description ......................................................................... 98 4.6 FIRE Mission Description ..................................................................... 102 4.7 Summary, Recommendations, and Rationale .......................................... 105 4.8 Open Issues and Recommended Next Steps .......................................... 107 4.9 Membership ........................................................................................... 108 Glossary ....................................................................................................................... 109 Acknowledgment ........................................................................................................ 113 Figures S-1 Mars Together 1998 Stack ......................................................................... 3 S-2 Mars Together 1998 Mission ................................................................... 4 S-3 FIRE Launch Stack .................................................................................... 7 S-4 FIRE Trajectories ....................................................................................... 8 S-5 Pluto Spacecraft with Zond ........................................................................ 9 S-6 Drop Zond Sequence of Events ............................................................... 10 1-1 Mar Together 1998 Basic Configuration ................................................. 18 1-2 Mars Surveyor Program Elements ........................................................... 20 1-3 Option 98A Configuration Description .................................................... 24 1-4 Option 98B Configuration Description .................................................... 25 iv 2-1 FIRE Near-Solar Objectives and US & Russian Instruments .................. 38 2-2 Evolution of FIRE Spacecraft Options ..................................................... 40 2-3 FIRE Interplanetary Trajectory Geometry ................................................ 45 2-4 Recommended Space Head for FIRE Launch Using Star-48 Stage on Proton ...................................................................................................... 47 2-5 Option for Space Head for FIRE Launch Using Fregat Upper Stage on Proton ...................................................................................................... 48 2-6 Russian FIRE Spacecraft Block Diagram ................................................ 50 2-7 Russian FIRE Spacecraft ......................................................................... 53 2-8 US FIRE Spacecraft Block Diagram ....................................................... 55 2-9 Stowed Configuration of the FIRE Spacecraft ......................................... 56 2-10 US FIRE Instrument Fields of View ........................................................ 59 2-11 Telemetry Rates vs. Time from Perihelion for the US FIRE Spacecraft ................................................................................................ 60 2-12 FIRE Spacecraft Mass Loss vs. Emissivity for Parabolic Shield ............. 61 3-1 Pluto Spacecraft with Drop Zonal ............................................................. 70 3-2 Pluto Fast Flyby Interplanetary Trajectories ............................................ 71 3-3 Russian Drop Zond ................................................................................. 79 3-4 Pluto VSS: Pluto/Charon Flyby .............................................................. 82 3-5 Pluto/Charon Strawman Encounter Scenario Overview ............................ 83 3-6 3+AVEJGA Trajectory ............................................................................ 84 4-1 Proton Launch Vehicle and Main Injection Parameters ............................ 93 4-2 Mars Together 1998 Basic Configuration ................................................ 96 4-3 Configuration for ICE Mission .............................................................. 100 4-4 Profile of S/C Insertion into Interplanetary Trajectory ........................... 101 4-5 Configuration for FIRE Mission ........................................................... 104 Tables 2.1 FIRE Trajectory Parameters ..................................................................... 44 2.2 Proton Booster Characteristics ................................................................. 46 2.3 Proton Performance Characteristics for the FIRE Mission ...................... 49 2.4 Proton-M Performance Characteristics for the FIRE Mission ................. 49 3.1 Science Capabilities Comparison ............................................................. 69 3.2 DZ Equipment Characteristics ................................................................. 80 V SUMMARY Introduction The United
Recommended publications
  • OUFTI-1 Environmental Impact Assessment
    Date: 11/02/2016 Issue: 1 Rev: 1 Page: 1 of 11 OUFTI-1 Environmental Impact Assessment Reference 3_OUF_ENV_IMPACT_1.0 Issue/Rev Issue 1 Rev 0 Date 11/02/2016 Distribution OUFTI-1 team OUFTI-1 Environmental Impact Assessment Date: 11/02/2016 Issue: 1 Rev: 1 Page: 2 of 11 AUTHORS Name Email Telephone X. Werner [email protected] +32 4 366 37 38 S. De Dijcker [email protected] +32 4 366 37 38 RECORD OF REVISIONS Iss/Rev Date Author Section/page Change description 1/0 11/02/2016 X.Werner, All Initial issue S. De Dijcker Copyright University of Liège [2016]. OUFTI-1 Environmental Impact Assessment Date: 11/02/2016 Issue: 1 Rev: 1 Page: 3 of 11 TABLE OF CONTENTS Authors ....................................................................................................................................... 2 Record of revisions ..................................................................................................................... 2 1. Activities and Objectives ................................................................................................... 4 1.1. Project description ....................................................................................................... 4 1.2. Soyuz launch vehicle ................................................................................................... 5 1.3. Arianespace ................................................................................................................. 7 1.4. Conclusion ..................................................................................................................
    [Show full text]
  • Mars, the Nearest Habitable World – a Comprehensive Program for Future Mars Exploration
    Mars, the Nearest Habitable World – A Comprehensive Program for Future Mars Exploration Report by the NASA Mars Architecture Strategy Working Group (MASWG) November 2020 Front Cover: Artist Concepts Top (Artist concepts, left to right): Early Mars1; Molecules in Space2; Astronaut and Rover on Mars1; Exo-Planet System1. Bottom: Pillinger Point, Endeavour Crater, as imaged by the Opportunity rover1. Credits: 1NASA; 2Discovery Magazine Citation: Mars Architecture Strategy Working Group (MASWG), Jakosky, B. M., et al. (2020). Mars, the Nearest Habitable World—A Comprehensive Program for Future Mars Exploration. MASWG Members • Bruce Jakosky, University of Colorado (chair) • Richard Zurek, Mars Program Office, JPL (co-chair) • Shane Byrne, University of Arizona • Wendy Calvin, University of Nevada, Reno • Shannon Curry, University of California, Berkeley • Bethany Ehlmann, California Institute of Technology • Jennifer Eigenbrode, NASA/Goddard Space Flight Center • Tori Hoehler, NASA/Ames Research Center • Briony Horgan, Purdue University • Scott Hubbard, Stanford University • Tom McCollom, University of Colorado • John Mustard, Brown University • Nathaniel Putzig, Planetary Science Institute • Michelle Rucker, NASA/JSC • Michael Wolff, Space Science Institute • Robin Wordsworth, Harvard University Ex Officio • Michael Meyer, NASA Headquarters ii Mars, the Nearest Habitable World October 2020 MASWG Table of Contents Mars, the Nearest Habitable World – A Comprehensive Program for Future Mars Exploration Table of Contents EXECUTIVE SUMMARY ..........................................................................................................................
    [Show full text]
  • Educator's Guide
    EDUCATOR’S GUIDE ABOUT THE FILM Dear Educator, “ROVING MARS”is an exciting adventure that This movie details the development of Spirit and follows the journey of NASA’s Mars Exploration Opportunity from their assembly through their Rovers through the eyes of scientists and engineers fantastic discoveries, discoveries that have set the at the Jet Propulsion Laboratory and Steve Squyres, pace for a whole new era of Mars exploration: from the lead science investigator from Cornell University. the search for habitats to the search for past or present Their collective dream of Mars exploration came life… and maybe even to human exploration one day. true when two rovers landed on Mars and began Having lasted many times longer than their original their scientific quest to understand whether Mars plan of 90 Martian days (sols), Spirit and Opportunity ever could have been a habitat for life. have confirmed that water persisted on Mars, and Since the 1960s, when humans began sending the that a Martian habitat for life is a possibility. While first tentative interplanetary probes out into the solar they continue their studies, what lies ahead are system, two-thirds of all missions to Mars have NASA missions that not only “follow the water” on failed. The technical challenges are tremendous: Mars, but also “follow the carbon,” a building block building robots that can withstand the tremendous of life. In the next decade, precision landers and shaking of launch; six months in the deep cold of rovers may even search for evidence of life itself, space; a hurtling descent through the atmosphere either signs of past microbial life in the rock record (going from 10,000 miles per hour to 0 in only six or signs of past or present life where reserves of minutes!); bouncing as high as a three-story building water ice lie beneath the Martian surface today.
    [Show full text]
  • Design for Demise Analysis for Launch Vehicles
    A first design for demise analysis for launch vehicles Henrik Simon, Stijn Lemmens Space debris: Inactive, manmade objects in space Source: ESA Overview Introduction Fundamentals Modelling approach Results and discussion Summary and outlook What is the motivation and task? INTRODUCTION Motivation . Mitigation: Prevention of creation and limitation of long-term presence . Guidelines: LEO removal within 25 years . LEO removal within 25 years after mission end . Casualty risk limit for re-entry: 1 in 10,000 Rising altitude Decay & re-entry above 2000 km Source: NASA Source: NASA Solution: Design for demise Source: ESA Scope of the thesis . Typical design of upper stages . General Risk assessment . Design for demise solutions to reduce the risk ? ? ? Risk A Risk B Risk C Source: CNES How do we assess the risk and simulate the re-entry? FUNDAMENTALS Fundamentals: Ground risk assessment Ah = + 2 Ai � ℎ = =1 � Source: NASA Source: NASA 3.5 m 5.0 m 2 2 ≈ ≈ Fundamentals: Re-entry simulation tools SCARAB: Spacecraft-oriented approach . CAD-like modelling . 6 DoF flight dynamics . Break-up / fragmentation computed How does a rocket upper stage look like? MODELLING Modelling approach . Research on typical design: . Elongated . Platform . Solid Rocket Motor . Lack of information: . Create common intersection . Deliberately stay top-level and only compare effects Modelling approach Modelling approach 12 Length [m] 9 7 5 3 2 150 300 500 700 800 1500 2200 Mass [kg] How much is the risk and how can we reduce it? SIMULATIONS Example of SCARAB re-entry simulation 6x Casualty risk of all reference cases Typical survivors Smaller Smaller fragments fragments Pressure tanks Pressure tanks Main tank Engine Main structure + tanks Design for Demise .
    [Show full text]
  • Enabling Interstellar Probe
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Acta Astronautica 68 (2011) 790–801 Contents lists available at ScienceDirect Acta Astronautica journal homepage: www.elsevier.com/locate/actaastro Enabling interstellar probe Ralph L. McNutt Jr.a,n, Robert F. Wimmer-Schweingruber b,1, the International Interstellar Probe Team a The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, M/S MP3-E128, Laurel, MD 20723, USA b Institut fuer Experimentelle und Angewandte Physik, University of Kiel, Leibnizstrasse 11, D-24118 Kiel, Germany article info abstract Article history: The scientific community has advocated a scientific probe to the interstellar medium for Received 15 February 2010 over 30 years. While the Voyager spacecraft have passed through the termination shock Received in revised form of the solar wind, they have limited lifetimes as their radioisotope power supplies 16 June 2010 decay. It remains unclear whether they can reach the heliopause, the boundary between Accepted 2 July 2010 shocked solar wind and interstellar plasmas, and, in any case, they will not reach the Available online 17 August 2010 undisturbed interstellar medium.
    [Show full text]
  • Planetary Science
    Mission Directorate: Science Theme: Planetary Science Theme Overview Planetary Science is a grand human enterprise that seeks to discover the nature and origin of the celestial bodies among which we live, and to explore whether life exists beyond Earth. The scientific imperative for Planetary Science, the quest to understand our origins, is universal. How did we get here? Are we alone? What does the future hold? These overarching questions lead to more focused, fundamental science questions about our solar system: How did the Sun's family of planets, satellites, and minor bodies originate and evolve? What are the characteristics of the solar system that lead to habitable environments? How and where could life begin and evolve in the solar system? What are the characteristics of small bodies and planetary environments and what potential hazards or resources do they hold? To address these science questions, NASA relies on various flight missions, research and analysis (R&A) and technology development. There are seven programs within the Planetary Science Theme: R&A, Lunar Quest, Discovery, New Frontiers, Mars Exploration, Outer Planets, and Technology. R&A supports two operating missions with international partners (Rosetta and Hayabusa), as well as sample curation, data archiving, dissemination and analysis, and Near Earth Object Observations. The Lunar Quest Program consists of small robotic spacecraft missions, Missions of Opportunity, Lunar Science Institute, and R&A. Discovery has two spacecraft in prime mission operations (MESSENGER and Dawn), an instrument operating on an ESA Mars Express mission (ASPERA-3), a mission in its development phase (GRAIL), three Missions of Opportunities (M3, Strofio, and LaRa), and three investigations using re-purposed spacecraft: EPOCh and DIXI hosted on the Deep Impact spacecraft and NExT hosted on the Stardust spacecraft.
    [Show full text]
  • Download Paper
    GIOVE-A’S FREGAT DISPOSAL ASSESSMENT D. Navarro-Reyes(1), R. Zandbergen(2), D. Escobar(3) (1)ESA/ESTEC, Keplerlaan 1, 2200 AG Noordwijk, The Netherlands, Email: [email protected] (2) ESA/ESOC, Robert-Bosch-Str. 5, D-64293 Darmstadt, Germany, Email: [email protected] (3)GMV at ESOC, ESA/ESOC Robert-Bosch-Str. 5, D-64293 Darmstadt, Germany, Email: [email protected] ABSTRACT dedicated stations deployed around the world. The Galileo constellation is defined as a Walker 27/3/1 and is composed of 3 equally-spaced orbital planes with a Galileo will be Europe’s own global navigation satellite nominal inclination of 56 degrees and a semi-major axis system, providing a highly accurate, guaranteed global of 29,600 km. Each plane will contain nine equally- positioning service under civilian control. Following the spaced satellites plus a spare satellite. The first launches approval of Galileo in 1999, a demonstration element are foreseen in 2010, with the full constellation was added – the Galileo System Test Bed (GSTB) with deployed by end 2013. the GIOVE-A and GIOVE-B satellites – to allow early experimentation with the navigation signals and services Following the approval of Galileo in 1999, a before committing to the final constellation design. demonstration element was added – the Galileo System Test Bed (GSTB) with the GIOVE-A and GIOVE-B GIOVE-A (launched on 28 Dec 2005) and GIOVE-B satellites, whose mission was: (launched on 26 April 2008) were injected in the Galileo operational orbit (semi-major axis 29600 km, x To secure use of the frequencies allocated by the circular orbit, inclination 56 degrees) by direct injection International Telecommunications Union (ITU) for with Soyuz/FREGAT launch vehicle.
    [Show full text]
  • Please Type Your Paper Title Here In
    Estimating the Reliability of a Soyuz Spacecraft Mission Michael G. Lutomskia*, Steven J. Farnham IIb, and Warren C. Grantb aNASA-JSC, Houston, TX – [email protected] bARES Corporation, Houston, TX Abstract: Once the US Space Shuttle retires in 2010, the Russian Soyuz Launcher and Soyuz Spacecraft will comprise the only means for crew transportation to and from the International Space Station (ISS). The U.S. Government and NASA have contracted for crew transportation services to the ISS with Russia. The resulting implications for the US space program including issues such as astronaut safety must be carefully considered. Are the astronauts and cosmonauts safer on the Soyuz than the Space Shuttle system? Is the Soyuz launch system more robust than the Space Shuttle? Is it safer to continue to fly the 30 year old Shuttle fleet for crew transportation and cargo resupply than the Soyuz? Should we extend the life of the Shuttle Program? How does the development of the Orion/Ares crew transportation system affect these decisions? The Soyuz launcher has been in operation for over 40 years. There have been only two loss of life incidents and two loss of mission incidents. Given that the most recent incident took place in 1983, how do we determine current reliability of the system? Do failures of unmanned Soyuz rockets impact the reliability of the currently operational man-rated launcher? Does the Soyuz exhibit characteristics that demonstrate reliability growth and how would that be reflected in future estimates of success? NASA’s next manned rocket and spacecraft development project is currently underway.
    [Show full text]
  • The Annual Compendium of Commercial Space Transportation: 2017
    Federal Aviation Administration The Annual Compendium of Commercial Space Transportation: 2017 January 2017 Annual Compendium of Commercial Space Transportation: 2017 i Contents About the FAA Office of Commercial Space Transportation The Federal Aviation Administration’s Office of Commercial Space Transportation (FAA AST) licenses and regulates U.S. commercial space launch and reentry activity, as well as the operation of non-federal launch and reentry sites, as authorized by Executive Order 12465 and Title 51 United States Code, Subtitle V, Chapter 509 (formerly the Commercial Space Launch Act). FAA AST’s mission is to ensure public health and safety and the safety of property while protecting the national security and foreign policy interests of the United States during commercial launch and reentry operations. In addition, FAA AST is directed to encourage, facilitate, and promote commercial space launches and reentries. Additional information concerning commercial space transportation can be found on FAA AST’s website: http://www.faa.gov/go/ast Cover art: Phil Smith, The Tauri Group (2017) Publication produced for FAA AST by The Tauri Group under contract. NOTICE Use of trade names or names of manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the Federal Aviation Administration. ii Annual Compendium of Commercial Space Transportation: 2017 GENERAL CONTENTS Executive Summary 1 Introduction 5 Launch Vehicles 9 Launch and Reentry Sites 21 Payloads 35 2016 Launch Events 39 2017 Annual Commercial Space Transportation Forecast 45 Space Transportation Law and Policy 83 Appendices 89 Orbital Launch Vehicle Fact Sheets 100 iii Contents DETAILED CONTENTS EXECUTIVE SUMMARY .
    [Show full text]
  • Mars Program Independent Assessment Team Summary Report
    Mars Program Independent Assessment Team Summary Report March 14, 2000 Mars Climate Orbiter failed to achieve Mars orbit on September 23, 1999. On December 3, 1999, Mars Polar Lander and two Deep Space 2 microprobes failed. As a result, the NASA Administrator established the Mars Program Independent Assessment Team (MPIAT) with the following charter: Review and Analyze Successes and Failures of Recent Mars and Deep Space Missions − Mars Global Surveyor – Mars Climate Orbiter − Pathfinder – Mars Polar Lander − Deep Space 1 – Deep Space 2 Examine the Relationship Between and Among − NASA Jet Propulsion Laboratory (JPL) − California Institute of Technology (Caltech) − NASA Headquarters − Industry Partners Assess Effectiveness of Involvement of Scientists Identify Lessons Learned From Successes and Failures Review Revised Mars Surveyor Program to Assure Lessons Learned Are Utilized Oversee Mars Polar Lander and Deep Space 2 Failure Reviews Complete by March 15, 2000 In-depth reviews were conducted at NASA Headquarters, JPL, and Lockheed Martin Astronautics (LMA). Structured reviews, informal sessions with numerous Mars Program participants, and extensive debate and discussion within the MPIAT establish the basis for this report. The review process began on January 7, 2000, and concluded with a briefing to the NASA Administrator on March 14, 2000. This report represents the integrated views of the members of the MPIAT who are identified in the appendix. In total, three related reports have been produced: this report, a more detailed report titled “Mars Program Independent Assessment Team Report” (dated March 14, 2000), and the “Report on the Loss of the Mars Polar Lander and Deep Space 2 Missions” (dated March 22, 2000).
    [Show full text]
  • SOYUZ THROUGH the AGES the R-7 Rocket That Led to the Family of Soyuz Vehicles Launching Today Lifted Off for the First Time Onfeb
    RUSSIAN SPACE SOYUZ THROUGH THE AGES The R-7 rocket that led to the family of Soyuz vehicles launching today lifted off for the first time onFeb. 17, 1959. The last launch, on Dec. 27, 2018, was number 1,898. Irene Klotz and Maxim Pyadushkin Vostochny Cosmodrome anufactured by the Progress Rocket Space Center in Sama- Evolution of Soyuz-Family Launch Vehicles ra, Russia, the medium-lift expendable booster originally was used for Soviet-era human space missions and later became the R-7 Soyuz Soyuz-L workhorse for the country’s civilian and military space programs. M 1957 First launch of the ICBM (SS-6 1966-76 (32 launches, 1970-71 (three launches, Sapwood) that served as a basis for including 30 successful, all successful, The first rocket officially named Soyuz was launched in Soviet/Russian launch vehicles from Baikonur) from Baikonur) 1966 and has since flown 1,050 times, of which 1,023 were including the Soyuz family successful. Production of Soyuz rockets peaked in the early Soyuz 1980s at about 60 vehicles per year. Medium-Class Launch Vehicle Russia began offering Soyuz launch services internationally in the mid-1980s through Glavkosmos, a commercial entity set up to sell Soviet rocket and space technologies. Manufacturer: Progress Rocket Space Soyuz-U/-U2 Soyuz-M Center, Samara, Russia In 1996, Russia created Starsem, a joint venture (35% ArianeGroup, 25% Roscosmos, 25% RKTs Progress, 15% 1991 Breakup of the 1973-2017 1971-76 (eight launches, Soviet Union, (859 launches, including all successful, from Plesetsk) Dimensions Arianespace) that had exclusive rights to provide commercial launch services on Soyuz launch vehicles.
    [Show full text]
  • Here the Italian Space Agency ASI Holds 30% of the Shares and the Rest Is the Property of Avio Spa
    Goliat the first Romanian satellite is approaching the launch date- less than 6 months since Romania will have its first space mission At a recent press conference, Jean-Yves Le Gall the director of ArianeSpace, shared with the public the plans of the company for 2011. Like for the last year we will have a busy schedule with not less than 12 launches (double than for 2010). As before the central point will be the veteran Ariane 5 rocket, but part of the new managerial strategy, ArianeSpace will look also for the segment of medium and small launchers meeting the demands of the worldwide customers. It is hoped that some part of the operations will be transferred gradually to these niches and thus to be over passed the record set last year when approximately 60% of the world GEO telecom satellites have been launched by ArianeSpace. The perspectives are very good with another 12 additional GEO transfer contracts being signed in 2010 (about 63% from the international commercial market). The technical procedures which make sure these flights are accomplished are also at the highest standards (proved by the last 3 launches of 2010 separated by one month each i.e. October, November and December) and the Ariane 5 rocket, because of the proven reliability has became today the preferred of the commercial launches (since December 2002 when the version ECA has been put into operation and when the inaugural flight ended by loosing the 2 satellite transported onboard-Stentor and Hot Bird 7- the rocket has an impressive record of 36 successful flights).
    [Show full text]