The Ireland-Claisen Rearrangement of 3
Total Page:16
File Type:pdf, Size:1020Kb
THE IRELAND‐CLAISEN REARRANGEMENT OF 3‐ ALKOXYPROPENOL AMINO ESTERS AS AN ENTRY TO SPHINGOLIPID AMINO ACID NATURAL PRODUCTS Nathan William George Fairhurst A thesis submitted for the degree of Doctor of Philosophy University of Bath Department of Chemistry July 2012 COPYRIGHT Attention is drawn to the fact that copyright of this thesis rests with its author. A copy of this thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and they must not copy or use it or use material from it except as permitted by law or with the consent of the author. This thesis may be made available for consultation within the University Library and maybe photocopied or lent to other libraries for the purpose of consultation. [Signature] [Date] | ii Abstract ABSTRACT The Ireland-Claisen rearrangement is a powerful synthetic tool which allows predictable diasterocontrol and chirality transfer in the synthesis of γ,δ-unsaturated carboxylic acids. Previous work within the Carbery group has developed a novel protocol for the synthesis of β-alkoxy- and aryloxy-α-amino acids. Chapter 2 covers the initial volume of work on developing this methodology further to allow the synthesis of sterically congested α-quaternary carbon centres in β-alkyoxy- and aryloxy-α-amino acids. Individual substrate optimisation allowed improvement of both the yields and diastereoselectivity of this rearrangement, along with the isolation of a key degradation product. A series of heteroproline-based rearrangements laid the groundwork for remote chirality transfer within this Ireland-Claisen rearrangement. The principle of self-regeneration of stereocentres is applied in an Ireland-Claisen context in Chapter 3. Showing exceptional levels of remote stereocontrol the rearrangement is shown to be general, offering almost exclusively diastereoselectivities of >99:1. Allylic enol ether amino esters saw yields of 47 – 83% and provided functional handles allowing for further synthetic manipulations. Carbon substituted allyl amino esters allowed facile access into β-hydroxy-α-amino acid derivatives of proteinogenic amino acids leucine and isoleucine (amongst others) with excellent selectivity. The synthesis of both enantiomers of mycestericin G in Chapter 4 highlights the synthetic utility of this methodology, in addition to allowing a revision of absolute configuration of this natural product. The synthesis of a mycestericin G analogue, derived from threonine, is also presented. Finally, Chapter 5 exploits these rearrangement products as chiral diene ligands in rhodium-catalysed conjugate addition reactions. Both ligand and reaction condition optimisation led to a range of aryl boronic acids used in the 1,4-addition to 2- cyclohexenone with yields of 24 – 100% and enantioselectivities of 74 – 93% observed. | iii Contents CONTENTS ABSTRACT ..................................................................................................................... iii CONTENTS ..................................................................................................................... iv ACKNOWLEDGEMENTS ............................................................................................ vii ABBREVIATIONS ......................................................................................................... ix 1. INTRODUCTION 1 1.1 β-Hydroxy-α-Amino Acids ........................................................................................ 1 1.1.1 Synthesis of β-Hydroxy-α-Amino Acids ............................................................. 3 1.2 Sphingosine and Sphingosine-related Metabolites ..................................................... 7 1.2.1 Isolation and Biology of Sphingosine Analogues ................................................ 8 1.2.2 Synthesis of Sphingosine Analogues ................................................................. 10 1.3 Self-Regeneration of Stereocentres ........................................................................... 16 1.3.1 Endocyclic Enolates in SRS ............................................................................... 18 1.3.2 Bicyclic Enolates in SRS ................................................................................... 22 1.3.3 Exocyclic Enolates in SRS ................................................................................. 24 1.3.4 α,β-Unsaturated Carbonyl Compounds in SRS ................................................. 28 1.4 Pericyclic Reactions .................................................................................................. 30 1.4.1 Sigmatropic Rearrangements ............................................................................. 30 1.4.2 Claisen Rearrangement ...................................................................................... 31 1.4.3 Variants of the Claisen Rearrangement ............................................................. 36 1.5 Ireland-Claisen Rearrangement ................................................................................. 39 1.5.1 Diastereocontrol in the Ireland-Claisen Rearrangement .................................... 41 1.5.2 Glycinates in the Ireland-Claisen Rearrangement ............................................. 43 1.5.3 Quaternary Centres in the Ireland-Claisen Rearrangement ............................... 46 2. α-QUATERNARY CENTRES IN β-HYDROXY-α-AMINO ACIDS 49 2.1 Background ............................................................................................................... 49 2.2 Phthaloyl Protected Substrates .................................................................................. 50 2.2.1 Retrosynthetic Analysis ..................................................................................... 50 2.2.2 Forward Synthesis .............................................................................................. 51 2.2.3 Initial Rearrangement Attempts ......................................................................... 53 | iv Contents 2.2.4 Rearrangement Optimisation ............................................................................. 54 2.2.5 Optimal Rearrangements .................................................................................... 59 2.3 Boc-N-Me Protected Substrates ................................................................................ 61 2.3.1 Retrosynthetic Analysis ..................................................................................... 61 2.3.2 Forward Synthesis .............................................................................................. 62 2.3.3 Rearrangement Attempts .................................................................................... 64 2.4 Heteroproline Derived Substrates ............................................................................. 65 2.4.1 Substrate Genesis ............................................................................................... 65 2.4.2 Forward Synthesis of Heteroproline Allyl Esters .............................................. 66 2.4.3 Rearrangement of Heteroproline Allyl Esters .................................................... 68 3. SRS IN AN IRELAND-CLAISEN REARRANGEMENT 69 3.1 Concept Development ............................................................................................... 69 3.2 Reaction Development .............................................................................................. 72 3.2.1 Forward Synthesis of Chiral Oxazolidine .......................................................... 72 3.2.2 Rearrangement Optimisation ............................................................................. 73 3.3 Reaction Scope of Enol Ethers .................................................................................. 75 3.3.1 Substrate Synthesis ............................................................................................ 75 3.3.2 Substrate Rearrangement ................................................................................... 79 3.4 Reaction Scope of Crotyl Esters ............................................................................... 86 3.4.1 Substrate Synthesis ............................................................................................ 87 3.4.2 Substrate Rearrangement ................................................................................... 88 3.5 Rearrangement Product Derivatisation ..................................................................... 90 3.5.1 Derivatisation of Enol Ether Rearrangement Products ...................................... 90 3.5.2 Derivatisation of Crotyl Rearrangement Products ............................................. 97 3.6 Conclusions ............................................................................................................... 98 4. SYNTHESIS OF MYCESTERICIN G 100 4.1 Background ............................................................................................................. 100 4.2 Total Synthesis of Mycestericin G .......................................................................... 100 4.2.1 Retrosynthetic Analysis ................................................................................... 100 4.2.2 Initial Investigation .......................................................................................... 101 4.2.3 Completion of the Synthesis of Mycestericin G .............................................. 104 4.3 Total Synthesis of Threonine Analogue of